ON SOME PROPERTIES OF $\alpha\gamma$-OPEN SETS IN TOPOLOGICAL SPACES

STELLA IRENE MARY.J*1, SINDHU.M2

1Associate Professor, 2M. Phil Scholar,
Department of Mathematics, PSG College of Arts & Science, Coimbatore, India.

(Received On: 29-10-15; Revised & Accepted On: 20-11-15)

ABSTRACT

In this article a new class of open sets called $\alpha\gamma$-open sets in topological spaces is introduced. This class contains the class of all θ-open sets and is contained in the class of all α-open sets. The inclusion relation of this new class with other known classes of open sets are investigated. Also their properties are analyzed.

Keywords: α-open sets, θ-open sets, semi-θ-open sets, $\alpha\gamma$-open sets, Extremally Disconnected.

AMS Subject Classification: 54A05, 54G05, 54H05.

1. INTRODUCTION

In 1965 Njastad [13] introduced the notion of alpha open sets (briefly α-open sets). Followed by the class of α-open sets, several other related classes such as alpha generalized open sets and generalized alpha open sets (briefly ag-open sets and ga-open sets) were defined by Maki et.al [10]. As an extension of α-closed sets, $ag\gamma$-closed sets were defined by Abd El-Monsef, et.al [1]. As further study on the application of α-closed sets and $ag\gamma$-closed sets Mary and Nagajothi [11] and [12] introduced $ba\gamma$-closed sets and $ab\gamma$-closed sets and analyzed their properties. The following inclusion relation holds.

$$\{\alpha$-closed sets$\} \subset \{ab\gamma$-closed sets$\} \subset \{ba\gamma$-closed sets$\}.$$

Velicki[16] defined θ-open sets in 1968. As an extension of this class, Di Maio and Noiri[5] introduced semi-θ-open sets in 1987. Following these classes, in this paper a new class of open sets namely class of $\alpha\gamma$-open sets is introduced which is contained in the class of α-open sets and the class of θ-open sets forms a subclass. The new class of $\alpha\gamma$-open sets satisfy the inclusion relation given below

$$\{\theta$-open sets$\} \subset \{\alpha\gamma$-open sets$\} \subset \{\alpha$-open sets$\}.$$

2. PRELIMINARIES

Throughout this paper, (X, τ) denote a topological space with topology τ. For a subset A of X the interior of A and closure of A are denoted by $Int(A)$ and $Cl(A)$ respectively.

Definition 2.1: [8] A topology on a set X is a collection τ of subsets of X having the following properties:

1) \emptyset and X are in τ.
2) The union of the elements of any subcollection of τ is in τ.
3) The intersection of the elements of any finite subcollection of τ is in τ.

A set X for which a topology τ has been specified is called a topological space and is denoted by (X, τ).

Definition 2.2: A subset A of a space X is said to be:

1) α-open set[13] if $A \subset Int(cl(int(A)))$ and α-closed set if $Int(cl(int(A)) \subset A$.
3) Semi-open set[9] if $A \subset Cl(int(A))$ and Semi-closed set if $Cl(int(A)) \subset A$.
4) Pre-open set if $A \subset Int(cl(A))$ and Pre-closed set if $Int(cl(A)) \subset A$.
5) b-open set[3] if $A \subset (Int(Cl(A)) \cup (Cl int(A)) and b-closed set if $(Int(Cl(A)) \cup (Cl int(A)) \subset A$.
6) **Semi-**θ-**open set**[9] if for each $x \in A$, there exists a semi-open set G such that $x \in G \subset \text{Cl}(G) \subset A$.
7) **θ-**open set[16] if for each $x \in A$, there exists an open set G such that $x \in G \subset \text{Cl}(G) \subset A$.
8) **δ-**open set[16] if for each $x \in A$, there exists an open set G such that $x \in G \subset \text{Int}(\text{cl}(G)) \subset A$.
9) **θ-**semi-**open set** if for each $x \in A$, there exists a semi-open set G such that $x \in G \subset \text{Cl}(G) \subset A$.

Definition 2.3:
1) The intersection of all semi-closed sets containing A is called the **semi-closure**[4] of A denoted by $s\text{Cl}(A)$.
2) The intersection of all α-closed sets containing A is called α-**closure**[13] of A denoted by $\alpha\text{Cl}(A)$.
3) The intersection of all b-closed sets containing A is called the b-**closure**[3] of A denoted by $b\text{Cl}(A)$.

Definition 2.4: The family of all open sets, semi-open sets, α-open sets, pre-open sets, semi-θ-open sets, θ-open sets, δ-open sets, regular-open sets, semi-closed sets and regular closed sets are denoted by $O(X), SO(X), aO(X), PO(X), SBD(X), BD(X), BD(X), RBD(X), SC(X)$ and $RC(X)$ respectively.

Definition 2.5: A topological space (X, τ) is said to be:
(i) T_1 space if to each pair of distinct points x, y of X there exist a pair of open sets, one containing x but not y and other containing y but not x, as well as is T_1 if and only if for any point $x \in X$, the singleton set $\{x\}$ is closed [17].
(ii) T_2 space if to each pair of distinct points x, y of X there exist a pair of disjoint open sets, one containing x other containing y, as well as is T_2 if and only if for any point $x \in X$, the singleton set $\{x\}$ is closed.
(iii) **Locally indiscrete**[6], if every open subset of X is closed.
(iv) **S^\ast**-**normal**[2] if and only if for every semi-closed set F and semi-open set G containing F, there exists an open set H such that $F \subset H \subset \text{Cl}(H) \subset G$.
(v) **Regular** if for each $x \in X$ and for each open set A containing x, there exists an open set G containing x such that $x \in G \subset \text{Cl}(G) \subset A$.

Definition 2.6: A space X is called **Extremally disconnected**[15], if closure of every open set is open.

3. **ac-OPEN SETS:**

In this section we introduce a new class of open sets called **ac-open sets** which lie between the class of θ-open sets and the class of α-open sets.

Definition 3.1: A subset A of a topological space X is called **ac-open set** if for each $x \in A \in aO(X)$, there exists a closed set F, such that $x \in F \subset A$.

The following Theorem gives a characterization for ac-open sets.

Theorem 3.1.1: A subset A of a space X is ac-open set if and only if A is α-open set and it is the union of closed sets. That is $A=\bigcup F_x$ where A is α-open set and F_x is closed sets for each x.

Proof: Let A be ac-open set. Then by definition (3.1), A is a α-open set.

Since for each $x \in A \in aO(X)$, there exist a closed set F_x such that $x \in F_x \subset A$, we have $A=\bigcup F_x$.

Conversely, let A be a α-open set and $A=\bigcup F_x$. For each $x \in A$, there exists x such that $x \in F_x \subset A$.

Hence A is a ac-open set.

Corollary 3.1.1: Every θ-open set of a space X is ac-open.

Proof: Let A be a θ-open set in X. Then for each $x \in A$, there exists an open set G such that $x \in G \subset \text{Cl}(G) \subset A$.

So $\bigcup \{x\} \subset \bigcup G \subset \bigcup \text{Cl}(G) \subset A$, implies $A \subset \bigcup G \subset \bigcup \text{Cl}(G) \subset A$. Therefore $A=\bigcup G$ and $A=\bigcup \text{Cl}(G)$.

Since G is open and arbitrary union of open set is open, A is open. Since open implies α-open, by Theorem (3.1.1), A is ac-open.

Remark 3.1.1:
1) For any α-open set A to be ac-open set, it is necessary that A must be the union of closed sets.

For example, let $X=\{a, b, c\}$, $\tau = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}\}$, the Closed sets are $\{\emptyset, X, \{c\}, \{b, c\}, \{a, c\}\}$.
Then \(aO(X) = \{ \emptyset, X, \{a\}, \{b\}, \{a, b\} \} \) and \(\alpha O(X) = \{ \emptyset, X \} \).

Here \(\{a\} \) is \(a \)-open, but it is not a \(\alpha \)-open set. Since \(\{a\} \) is not a union of closed sets in \(X \).

2) \(S0\alpha(X) \) need not be an \(\alpha c0(X) \).

Let \(X=\{a, b, c\} \) with \(\tau = \{X, \emptyset, \{a, b\}, \{a\}, \{b\}\} \), the closed sets are \(\{X, \emptyset, \{c\}, \{b, c\}, \{a, c\}\} \). Then \(S0\alpha(X) = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}, \{a, c\}\} \) and \(\alpha O(X) = \{X, \emptyset\} \). Here \(\{a\} \) is \(S0\alpha(X) \) but not \(\alpha O(X) \).

Theorem 3.1.2: Let \((X, \tau)\) be a topological space and \(\{A_j : j \in \Delta\} \) be a collection of \(\alpha c\)-open sets in \(X \). Then \(\bigcup \{A_j : j \in \Delta\} \) is \(\alpha c\)-open.

Proof: By definition (3.1), for each \(A_j \) is \(\alpha \)-open set, \(j \in \Delta \). Since union of \(\alpha \)-open sets is \(\alpha \)-open, \(\bigcup \{A_j : j \in \Delta\} \) is \(\alpha \)-open. Let \(x \in \bigcup \{A_j : j \in \Delta\} \), then there exists \(j \in \Delta \) such that \(x \in A_j \). Since \(A_j \) is \(\alpha c\)-open set, there exists a closed set \(F \) such that \(x \in F \subset A_j \cup \{A_j : j \in \Delta\} \). Hence \(\bigcup \{A_j : j \in \Delta\} \) is an \(\alpha c\)-open set in \(X \).

The following Corollary gives another characterization of \(\alpha c\)-open sets.

Corollary 3.1.2: The set \(A \) is \(\alpha c\)-open in the space \((X, \tau)\) if and only if for each \(x \in A \), there exists a \(\alpha c\)-open set \(B \) such that \(x \in B \subset A \).

Proof: Let \(A \) is \(\alpha c\)-open. Then for each \(x \in A \), choose \(B = A \) so that \(x \in B \subset A \), and \(B \) is \(\alpha c\)-open.

Conversely, Assume that for each \(x \in A \), there exists a \(\alpha c\)-open set \(B_x \) such that \(x \in B_x \subset A \).

Thus \(A = \bigcup B_x \) where \(B_x \in \alpha O(X) \). By Theorem (3.1.2), \(A \) is \(\alpha c\)-open set.

Theorem 3.1.3: If the family of all \(\alpha \)-open sets of a space \(X \) is a topology on \(X \), then the family of all \(\alpha c\)-open sets is also a topology on \(X \).

Proof:

(i) Clearly \(\emptyset, X \in \alpha O(X) \).

(ii) By Theorem(3.1.2), the union of all \(\alpha c\)-open sets is \(\alpha c\)-open.

(iii) We have to show that finite intersection of \(\alpha c\)-open set is \(\alpha c\)-open set.

Let \(\{A_j : j = 1, 2, \ldots, n\} \) be a collection of \(\alpha c\)-open sets. Then by definition (3.1), \(A_1, A_2, \ldots, A_n \) are \(\alpha \)-open sets.

Let \(x \in \bigcap \{A_j : j = 1, 2, \ldots, n\} \), then \(x \in A_j \) for each \(j \), and there exists a closed set \(F_j \) such that \(x \in F_j \subset A_j \).

Then \(x \in \bigcap F_j \subset \bigcap \{A_j : j = 1, 2, \ldots, n\} \). Thus \(\bigcap \{A_j : j = 1, 2, \ldots, n\} \) is \(\alpha c\)-open.

Hence the family of all \(\alpha c\)-open sets is also a topology on \(X \).

Lemma 3.1.4: For any spaces \(X \) and \(Y \). If \(A \subseteq X \) and \(B \subseteq Y \) then,

(i) \(aInt_{X\times Y}(A \times B) = aInt_{X}(A) \times aInt_{Y}(B) \) [9].

(ii) \(Cl_{X\times Y}(A \times B) = Cl_{X}(A) \times Cl_{Y}(B) \).

The following Theorem shows that the property of being \(\alpha c\)-open is preserved by the product of two topological spaces.

Theorem 3.1.5: Let \(X \) and \(Y \) be two topological spaces and \(X \times Y \) be the product topology. If \(A \in \alpha O(X) \) and \(B \in \alpha O(Y) \). Then \(A \times B \in \alpha O(X \times Y) \).

Proof: Let \((x, y) \in A \times B \), then \(x \in A \) and \(y \in B \). Since \(A \in \alpha O(X) \) and \(B \in \alpha O(Y) \), then \(A \in \alpha O(X) \) and \(B \in \alpha O(Y) \). Also there exists closed sets \(F \) and \(E \) in \(X \) and \(Y \) respectively, such that \(x \in F \subseteq A \) and \(y \in E \subseteq B \).

Therefore, \((x, y) \in F \times E \subseteq A \times B \). Since \(A \in \alpha O(X) \) and \(B \in \alpha O(Y) \). Then by Lemma 3.1.4(i), \(A \times B = aInt_{X}(A) \times aInt_{Y}(B) = aInt_{X\times Y}(A \times B) \). Hence \(A \times B \in \alpha O(X \times Y) \). Since \(F \) is closed in \(X \) and \(E \) is closed in \(Y \).

Then by Lemma 3.1.4(ii), \(F \times E = Cl_{X}(F) \times Cl_{Y}(E) = Cl_{X\times Y}(F \times E) \). Hence \(F \times E \) is closed in \(X \times Y \).

Therefore, \(A \times B \in \alpha O(X \times Y) \).
Theorem 3.1.6: If the space X is a T_1-space (or) a T_2-space, then the family $ac\ O(X) = aO(X)$.

Proof: Let A be α- open set of X.

Since X is a T_1 space (or) a T_2 space, for each $x \in A \subset X$, $\{x\}$ is closed.

Therefore $x \in \{x\} \subset A$, $A \in \alpha O(X)$. Hence $aO(X) \subset acO(X)$.

By definition of ac-open sets, $acO(X) \subset aO(X)$. Hence $aO(X) = acO(X)$.

Theorem 3.1.7: [18] If X is S^{**}-normal, then $S\theta O(X) = \theta O(X) = \theta SO(X)$.

Theorem 3.1.8: If (X, τ) is an S^{**}-normal space and if $A \in S\theta O(X)$, then $A \in acO(X)$.

Proof: Let A be an semi-θ-open set of X. If $A = \emptyset$, then $A \in acO(X)$.

Suppose $A \neq \emptyset$. Since the space A is S^{**}-normal, by Theorem (3.1.7) $S\theta O(X) = \theta O(X)$.

Then A is θ-open of X. By Corollary (3.1.1), $A \in acO(X)$.

Remark 3.1.9: Every open set need not be ac-open. It is evident from the following example.

For example, let $X = \{a, b, c, d\}$, $\tau = \{\emptyset, X, \{a\}, \{b\}, \{c\}, \{a, b\}, \{b, c\},\{a, b, c\},\{b, c, d\}\}$ and

The closed sets are $\{\emptyset, X, \{a\}, \{b\}, \{c\}, \{a, b\}, \{b, c\},\{a, b, c\},\{b, c, d\}\}$.

Then $acO(X) = \{\{a\}, \{a, d\}, \{c, d\}, \{a, b, d\}, \{a, c, d\}, \{b, c, d\}, \{b, d\}\}$. Here $\{b\}$ is open set but not ac-open.

The following Theorem gives conditions under which an open set is also ac-open.

Theorem 3.1.9: Every open set is ac-open set in X, if one of the following holds.

(i) (X, τ) is Locally indiscrte.

(ii) X is Regular.

Proof:

(i) Let A be an open set of X. If $A = \emptyset$, then $A \in acO(X)$.

Suppose $A \neq \emptyset$, we know that $\tau \subset aO(X)$. Therefore $A \in aO(X)$.

If X is Locally indiscrete, then every open subset is closed.

Since A is open, we have A is closed. Therefore, $x \in A \subset A$ implies $A \in acO(X)$.

Hence every open is ac-open of X.

(ii) Let A be an open set of X. If $A = \emptyset$, then $A \in acO(X)$. Suppose $A \neq \emptyset$, we know that $\tau \subset aO(X)$. Therefore $A \in aO(X)$. If X is Regular and since $A \in \tau$, we have for each $x \in A$, there exists an open set G containing x such that $x \in G \subset Cl(G) \subset A$ implies $x \in Cl(G) \subset A$. Thus $A \in acO(X)$.

Theorem 3.1.10: [18] A space X is called Extremally disconnected if and only if $\delta O(X) = \theta SO(X)$.

Theorem 3.1.11: Let (X, τ) be an Extremally disconnected and S^{**}-normal space. Then

(i) $\delta O(X) \subset acO(X)$.

(ii) $RO(X) \subset acO(X)$.

Proof:

(i) Let A be an δ-open set of X. If $A = \emptyset$, then $A \in acO(X)$. Suppose $A \neq \emptyset$, since X is Extremally disconnected, by Theorem (3.1.10), we have $\delta O(X) = \theta SO(X)$. Then $A \in \theta SO(X)$.

If X is S^{**}-normal space, then by Theorem(3.1.7), $\theta SO(X) = \theta O(X)$. Hence $A \in \theta O(X)$.

2015, IJMA. All Rights Reserved
By Corollary (3.1.1), A is α-open of X. Hence $\delta O(X) \subseteq a\alpha O(X)$.

(ii) Let A be a Regular open set of X. If A = \emptyset, then $\subseteq a\alpha O(X)$. Suppose $A \neq \emptyset$, Since A be Regular open implies $A = Int(Cl(A)$, then for each $x \in A$, there exist an open set A such that $x \in A \subseteq Int(Cl(A)) \subseteq A$.

Then $A \in \delta O(X)$. By (i), A be an $a\alpha O(X)$.

Remark 3.1.11:
1) Every δ-open set need not be α-open. It is evident from the following example.

Let $X = \{a, b, c\}$, $\tau = \{X, \emptyset, \{a, b, c\}, \{a\}\}$. the closed set are $\{X, \emptyset, \{b, c\}, \{a\}\}$.

Then $\delta O(X) = \{X, \emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}\}$ and $a\alpha O(X) = \{X, \emptyset, \{a\}, \{b\}, \{c\}\}$.

Here $\{b\}$ is $\delta O(X)$ but not $a\alpha O(X)$.

2) Every Regular-open set need not be α-open. It is evident from the following example.

In Remark (3.1.9), we have Regular-open sets $\{\{a\}, \{d\}, \{a, d\}, \{b, d\}, \{c, d\}, \{a, b, d\}, \{a, c, d\}, \{b, c, d\}, \emptyset, X\}$ and $a\alpha O(X) = \{\{a\}, \{d\}, \{a, d\}, \{b, d\}, \{c, d\}, \{a, c, d\}, \{b, c, d\}, \emptyset, X\}$. Here $\{d\}$ is $RO(X)$ but not $a\alpha O(X)$.

3.2 α-Closed set:

Definition 3.2: A subset B of a space X is called α-closed set if $X \setminus B$ is α-open set. The family of all α-closed subsets of a topological space (X, τ) is denoted by $a\alpha C(X)$.

The following Theorem gives a characterization of α-closed sets.

Theorem 3.2.1: A subset B of a space X is α-closed if and only if B is α-closed set and it is an intersection of open sets.

Proof: Let B be an α-closed set in X.

Then $X \setminus B$ is α-open set. Thus, $X \setminus B$ is α-open set and for all $y \in X \setminus B$, there exists a closed set F_y such that $y \in F_y \subset X \setminus B$. Then B is α-closed and $\cup \{y\} \subset F_y \subset X \setminus B$, $X \setminus B \subseteq \cup F_y$.

Then $B = X \setminus \cup F_y$ implies $B \cap \cap \{X \setminus F_y\}$ is open set. B is an intersection of open sets. Hence B is α-closed set and it is an intersection of open sets.

Conversely, Let B be α-closed set and intersection of open sets. B is α-closed implies $X \setminus B$ is α-open and $B = \cap F_i$ where F_i’s are open set. $X \setminus B = X \setminus (\cap F_i) = \cup (X \setminus F_i)$, where $X \setminus F_i$ is closed set.

Thus for all $y \in X \setminus B$, there exists some i such that $y \in X \setminus F_i$, where $X \setminus F_i$ is closed set.

i.e., $y \in X \setminus F_i \subset X \setminus B$ implies $X \setminus B$ is α-open. Hence B is α-closed.

Corollary 3.2.1: For any subset B of a space, if $B \in \theta C(X)$, then $B \subseteq a\alpha C(X)$.

Proof: Let B be a θ-closed set of X. Then $X \setminus B$ is an α-open set.

By Corollary (3.1.1), we have $X \setminus B$ is an α-open set. Thus B is α-closed set. Hence $\theta C(X) \subseteq a\alpha C(X)$.

Theorem 3.2.2: Let $\{B_j : j \in \Delta\}$ be a collection of α-closed sets in a topological space X. Then $\cap \{B_j : j \in \Delta\}$ is α-closed set.

Proof: Let B_j’s be α-closed set. Then $X \setminus B_j$ is α-open set. By Theorem (3.1.2), $\cup \{X \setminus B_j : j \in \Delta\}$ is an α-open set. Then $\{X \setminus (\cap B_j) : j \in \Delta\}$ is an α-open set. Hence $\cap B_j : j \in \Delta$ is α-closed set.

Theorem 3.2.3: If the space X is an T_1-space (or) T_2-space, then the family $a\alpha C(X) = \alpha C(X)$.

Proof: Let B be an α-closed subset of X.

Then $X \setminus B$ is α open. Since $\alpha O(X) = aO(X)$, we have $X \setminus B$ is α open. Hence B is α closed.
Theorem 3.2.4: Every closed set need not be ac-closed. It is evident from the following example.

Let $X = \{a, b, c, d\}$, $\tau = \emptyset, X, \{a\}, \{b\}, \{c\}, \{a, b\}, \{b, c\}, \{a, b, c\}\}$. The closed sets are $\emptyset, X, \{a\}, \{b\}, \{c\}, \{a, b\}, \{b, c\}, \{a, b, c\}\}$. Then $acC(X) = \{\{a\}, \{b\}, \{a, b\}, \{b, c\}, \{b, c, d\}, \emptyset, X\}$. Here $\{d\}$ is closed set but not ac-closed.

The following Theorem gives conditions under which an closed set is also ac-open.

Theorem 3.2.4: Every closed set is ac-closed in X, if one of the following condition holds:

(i) X is Locally indiscrete.

(ii) X is Regular.

Proof: (i) Let B be a closed subset of X. If $A = \emptyset$, then $A \in acC(X)$.

Suppose $A \neq \emptyset$, then $X\setminus B$ is open set. Since every open set is a-open, $X\setminus B$ is a-open of X.

Since X is Locally indiscrete, $X\setminus B$ is closed. Then for each $x \in X\setminus B \subset X\setminus B$, $X\setminus B \in acO(X)$. Hence $B \in acC(X)$.

(ii) Let B be closed subset of X. Then $X\setminus B$- is open.

If $B = \emptyset$, then $B \in acC(X)$. Suppose $B \neq \emptyset$, then $X\setminus B \in acO(X)$.

If X is Regular, then for each open set $X\setminus B$ containing x, there exists an open set G such that, $x \in G \subset Cl(G) \subset X\setminus B$, $x \in Cl(G) \subset X\setminus B$.

Therefore $X\setminus B \in acO(X)$ implies $B \in acC(X)$. Hence $C(X) \subset acC(X)$.

Remark 3.2.5: Every δ-closed set need not be ac-closed. It is evident from the following example.

Let $X = \{a, b, c\}$, $\tau = \{X, \emptyset, \{a\}, \{b, c\}\}$, the closed sets are $\{X, \emptyset, \{b, c\}, \{a\}\}$. Then δ-closed sets=$\{X, \emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{b, c\}, \{c, a\}\}$ and $acC(X) = \{X, \emptyset, \{a\}, \{b, c\}\}$. Here $\{b\}$ is $\delta C(X)$ but not $acC(X)$.

The following Theorem gives conditions under which an δ-closed set is also ac-closed.

Theorem 3.2.5: Let (X, τ) be an Extremally disconnected and S^{**}-normal space. If $B \in \delta C(X)$, then $B \in acC(X)$.

Proof: Let B be an δ-closed subset of X. Then $X\setminus B$ is δ-open set. If $B = \emptyset$, then $A \in acC(X)$. Suppose $A \neq \emptyset$, let $X\setminus B \in \delta O(X)$. we have by 3.1.11(i) $X\setminus B \in acO(X)$. Hence $B \in acC(X)$.

Remark 3.2.6: Every $S\theta C(X)$ need not be an $acC(X)$.

Let $X = \{a, b, c\}$, $\tau = \{X, \emptyset, \{a\}, \{b\}\}$, the closed sets are $\{X, \emptyset, \{c\}, \{b, c\}, \{a, c\}\}$
Semi-θ-closed=$\{\emptyset, X, \{a\}, \{b\}, \{c\}, \{b, c\}, \{a, c\}\}$, and $acC(X) = \{X, \emptyset\}$. Here $\{a\}$ is $S\theta C(X)$ but not $acC(X)$.

Theorem 3.2.6: Let (X, τ) be an S^{**}- normal space. If $B \in S\theta C(X)$ then $B \in acC(X)$.

Proof: Let B be an semi-θ-closed subset of X, then $X\setminus B$-is semi-θ-open of X.

If $B = \emptyset$, then $B \in acC(X)$. Suppose $B \neq \emptyset$, as the space X is S^{**}- normal, By (3.1.7) $S\theta O(X) = \theta O(X)$, $X\setminus B \in \theta O(X)$. By Corollary(3.1.1), $X\setminus B$-is α-open set. Hence B is ac-closed set of X.

The following diagram shows that the relations among $acO(X)$, $\alpha O(X)$, $RO(X)$, $\delta O(X)$, τ, and $\theta O(X)$.
REFERENCES

Source of support: Nil, Conflict of interest: None Declared

[Copyright © 2015. This is an Open Access article distributed under the terms of the International Journal of Mathematical Archive (IJMA), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.]