ON INFRA TOPOLOGICAL SPACES

ADEL. M. AL-ODHARI*

Department of Mathematics, Faculty of Education, Arts and Sciences (Khwlan), Sana’a University, P.O. Box: 13509, Yemen.

(Received On: 27-10-15; Revised & Accepted On: 19-11-15)

ABSTRACT

In this paper we introduced and investigate infra-topological spaces which deduced from topological spaces and studies the properties of subsets of infra-topological spaces such as infra-topological space, infra-derived set, infra-interior set, infra-closure set, infra-exterior set and infra-boundary set.

Keywords: infra-topological space, infra-derived set, infra-interior point, infra-closure, infra-exterior point and infra-boundary set.

1. INTRODUCTION

In 1983, A.S. Mashhour et al. [1] introduced the supra-topological space and studied s-continuous functions and s^*-continuous functions. In this paper we introduced Infra-Topological Space (ITS) and analogue concepts associated with infra-topological space. Such as, infra-derived set (resp. infra-closure, infra-interior, infra-exterior and infra-boundary) of subset A of infra-space X. We will be denoted by $\text{ids}(A)$ (resp. $\text{icp}(A)$, $\text{iip}(A)$, $\text{iep}(A)$ and $\text{ibp}(A)$).

Many results of topological space remain valid in infra-topological space, Whereas some become invalid in infra-topological space.

2. INFRA-TOPOLOGICAL SPACES

Definition 2.1: Let X be any arbitrary set. An Infra-topological space on X is a collection τ_{IX} of subsets of X such that the following axioms are satisfying:

Ax-1 $\emptyset, X \in \tau_{IX}$.

Ax-2 The intersection of the elements of any subcollection of τ_{IX} in X.

i.e., If $O_i \in \tau_{IX}, 1 \leq i \leq n \rightarrow \bigcap O_i \in \tau_{IX}$.

Terminology, the ordered pair (X, τ_{IX}) is called Infra-Topological Space. We simply say X is an Infra-space.

Definition 2.2: Let (X, τ_{IX}) be an (ITS) and $A \subset X$. A is called infra-open set (IOS) if $A \in \tau_{IX}$.

Definition 2.3: Let X be any arbitrary set and $\tau = \{\emptyset, X\}$, then (X, τ_{IX}) is called indiscrete infra-topology space or is called trivial infra-topological space.

Definition 2.4: Let X be any countable arbitrary set and $\tau = P(X)$ the set of all subsets of X, then (X, τ) is called discrete infra-topology space or is called maximal infra-topological space.

Theorem 2.1: Let (X, τ) be a topological space (TS), then (X, τ) is an infra-topological space (IITS).

Proof: Suppose that (X, τ) is a topological space, then by axioms it is clear that (X, τ) is infra-topological space. The converse of above theorem is not true.

Example 2.1: If $X = \{a, b, c\}$ and $\tau_{IX} = \{\emptyset, X, \{a\}, \{b\}\}$, then (X, τ_{IX}) is infra-topological space, but not topological space.
Theorem 2.2: Let \((X, \tau_{ix})\) be infra-topological space. Then:
1. \(\emptyset, X\) are infra-open set.
2. Any arbitrary intersections of infra-open sets are infra-open sets.
3. Finite union of infra-open sets may not be infra-open sets.

Proof:
1. It is clear that \(\emptyset, X\) are infra open set by Ax-1 and definition 2.1.
2. Let \(C_{ix} \in \tau_{ix}\), by Ax-2 and definition 2.1 \(\bigcap C_{ix} \in \tau_{ix}\) are infra open set.
3. By counter example 2.1 \(\{a, b\} \in \tau_{ix}\), but \(\{a, b\} \notin \tau_{ix}\).

Theorem 2.3: Let \((X, \tau_{ix})\) and \((X, \tau_{ix}^*)\) be two infra-topological Spaces on set \(X\). Then the intersection \(\tau_{ix}\) and \(\tau_{ix}^*\) is an infra-topological space.

Proof:
Let \((X, \tau_{ix})\) and \((X, \tau_{ix}^*)\) be two infra-topological Spaces on set \(X\).

By Ax-1, if \(X \in \tau_{ix}\) and \(X \in \tau_{ix}^*\), so \(X \in \tau_{ix} \cap \tau_{ix}^*\). Suppose that \(O_i \in \tau_{ix} \cap \tau_{ix}^*\), where \(1 \leq i \leq n\) implies that \(O_i \in \tau_{ix}\) and \(O_i \in \tau_{ix}^*\). Consequently, \(\bigcap_{i=1}^{n} O_i \in \tau_{ix}\) and \(\bigcap_{i=1}^{n} O_i \in \tau_{ix}^*\), and hence \(\bigcap_{i=1}^{n} O_i \in \tau_{ix} \cap \tau_{ix}^*\).

Theorem 2.4: Let \((X, \tau_{ix})\) and \((X, \tau_{ix}^*)\) be two infra-topological Spaces on set \(X\). Then the union \(\tau_{ix}\) and \(\tau_{ix}^*\) is an infra-topological space.

Proof:
Let \((X, \tau_{ix})\) and \((X, \tau_{ix}^*)\) be two infra-topological infra spaces on set \(X\). By Ax-1, if \(X \in \tau_{ix}\) and \(X \in \tau_{ix}^*\), so \(X \in \tau_{ix} \cup \tau_{ix}^*\).

Suppose that \(O_i \in \tau_{ix} \cup \tau_{ix}^*\), where \(1 \leq i \leq n\), implies that \(O_i \in \tau_{ix}\) or \(O_i \in \tau_{ix}^*\) for some \(i, 1 \leq i \leq n\). So \(\bigcap_{i=1}^{n} O_i \in \tau_{ix}\) or \(\bigcap_{i=1}^{n} O_i \in \tau_{ix}^*\) and hence \(\bigcap_{i=1}^{n} O_i \in \tau_{ix} \cup \tau_{ix}^*\).

Remark: The union of infra-topological spaces may not be infra-topological space, in general, by the following example.

Example 2.2: Let \(X\) be a set \(X = \{a, b, c, d\}\), \(\tau_{ix} = \{\emptyset, X, \{a\}, \{c\}, \{a, b\}, \{a, c\}\}\) and \(\tau_{ix}^* = \{\emptyset, X, \{c\}, \{d\}, \{b, c\}, \{c, d\}\}\).

Now \(\tau_{ix} \cup \tau_{ix}^* = \{\emptyset, \{a\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{c, d\}\}\) is not infra-topological space.

3. PROPERTIES OF SUBSETS ON INFRA TOPOLOGICAL SPACES

Definition 3.1: Let \((X, \tau_{ix})\) be an (ITS) and \(A \subset X\). A point \(x \in X\) is called Infra-Cluster Point (ICP) of \(A\), if for all Infra-open set \(O\) containing \(x\), then \(O \cap \{x\} \neq \emptyset\).

Definition 3.2: Let \((X, \tau_{ix})\) be an (ITS) and \(A \subset X\). The set of all Infra-Cluster Point (ICP) of \(A\) is called the Infra-Derived Set (IDS) of \(A\) and is denoted by \(ids(A)\).

Definition 3.3: Let \((X, \tau_{ix})\) be infra-topological space. A subset \(C \subset X\) is called infra-closed set in \(X\) if \(X \setminus C\) is infra-open set in \(X\). That is \(C\) is infra-closed set (ICS) if \(X \setminus C \in \tau_{ix}\).

Theorem 3.1: Let \((X, \tau_{ix})\) be infra-topological space. Then:
1. \(\emptyset, X \in \tau_{ix}\) are infra-closed sets.
2. Any arbitrary finite intersections of infra-closed sets is an infra-closed sets.

Proof:
1. Since \(X \setminus \emptyset = X \in \tau_{ix}\) and \(X \setminus X = \emptyset \in \tau_{ix}\) are infra-closed sets.
2. Let \(\{C_i : i \in I\}\) be an arbitrary family of infra-closed sets such that \(C_i \in \tau_{ix}\) for all \(i \in I\). Now, \(X \setminus C_i \in \tau_{ix}\) is infra-open set for all \(i \in I\).

 But \(X \setminus C_i = \bigcap C_i \in \tau_{ix}\), then \(\bigcap C_i = \bigcap (X \setminus C_i) = X \setminus \bigcap C_i \in \tau_{ix}\) \(\forall i \in I\). Hence \(\bigcap C_i \in \tau_{ix}\) \(\forall i \in I\) is infra-closed set.

Remark: Finite union of infra-closed sets may not be infra-closed sets, in general.

Definition 3.4: Let \((X, \tau_{ix})\) be an (ITS) and \(A \subset X\). The Infra Closure Point (ICP) of \(A\) is a set denoted by \(icp(A)\) and given by: \(icp(A) = \cap \{C_i : A \subset C_i, X \setminus C_i \in \tau_{ix}\}\). That is, \(icp(A)\) is the intersection of all infra-closed set contained the set \(A\).
Remark: Since \(icp(A) \) is the intersection of all infra closed sets containing in \(A \), then \(A \subset icp(A) \) and \(icp(A) \) is the smallest infra closed sets.

Definition 3.5: Let \((X,\tau_{\mathcal{I}}) \) be an (ITS) and \(A \subset X \). The Infra-Interior Points (IIP) of \(A \) is a set denoted by \(iip(A) \) and given by: \(iip(A) = \cup \{ O; O \subset A, O \subset \tau_{\mathcal{I}} \} \). That is, \(iip(A) \) is the union of all infra-open set contained in the set \(A \).

Remark: Since \(iip(A) \) is the union of all infra-open sets contained in \(A \), then \(iip(A) \subset A \) and \(icp(A) \) is the smallest infra-open sets. Also if \(O \) is infra-open set contained in \(A \), then \(O \subset iip(A) \).

Definition 3.6 Let \((X,\tau_{\mathcal{I}}) \) be an (ITS) and \(A \subset X \). The Infra-Exterior Points (IEP) of \(A \) is a set denoted by \(iep(A) \) and given by: \(iep(A) = iip(A^c) \). That is, Set of all infra-interior point of complement of \(A \).

Definition 3.7: Let \((X,\tau_{\mathcal{I}}) \) be an (ITS) and \(A \subset X \). The Infra-Boundary Points (IBP) of \(A \) is a set denoted by \(ibp(A) \) and given by: \(ibp(A) = \partial ibp(A) \).

Theorem 3.2: Let \((X,\tau_{\mathcal{I}}) \) be an (ITS) and \(A,B \subset X \). The Infra-Derived Set Axioms (IDSA) satisfies the followings:

\[(IDSA)_1 : \quad ids(\emptyset) = \emptyset. \]
\[(IDSA)_2 : \quad \text{If } A \subset B \text{, then } ids(A) \subset ids(B). \]
\[(IDSA)_3 : \quad \text{if } x \in ids(A), \text{ then } x \in ids(A\setminus\{x\}). \]
\[(IDSA)_4 : \quad ids(A \cap B) \subset ids(A) \cap ids(B). \]
\[(IDSA)_5 : \quad ids(A \cup B) = ids(A) \cup ids(B). \]

Proof:
\[(IDSA)_1 : \quad \text{Suppose that } ids(\emptyset) \neq \emptyset \rightarrow \exists x \in ids(A) \ni \emptyset \cap (O\setminus\{x\}) \neq \emptyset \]
\[\rightarrow x \in \emptyset \text{ and } x \notin \emptyset. \text{ That is contradiction.} \]
\[\rightarrow ids(\emptyset) = \emptyset. \]

\[(IDSA)_2 : \quad \text{Suppose that } A \subset B \text{. Let } x \in ids(A) \rightarrow \forall O \exists x, A \cap (O\setminus\{x\}) \neq \emptyset. \]
\[\rightarrow \forall O \exists x, B \cap (O\setminus\{x\}) \neq \emptyset. \]
\[\rightarrow x \in ids(B) \]
\[\rightarrow ids(A) \subset ids(B). \]

\[(IDSA)_3 : \quad \text{Assume that } x \in ids(A) \rightarrow \forall O \exists x, A \cap (O\setminus\{x\}) \neq \emptyset. \]
\[\rightarrow \forall O \exists x, A \cap (O \cap \{x\}) \neq \emptyset. \]
\[\rightarrow \forall O \exists x, A \cap (\{x\}^c \cap O \cap \{x\}) \neq \emptyset. \]
\[\rightarrow \forall O \exists x, A \cap (\{x\}^c \cap O) \neq \emptyset. \]
\[\rightarrow \forall O \exists x, (A \cap \{x\}) \cap (O \setminus \{x\}) \neq \emptyset. \]
\[\rightarrow x \in ids(A\setminus\{x\}). \]

\[(IDSA)_4 : \quad \text{Since } A \cap B \subset A \setminus A \cap B \subset B \]
\[\rightarrow ids(A \cap B) \subset ids(A \cap ids(A \cap B) \subset ids(B)). \]
\[\rightarrow ids(A \cap B) \subset ids(A \cap ids(B)). \]

It can be easily shown by example the equality is not hold like topological space.

\[(IDSA)_5 : \quad \text{Since } A \subset A \cup B \text{ and } B \subset A \cup B \text{, then } ids(A) \subset ids(A \cup B) \text{ and } ids(B) \subset ids(A \cup B), \text{ hence } \]
\[ids(A) \cup ids(B) \subset ids(A \cup B). \text{ Conversely,} \]
\[\text{Suppose that } \exists x \in ids(A \cup B) \rightarrow \forall O \exists x, (A \cup B) \cap (O\setminus\{x\}) \neq \emptyset. \]
\[\rightarrow \forall O \exists x, A \cap (O\setminus\{x\}) \neq \emptyset \cup B \cap (O\setminus\{x\}) \neq \emptyset. \]
\[\rightarrow x \in ids(A \cup B) \text{. Hence,} \]
\[ids(A \cup B) = ids(A) \cup ids(B). \]

Theorem 3.3: Let \((X,\tau_{\mathcal{I}}) \) be an (ITS) and \(A,B \subset X \). The Infra Closure Point Axioms (ICPA) satisfying the following conditions:

\[(ICPA)_1 : \quad A \text{ is infra-closed if } \emptyset = icp(A). \]
\[(ICPA)_2 : \quad icp(\emptyset) = \emptyset \text{ and } icp(X) = X. \]
\[(ICPA)_3 : \quad icp(icp(A)) = icp(A). \]
\[(ICPA)_4 : \quad \text{If } A \subset B \text{, then } icp(A) \subset icp(B). \]
\[(ICPA)_5 : \quad icp(A \cap B) \subset icp(A) \cap icp(B). \]
Proof:

(ICPA)_1: Suppose that \(A \) is infra-closed set. Since \(A \subset A \) and \(A \cap A = A \rightarrow icp(A) \subset A \), Also \(A \subset icp(A) \rightarrow A = icp(A) \). Conversely, Let \(A = icp(A) \), obviously, icp(\(A \)) is the smallest infra-closed set. Hence \(A \) is infra-closed set.

(ICPA)_2: Since \(X \) and \(\emptyset \) are infra-closed sets, so by (ICPA)_1icp(\(\emptyset \)) = \(\emptyset \) and icp(\(X \)) = \(X \). (ICPA)_3: Since icp(\(A \)) is the intersection of all infra-closed sets are closed sets, then icp(icp(\(A \))) = icp(\(A \)).

(ICPA)_4: Consider \(A \subset B \). Since \(A \subset icp(A) \) and \(B \subset icp(B) \), so icp(\(A \)) \(\subset icp(B) \).

(ICPA)_5: Since \((A \cap B) \subset (A \subset icp(A)) \cap (B \subset icp(B)) \), then icp(\(A \cap B \)) \(\subset icp(A \cap B) \) \(\subset icp(A) \cap icp(B) \).

Remark: In (ICPA)_5 the equality does not work like topological space.

Theorem 3.4: Let \((X, \tau_{iX})\) be an (ITS) and \(A, B \subset X \).The Infra-Interior Points Axioms (IIPA) given by:

\[\text{(IIPA)}_1: \quad \text{A is infra-open set iff } \text{iip}(A) = A. \]
\[\text{(IIPA)}_2: \quad \text{iip}(X) = X \text{ and } \text{iip}(\emptyset) = \emptyset. \]
\[\text{(IIPA)}_3: \quad \text{iip}(\text{iip}(A)) = \text{iip}(A). \]
\[\text{(IIPA)}_4: \quad \text{If } A \subset B, \text{ then } \text{iip}(A) \subset \text{iip}(B). \]
\[\text{(IIPA)}_5: \quad \text{\text{iip}(A \cap B) = \text{iip}(A) \cap \text{iip}(B).} \]

Proof:

(IIPA)_1: Suppose that \(A \) is infra-open set. Since \(A \subset A \), then \(A \) is infra-open set containing itself, so \(A \subset \text{iip}(A) \) and \(\text{iip}(A) \subset A \), that implies \(A = \text{iip}(A) \). Conversely, Let \(A = \text{iip}(A) \), suppose that \(A = \text{iip}(A) \) is infra-open set, then \(A \subset \text{iip}(A) \).

(IIPA)_2: Since \(X, \emptyset \) are infra-open sets, by (IIPA)_1, we have \(\text{iip}(X) = X \) and \(\text{iip}(\emptyset) = \emptyset \).

(IIPA)_3: Since \(\text{iip}(A) \) is infra-open set. so by (IIPA)_1\(\text{iip}(\text{iip}(A)) = \text{iip}(A) \).

(IIPA)_4: Suppose that \(A \subset B \). Let \(O_i \subset \text{iip}(A) \rightarrow O_i \subset A \rightarrow O_i \subset B \rightarrow O_i \subset \text{iip}(B) \).

Therefore \(\text{iip}(A) \subset \text{iip}(B) \).

(IIPA)_5: Let \(O_i \subset \text{iip}(A) \cap \text{iip}(B) \rightarrow O_i \subset \text{iip}(A) \land O_i \subset \text{iip}(B) \).

\[\rightarrow \cup O_i \subset A, \forall i \land \cup O_i \subset B, \forall i. \]
\[\rightarrow O_i \subset \text{iip}(A \cap B), \forall i. \]

Theorem 3.5: Let \((X, \tau_{iX})\) be an (ITS) and \(A, B \subset X \). The Infra-Exterior points Axioms (IEPA) given by:

\[\text{(IEPA)}_1: \quad \text{iep}(X) = \emptyset \text{ and } \text{iep}(\emptyset) = X. \]
\[\text{(IEPA)}_2: \quad \text{iep}(A) \subset A^c. \]
\[\text{(IEPA)}_3: \quad \text{iep}(A \cup B) = \text{iep}(A) \cap \text{iep}(B). \]
\[\text{(IEPA)}_4: \quad \text{If } A \subset B, \text{ then } \text{iep}(B) \subset \text{iep}(A). \]
\[\text{(IEPA)}_5: \quad \text{\text{iep}(A \cap B) \subset \text{iep}(A) \cup \text{iep}(B).} \]

Proof:

(IEPA)_1: \(\text{iep}(X) = \text{iep}(X^c) = \text{iep}(\emptyset) = \emptyset \text{ and } \text{iep}(\emptyset^c) = \text{iep}(X) = X. \)

(IEPA)_2: \(\text{iep}(A) = \text{iep}(A^c) \subset A^c. \)

(IEPA)_3: \(\text{iep}(A \cup B) = \text{iep}(A \cup B)^c = \text{iep}(A^c \cap B^c) = \text{iep}(A^c) \cap \text{iep}(B^c) = \text{iep}(A) \cap \text{iep}(B). \)

(IEPA)_4: \(\text{let } A \subset B \rightarrow B^c \subset A^c \rightarrow \text{iep}(B^c) \subset \text{iep}(A^c) \rightarrow \text{iep}(B) \subset \text{iep}(A). \)

(IEPA)_5: \(\text{iep}(A \cap B) = \text{iep}(A \cap B)^c = \text{iep}(A^c \cup B^c) \subset \text{iep}(A^c) \cup \text{iep}(B^c) = \text{iep}(A) \cup \text{iep}(B). \)
Theorem 3.6: Let \((X, \tau_{iX})\) be an (ITS) and \(A \subset X\). The Infra-Boundary Points Axioms (IBPA) given by:

\[
\begin{align*}
\text{(IBPA)}_1 & : \ i\beta(X) = i\beta(\emptyset) = \emptyset. \\
\text{(IBPA)}_2 & : \ i\beta(A \cap B) = i\beta(A) \cup i\beta(B).
\end{align*}
\]

Proof:

\(\text{(IBPA)}_1: i\beta(X) = X \setminus i\epsilon(X) \cup i\epsilon(X) = X \setminus \emptyset = X = \emptyset.\)

\(i\beta(\emptyset) = X \setminus i\epsilon(\emptyset) \cup i\epsilon(\emptyset) = X \setminus \emptyset \cup X = X \setminus \emptyset = \emptyset.\)

\(\text{(IBPA)}_2: i\beta(A \cap B) = X \setminus i\epsilon(A \cap B) \cup i\epsilon(A \cap B) = X \setminus i\epsilon(A) \cup X \setminus i\epsilon(B) \cup i\epsilon(A \cap B) = i\beta(A) \cup i\beta(B).\)

The following theorem illustrate the relations between \(\text{id}(A), \text{i}(A), i\epsilon(A), i\epsilon(A)\) and \(i\beta(A)\).

Theorem 3.7: Let \((X, \tau_{iX})\) be an (ITS) and \(A \subset X\). then:

1. \(A \subset i\epsilon(A) \rightarrow \text{id}(A) \subset \text{id}(i\epsilon(A)).\)
2. \(i\epsilon(A) \subset A \rightarrow \text{id}(i\epsilon(A)) \subset \text{id}(A).\)
3. If \(A\) is infra-closed, then \(\text{id}(A) \subset A.\)
4. \(i\epsilon(A) = A \cup \text{id}(A).\)
5. \(i\beta(A) = i\epsilon(A) \cup i\epsilon(A).\)
6. \(i\epsilon(A) = i\beta(A) \cup i\epsilon(A).\)
7. \(i\beta(A) \subset i\epsilon(A).\)
8. \(i\epsilon(A) \cap i\beta(A) = \emptyset.\)

Proof:

1. Let \(A \subset i\epsilon(A).\) By (IDSA) \(i\epsilon(A) \subset \text{id}(i\epsilon(A)).\)
2. Let \(i\epsilon(A) \subset A.\) By (IDSA) \(i\epsilon(A) \subset \text{id}(A).\)
3. Let \(A\) be a infra closed set and \(x \in \text{id}(A),\) then \(\forall \emptyset \ni x, A \cap (O - (x)) \neq \emptyset.\) Hence \(x \in A\) and \(\text{id}(A) \subset A.\)
4. Since \(A \subset i\epsilon(A)\) and \(\text{id}(A) \subset \text{id}(i\epsilon(A)) \subset i\epsilon(A).\) we have \(A \cup \text{id}(A) \subset i\epsilon(A).\) Another direction, To show that \(i\epsilon(A) \subset A \cup \text{id}(A).\)

Let \(x \in i\epsilon(A),\) but \(A \subset i\epsilon(A),\) then \(x \in A or x \notin A.\)

Probability 1) If \(x \in A,\) then \(x \in A \cup \text{id}(A).\)

Probability 2) if \(x \notin A,\) Let \(x \notin \text{id}(A) \rightarrow \exists \emptyset \ni x, A \cap O \setminus \{x\} \neq \emptyset.\) but \(x \notin A,\) that is contradiction, therefore \(x \in \text{id}(A)\) and \(x \in A \cup \text{id}(A).\)

So \(i\epsilon(A) = A \cup \text{id}(A).\)

5. By defn \(i\beta(A) = X \setminus i\epsilon(A) \cup i\epsilon(A) = X \setminus i\epsilon(A) \cap X \setminus i\epsilon(A) = X \setminus i\epsilon(A) \cap i\epsilon(A) = i\epsilon(A) \setminus i\epsilon(A).\)

6. By (1) \(i\beta(A) = i\epsilon(A) \cap i\epsilon(A) \rightarrow i\beta(A) = i\epsilon(A) \cup i\epsilon(A) = i\epsilon(A) \setminus i\epsilon(A) \cup i\epsilon(A) = i\epsilon(A).

7. By (2) it is clear that \(i\beta(A) \subset i\epsilon(A).\)

8. \(i\epsilon(A) \cap i\beta(A) = i\epsilon(A) \cap i\epsilon(A) \cap i\beta(A) = \emptyset.\)

Theorem 3.8: Let \(X\) be any finite set and \(A \subset X\) and order \((o(A) = 1).\) The collection \(\tau_{iX} = \{\emptyset, X\} \cup \{A \subset X\} such that o A=1\) is infra topological space.

Proof: Since \(\emptyset, X \in \{\emptyset, X\},\) so \(\emptyset, X \in \tau_{iX}\) and Ax-1 is hold. Now, Assume that \(A_i \in \tau_{iX}, 1 \leq i \leq n.\) And \(o(A) = 1)\) Then \(A_i \cap \emptyset = \emptyset, \forall i \text{ and } A_i \cap X = A_i, \forall i,\) so that Ax-2 is hold.

The pair \((X, \tau_{iX})\) is called the Particular singleton set of infra-topological space on \(X.\)
REFERENCES

Source of support: Nil, Conflict of interest: None Declared

[Copy right © 2015. This is an Open Access article distributed under the terms of the International Journal of Mathematical Archive (IJMA), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.]