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ABSRACT

In this paper we introduced and investigate infra-topological spaces which deduced from topological spaces and
studies the properties of subsets of infra topological spaces such as infra topological space, infra derived set, infra-
interior set , infra-closure set, infra-exterior set and infra-boundary set.
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1. INTRODUCTION

In 1983, A.S.Mashhour et al. [1] introduced the supra topological space and studied s-ontinous functions and
s*-continuous functions.In this paper we introduced Infra -Topological Space (ITS) and analogue concepts associated
with infra- topological space. Such as, infra- derived set (resp.infra-closure, infra-interior, infra-exterior and infra-
boundary) of subset A of infra-space X. we will be denoted by ids(A) (resp. icp(A),iip(A),iep(A) and ibp(A)).
Many results of topologic space remain valid in infra- topological space, Whereas some become invalid in infra-
topological space.

2. INFRA -TOPOLOGICAL SPACES

Definition 2.1: Let X be any arbitrary set. An Infra-topological space on X is a collection 7;y of subsets of X such that
the following axioms are satisfying:

Ax-1 @,X € Tixs-

Ax-2 The intersection of the elements of any subcollection of 7,y in X.

Ie,]fOl ETiX' 1<i<n - nOl ETiX'

Terminology, the ordered pair (X, ;) is called Infra-Topological Space. we simply say X is alnfra -space.

Definition 2.2: Let (X, 1;x) be an (ITS) and A c X. A is called infra -open set (I0S) if A € 7.

Definition 2.3: Let X be any arbitrary set and © = {@, X}, then (X, t;x) is called indiscrete infra-topology space or is
called trivial infra- topological space

Definition 2.4: Let X be any countable arbitrary set and 7 = P(X) the set of all subsets of X, then (X, 1) is called
discrete infra-topology space or is called maximal infra- topological space.

Theorem 2.1: Let (X, 7) be a topological -space (TS), then (X, 1) is an infra-topological space (IITS).

Proof: Suppose that (X, ) is a topological space, then by axioms it is clear that (X, t) is infra topological space. The
converse of above theorem is not true.

Example 2.1: If X = {a,b,c} and t;x = {0, X, {a}, {b}}, then (X, 7;x) is infra- topological space, but not topological
space.
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Theorem 2.2: Let (X, 7;5) be infra-topological space. Then:
1. @,X areinfra-open set.
2. Any arbitrary intersections of infra- open sets are infra- open sets.
3. Finite union of infra-open sets may not be infra-open sets.

Proof
1. ltisclear that @, X are infra open set by Ax-1 and definition 2.1.
2. Let Cigy € 15 , by Ax-2 and definition 2.1.N O; € t;xare infra open set.
3. By counter example 2.1:{a}, {b} € 1;x, but {a} U {b} = {a, b} & 1.

Theorem 2.3: let (X, 1;y) and (X, t/y) be two infra topological Spaces on set X. Then the intersection t;y and tjy is
aninfra topological space.

Proof: let (X, t;x) and (X, 7/y) be two infra topological Spaces on set X.
By Ax-19,X € 1,y and @, X € 1/%,500,X € 1,5y N 1/y.Suppose that 0; € 7,y N Tjy.

1<i<n, implies that 0; €ty and O; €tjy Consequently, N, 0; €ty and N}, O0; € tjy and hence
Nizy 0; € Tx NTx.

Theorem 2.4: Let (X, t;x) and (X, t/y) be two infra topological Spaces on set X. then the union t;x and tjy is an infra
topological space.

Proof: Let (X,7,x) and (X, t/y) be tow infra topological infra spaces on set X. By Ax-1,8,X € 7,y and @,X € t/y,
S0 0,X €Ty UTjy.

Suppose that 0; € Ty Uty ;1 <i<mn, impliesthat O; €ty or 0; €ty forsomei,1<i<n.SoN}; 0; €1y
orN; O0; €tjy and hence N-; O; € T;x U Tjy.

Remark: The union of infra- topological spaces may not be infra-topological space, in general, by the following
example.

Example 2.2: Let X be aset X = {a, b, c,d}, tix = {0,X,{a}, {c}{a, b} {a,c}}and 1x* = {®,X,{c},{d}, {b, c},{c,d}}.
Now 7,5 Uty = {0, X,{a}, {b},{c},{a b}, {a c},{b,c},{c, d}}. is not infra-topological space.

3. PROPERTIES OF SUBSETS ON INFRA TOPOLOGICAL SPACES

Definition 3.1: Let (X,7;x) be an (ITS) and A c X. A point x € Xis called Infra-Cluster Point (ICP) of 4, if for all
Infra-open set Ocontainingx, then A N (0\{x}) # 9.

Definition 3.2: Let (X, t;x) be an (ITS) and A c X. The set of all Infra-Cluster Point (ICP) of A is called the Infra-
Derived Set (IDS) of A and is denoted by ids(A).

Definition 3.3: Let (X, 1,5 ) be infra-topological space. A subset C c X is called infra-closed set in X if X — C is infra-
open set in X. That is C is infra-closed set (ICS) iff X — C € 1.

Theorem 3.1: Let (X, 7;x) be infra-topological space. Then:
i. ©,X €1y areinfra-closed set.
ii. Any arbitrary finite intersections of infra-closed sets is an infra-closed sets.

Proof:
i. Since X—@0 =X €ty and X —X =@ € 1,5 are infra-closed sets.
ii. Let {C; : i € I}be an arbitrary family of infra closed sets such that C; € t;x forall i € I.Now, X — C; € ;% is
infra-open set foralli € 1.
But X—C, =Cf ety then NCS=n(X—-C)=X—-NC €1x,Vi €1. Hence NC; Et;x,Vi €1 s
infra-closed set.

Remark: Finite union of infra-closed sets may not be infra-closed sets, in general.

Definition 3.4: Let (X, ;) be an (ITS) and A c X. The Infra Closure Point (ICP) of A is a set denoted by icp (A) and
given by: icp (A) =n{C;: Ac C;, X — C; € T,x}.That is, icp (A) is the intersection of all infra closed set contained
the set A.
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Remark: Since icp(A) is the intersection of all infra closed sets containing in A, then A < icp(A) and icp(A) is the
smallest infra closed sets .

Definition 3.5: Let (X, ;) be an (ITS) and A c X. The Infra-Interior Points (I1P) of A is a set denoted by iip (4) and
given by: iip (A) =U {0;: 0; c A, O; € t;x}.Thatiis, iip(A) is the union of all infra-open set contained in the set A.

Remark: Since iip (A) is the union of all infra-open sets contained in A, then iip(4) < A and icp (A) is the smallest
infra-open sets. Also if O is infra-open setcontained in 4, then 0 c iip (4).

Definition 3.6 Let (X, 7;x) be an (ITS) and A < X. The Infra-Exterior Points (IEP) of A is a set denoted by iep (A) and
given by: iep (A) = iip(A°).That is, Set of all infra-interior point of complement of A .

Definition 3.7: Let (X, t;x) be an (ITS) and A c X. The Infra-Boundary Points (IBP) of A is a set denoted by ibp (A)
and given by:ibp (A) = X\iip(4) U iep(4A)

Theorem 3.2: Let (X, 1;x) bean (ITS) and 4, B c X.The Infra-Derived Set Axioms (IDSA) satisfies the followings:

(IDSA); :  ids(®) = @.

(IDSA), : If Ac B,thenids(A) c ids(B).
(IDSA);: ifx € ids(A), then x € ids(A\{x}).
(IDSA), : ids(AnB) cids(A) nids(B).
(IDSA)s;  ids(A U B) = ids(A) U ids(B).

Proof:

(IDSA ), : Suppose that ids(@) # @ - 3 x € ids(A) 3 N (O\{x}) =0
- x € Qand x & @.That is contradiction.
- ids( Q) = 0.

(IDSA), : Suppose that A c B. Let x € ids(4) —» V0 3 x,An (0O\{x}) # 0.
-V 03x,Bn(0\{x}) 0.
- x € ids(B)
- ids(A) c ids(B).

(IDSA); : Assume that x € ids(A) » VO 3 x,A n (0O\{x}) # @.
S>V03x,An (0 n{x}) =+ 0.
S>VO03x,AN 0 n{x}n{x}) +0.
S>VO3x,An{x}no0O n{x}) + 0.
SVO03x,(An{x})n (0 n{x}) +# 0.
>VO03x,(A\{x} )n(0\{x} )+#0.
- x € ids(A\{x}).

(IDSA),: SinceANBcAANANBCB
- ids(ANnB) cids(A) Aids(An B) c ids(B)) .
- ids(ANB) c ids(4) nids(B)).

It can be easily shown by example the equality is not hold like topological space.
(IDSA)5: SinceAc AUB and B c AU B ,then ids(A) c ids(A U B) and ids(B) c ids(A U B), hence
ids(A) U ids(B) c ids(A U B). Conversely,

Suppose that x € ids(AUB) >V 0 3 x,(AU B) n (0\{x}) # @.
->VO03x,ANO\{x})#0UBn(O\{x}) # 0.

- x € ids(A) Vids(B).Hence,
ids(A U B) = ids(4) U ids(B).

Theorem 3.3: Let (X, t;x) be an (ITS) and A, B < X.The Infra Closure Point Axioms (ICPA) satisfying the following
conditions:

(ICPA), : Ais infra-closed iffA = icp(A).

(ICPA); . icp(@) = @ and icp(X) = X.

(ICPA); : icp(icp(A)) = icp(A).

(ICPA), : If Ac B,thenicp(A) c icp(B).

(ICPA)s :  icp(ANB) cicp(A) nicp(B).
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Proof:

(ICPA); : Suppose that A is infra-closed set. Since Ac A andANA=A-icp(A) c A, Also A cicp(Ad) » A=
icp(A). Conversely, Let A = icp(A), obviously,

icp(A)is the smallest infra-closed set. Hence A is infra-closed set.

(ICPA), : Since X and @ are infra- closed sets, so by(ICPA),icp(@) = @ and icp(X) = X. (ICPA)5: Sinceicp(A) is the
intersection of all infra-closed sets are closed sets, then icp(icp(A)) = icp(4).

(ICPA),: Consider A c B. Since A c icp(A) and B c icp(B), so icp(A) c icp(B).
(ICPA)s: Since (ANBc AA ANB c B),thenicp(ANnB) c icp(A)and
icp(ANnB) cicp(B) » icp(ANB) cicp(A) Nnicp(B).

Remark: In (ICPA)s the equality does not work like topological space.
Theorem 3.4: Let (X,7;x) be an (ITS) and 4, B < X.The Infra-Interior Points Axioms (IIPA) given by:
(IIPA);:  Ais infra-open set iffA = iip(A).
(IIPA),:  iip(X) = Xandiip( @) = @
(IIPA)s:  iip(iip(A)) = iip(A).
(IIPA), :  If A c B,theniip(A) c iip(B).
(IIPA)s :  iip(A N B) = iip(A) N iip(B).

Proof:
(ITPA), : Suppose that A is infra-open set. Since A c A, then A is infra-open set containing itself, so A c iip (4) and
iip (A) c A, that implies A = iip(A). Conversely, Let A = iip(A), suppose that A = iip(A). Since iip(A) is infra-
open set, then A is infra- open set.
(ITPA),: Since X, @ are infra-open sets, by (IIPA), , we have iip(X) = X and iip( @) = Q.
(IIPA)3: Since iip(A) is infra-open set. so by (IIPA), iip(iip(A)) = iip(A).
(ITPA), : Suppose that If A c B. Let0; € iip(A) » 0, c A— 0; € B - 0; € iip(B).
Therefore iip(A) c iip(B).
(IIPA)s: Let 0; € iip(A) niip(B) « 0; € iip(A) A 0; € iip(B).
U 0,0, cAVi AVUO,;,0; C B,Vi.
<V 0;,0;, c AnB,Vi.
o 0; €iip (AN B),Vi.
Theorem 3.5: Let (X7;x) be an (ITS) and 4, B < X.The Infra -Exterior points Axioms (IEPA) given by:
(IEPA); : iep(X) = Qandiep( Q) = X.
(IEPA), : iep(A) c A-.
(IEPA); : iep(AUB) =iep(A) Nniep(B).
(IEPA), : If A c B,theniep(B) c iep(A).
(IEPA)s iep(AN B) c iep(A) Viep(B).

Proof:
(IEPA);: iep(X) = iip(X©) = iip(®) = @ and iep( @) = iip(®°) = iip(X) = X.

(IEPA),: iep( A) = iip(A°) c AC.

(IEPA);:iep(A U B) = iip(A U B)¢ = iip(A° n B°) = iip(A°) N iip(B°)
= iep(A) Nniep(B).

(IEPA),: letAc B » B c A° — iip(B°) c iip(A°) - iep(B) c iep(A).

(IEPA)s:iep(A N B) = iip(A N B)¢ = iip(A° U B°) c iip(A°) U iip(B°) = iep(A) U iep(B).
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Theorem 3.6: Let (X,7;x) bean (ITS) and A c X.The Infra-Boundary Points Axioms (IBPA) given by:

(IBPA), : ibp(X) = ibp(9) = 0.
(IBPA), : ibp(ANB) = ibp(A) U ibp(B).

Proof:
(IBPA),: ibp(X) = X\iip(X) Uiep(X) = X\X U QD = X\X = @.

ibp(®) = X\iip(®) Viep(®) = X\QUX =X\X=0

(IBPA),: ibp( A N B) = X\iip(ANB) Uiep(ANB)

X\iip(A) niip(B) Viep(ANB)
X\iip(A) U X\iip(B) Uiep(ANB)

= X\iip(4) U X\iip(B) Viep(A) Uiep(B))
= ibp(A) U ibp(B).

The following theorem illustrate the relations between ids(4), icp(A), iip(A4), iep(A)and ibp(A).

Theorem 3.7: Let (X, 7;x) be an (ITS) and A c X.then:
1. Acicp(A) - ids(A) c ids(icp(A)).

iip(A) c A - ids(iip(4)) c ids(A).

If A is infra-closed , then ids(A4) c A.

icp(A) = AU ids(A).

ibp(A) = icp(A)\iip(A).

icp(A) = ibp(A) U iip(A).

ibp(A) c icp(A).

iip(A) nibp(A) = 0.

PN UTRWN

Proof:
(1) LetA c icp(A).By(IDSA),ids(A) c ids(icp(A)).
(2) Letiip(A) c A.By(IDSA),ids(iip(A)) < ids(A).
(3) LetA be ainfra closed set and x € ids(A4),thenvV 0 3 x,ANn (0 — (x)) = @ Hence x € Aand ids(A) c A.
(4) Since A c icp(A) and ids(A) ids(icp(A)) c icp(A). we have A U ids(A) c icp(A). Another direction,
To show that icp(A) € A U ids(A).

Let x € icp(A), but A c icp(A),then x € Aor x & A.
Probability 1) Ifx € A , then x € A U ids(A4).

Probability 2) if x € A,Let x € ids(A) - 30 3 x,An (0\{x} = @, but x & A, that is contradiction, therefore
x €ids(A) and x € A Uids(A).

Soicp(A) = AU ids(A).
(5) By def"ibp (A) = X\iip(4) U iep(A)
= X\iip(4) n X\iep(A)
= X\iip(4) nicp(4)
Since iip(A) c icp(4) € X — icp(A) N (X\iip(A) = icp(A)\iip(A). Then we have
ibp(A) = icp(A)\iip(4).
(6) By (1) ibp(A) = icp(A)\iip(4)
— ibp(A) U iip(A) = icp(A)\iip(A) U iip(A) = icp(4).
(7) By (2)itis clear that ibp(A) c icp(A).
(8) iip(A) nibp(A) =iip(A) nicp(A)\iip(4) = @.

Theorem 3.8: Let X be any finite set and A ¢ X and order (0 (A) = 1). The collection 7,y ={0,X}uU{Ac
Xsuch that o A=1is infra topological space.

Proof: Since @,X € {®,X}, s0 @,X € 1,4 and Ax-1 is hold. Now, Assume that 4; €1y, 1<i<n. Ando(4)=1)
Then A, N @ =0,Viand A; N X = A;, Vi, so that Ax-2 is hold .

The pair (X, 7,5) is called the Particular singleton set of infra-topological space on X.
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