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ABSTRACT 
In the present paper, Double diffusive convection in a porous layer of Rivlin- Ericksen Viscoelastic fluid of Veronis 
type in the presence of Soret effectis investigated. For the porous medium, the Darcy model is employed and Rivlin- 
Ericksenfluid model is used to chracterize the rheological behavior of the Viscoelastic fluid. Following the linear 
stability theory based upon normal mode technique, the paper through mathematical analysis of the governing 
equations of the problem for any combination of free and rigid boundaries estaiblishs that the complex growth rate 

ir iσσσ += of an arbitrary oscillatory perturbation of neutral or growing amplitude ( 0≥rσ ) in thermosolutal 
convection in a porous  layer of Rivlin- Ericksen Viscoelastic fluid of Veronis type in the presence of Soret effect must 
lies inside a semi  circle in the right half of the irσσ -plane whose centre is at origin and whose radius is: 
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and TR is the modified thermal Rayleigh number, EE ′, are thermal andsolutal capacity ratio, F is the Visco-elasticity 

parameter, rP  is the thermal Prandtl number, cS  is the Schamditnumber, lP  is the medium permeability and ε is 
theporosity. Further, in the limiting cases some of the important results have been recovered. 
 
Keywords: Double diffusive convection; Rivlin-Ericksen Fluid; Porous medium; Soret effect; Oscillatory motion; Rigid 
boundaries; Rayleigh number. 
 
 
INTRODUCTION  
 
The problem of convection driven by buoyancy that is contributed by two different diffusive components, namely, 
temperature and solutalconcentration, with differing rates of diffusion is widely known as ‘‘double diffusive 
convection’’ or ‘‘thermosolutalconvection’’ has generated considerable interest during the last few decades. If 
gradients of two stratifying agencies having different diffusivities are simultaneously present in a fluid layer, a variety 
of interesting convective phenomena can occur that are not possible in single component fluids. The double-diffusive 
convection was observed first by Stern, [1] and studied the convection in a layer of fluid heated and salted from above. 
The problem of thermosolutal convection in a layer of fluid heated from below and subjected to a stable salinity 
gradient is considered by Veronis [2]. The mechanism of instability at the onset of thermohaline convection in a porous 
medium have been described by Nield[3]. The double diffusive convection in porous media has also become important 
in recent years because of its many applications in geophysics, soil sciences, ground water hydrology, astrophysics, 
food processing, limnology and engineering etc.  Excellent review of the literature concerning double diffusive 
convection in a binary fluid saturated porous medium may be found in the book by Nield and Bejan [4], Mojtabi and 
Charrier-Mojtabi [5]. 
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Since in a double diffusive system the fluid density depends on heat and solute concentration, it leads to a competition 
between thermal and compositional gradients. When two transport processes take place simultaneously, they interfere 
with each other, producing cross-diffusion effects (Soret and Dufour effects). The flux of concentration caused by 
temperature gradient and the flux of heat caused byconcentration gradient are known as Soret and Dufour effects 
respectively (De Groot and Mazur [6] and Hurle & Jakeman [7]. McDougall [8] observed that the spatiotemporal 
properties of convection in binary mixture show quite different trends from those of the double-diffusive systems 
without these cross diffusioneffects.We shall presently take into account the Soreteffect only, as the in fluence of 

Dufour effect is negligible C)(10
o-3  in liquid mixtures and hence generally neglected. Dufoureffect is important in 

gaseous mixtures only (Schechter et al. [9]). Dhiman and Goyal [10] recently studied the stability of Soret driven 
double-diffusive convection problem for the case of rigid, impervious and thermally perfectly conducting boundary 
conditions using variational principle. 
 
The major available literature onthe phenomena of double diffusive convection with or without cross diffusion effects 
are mainly concerned with Newtonian fluids and the medium in general has been considered to be non-porous. In 
recent years, non-Newtonian fluids in porous medium have attracted the attention of several scholars because of their 
practical and fundamental importance associated with many industrial applications. The study of non-Newtonian fluids 
with non-linear constitutive equations was first studied by Rivlin [11] for incompressible materials and broadened and 
elaborated by Ericksen [12]. There exist many different types of non-Newtonian fluids. The common liquids such as 
polymer solution, some organic liquids, paints and many new materials of industrial importance which exhibit both 
viscous and viscoelastic properties are called visco-elastic fluid. The study of viscoelastic fluids in a porous media has 
important applications in various branches of science and technology particularly in the field of petroleum technology 
for the flow of oil through porous rocks, chemical and nuclear industries, material processing, manufacturing of foods 
and paper and many other similar activities. The wide range of industrial and technology applications of these fluids 
attracted the attention of various researchers. Fredricksen [13] has given a good review of non–Newtonian fluids 
whereas Joseph [14] has also considered the stability of viscoelastic fluids. In recent years, considerable interest has 
been evinced in the study of Rivlin-Ericksen viscoelastic fluid having relevance and importance in agriculture, 
chemical technology and biomedical applications. Rivlin and Ericksen [15] have proposed a theoretical model for such 
viscoelastic fluid. The knowledge of flow through porous media is useful in the recovery of crude oil efficiently from 
the pores of reservoir rocks by displacement with immiscible water. When a fluid permeates a porous material, the 
gross effect is represented by the Darcy’s law. As a result of this macroscopic law, the usual viscous term in the 
equation of Rivlin-Ericksen fluid motion is replaced by the resistance term 
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Whereµ and µ′are the 

viscosity and the viscoelasticity of the Rivlin-Ericksen fluid, 1k is the medium permeability and q  is the Darcian 
(filter) velocity of the fluid. A good account of thermal and thermosolutal instabilities problems in a Rivlin-
Ericksenelastico-viscous fluid in a porous medium is given by Sharma et al. [16, 17], Chand and Rana [18], and many 
others. Wang and Tan [19] also studied the stability analysis of a soret-driven double-diffusive convection of Maxwell 
fluid in a porous medium using linear and non-linear stability analysis. 
 
Banerjee et al. [20] formulated a new scheme for combining the governing equations and boundary conditions of 
Veronisthermosolutal configuration [2], which lead to a circle theorem prescribing the bounds for the complex growth 
rate of the arbitrary oscillatory perturbations, neutral or unstable for all combinations of dynamically rigid or free 
boundaries. Banerjee et al. [21] established a characterization theorem for thermohaline convection of Veronis type that 
disallow the existence of oscillatory motions of neutralor unstable in an initially bottom heavy configuration for the 
certain parameter regime. Gupta et al. [22] derived a sufficient conditions for the validity of the principle of exchange 
of stabilities (PES) in Veronis thermosolutal configuration [2]. Mohan [23] extend the results of Banerjee et al. [20, 21] 
by including the effect of Cross diffusion coefficients for the case of Newtonian fluid. However no such result to our 
knowledge exist for non-Newtonian fluid configurations in general and in particular, for Rivlin-Ericksen viscoelastic 
fluid in the presence of Cross diffusion effect. 
 
Copious literature is available on the thermosolutal instability of a viscoelastic fluidsaturated porous layer with Soret 
effect. In most of the studies that related to the convection in viscoelastic fluids referred above, it has been noticed that 
either the inuflence of Cross diffusion effect are neglected on the basis first that they are of smaller order of magnitude 
in liquid mixture and their effect on the stability criteria is negligible. The cross diffusion effects, however small they 
may be, are present in double diffusive convections and are equally important and they have a large influence on 
hydrodynamic stability relative to their contributions to the buoyancy of the fluid. Further, the Soret effect introduces a 
coupling between concentration transport and the local temperature gradient in the mixture, and this causes a 
concentration gradient to develop when a temperature gradient is imposed on the fluid layer. Therefore one cannot 
ignore the role of Soret effect chiefly in liquids. 
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Keeping in mind the importance of cross diffusion effect and the growing importance of Visco-elastic fluids in modern 
technology, the investigations of such fluids are desirable. Hence, the aim of present paper is to extend the results of 
Banerjee et al. [20, 21] to the thermosolutal convection in Rivlin-Ericksen viscoelastic fluid in porous media in the 
presence of Soreteffect and to derive a semi-circle theorem that prescribes upper limits for the complex growth rate of 
oscillatory motions of neutral or growing amplitude in the problem for any arbitrary combinations of dynamically free 
and rigid boundaries. However, the governing equations in the present configuration are not amenable to the analysis 
followed by Banerjee et al. [20] on account of some mathematical complexities arises due to introduction of Soret 
effect term. Therefore, an attempt is made mathematicallytotackle the problems, the governing equations of the present 
problem are transformed to mathematically tractable forms using some linear relations and derived the required results 
as per the scheme of Banerjee et al. [20, 21]. 

 
2.  MATHEMATICAL FORMULATION AND ANALYSIS 
 
An infinite, horizontal porous layer of in compressible Rivlin-Ericksen viscoelastic fluid is statically confined between 
two parallel horizontal planes 0=z and dz =  maintained at uniform temperature T0 and T1 (T0> T1) and solute 
concentrations C0 and C1 (C0> C1) at the lower and upper boundaries respectively. A cartesian frame of reference is 
chosen with origin in the lower boundary 0=z  and the z-axis vertically upward. The layer of fluid mixture is heated 

and salted from below in the the force field of gravity g (0, 0, -g). The fluid layer is assumed to be flowing through an 

isotropic and homogeneous porous medium of porosity ε and the permeability 1k . The Boussinesq [24] approximation 
is assumed to be hold, which states that the variation in density is negligible everywhere except in its association with 
the external force. 
 
Under these assumptions, the basic equations (i.e. the equations of continuity, motion, heat conduction, mass diffusion 
and the equation of state) that govern the thermosolutal Rivlin-Ericksen viscoelastic fluid in the presence of Soret effect 
(Following Rivlin and Ericksen[15]; Sharma et al [17]; De Groot and Mazur[6] and McDougall [8] are given by 
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Where   𝑢𝑢𝑖𝑖  =  (𝑢𝑢, 𝑣𝑣,𝑤𝑤) is the Darcy velocity ; p is the pressure, µ  is the coefficient of viscosity and 
0ρ
µυ =  is the 

coefficient of kinematic viscosity; 𝑔𝑔 is gravity; 21D is the Soret  coefficient; T is the temperature, C concentration,κ  is 

the thermal conductivity and κ ′  is the solutal diffusivity, E is thermal capacity ratio; 
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the volumetric heat capacity of the fluid; E′ is constant analogous to E but corresponding to solute rather than heat 
sand spfpmp ccc ))(1()()( ρερερ −+= is the volumetric heat capacity of the saturated medium as a whole, with 

the subscripts f, s and m denoting the properties of the fluid, solid, and porous matrix, respectively; α  and  α′  are 
respectively thermal and concentration expansion coefficient, ρ  is the density. 

 
2.1 Basic State and its Solutions 
 
The basic state of the system is assumed to be a quiescent state whose stability we want to examine is characterized by, 

)0,0,0(=q , )(zCC b= ,   )(zpp b= ,   )(zbρρ =                                   (6) 
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Thus the basic state solution on the basis of the basic state is obtained by using equation (6) in (1)- (5) we get, 
 

)0,0,0(=q , 
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2.2 The Perturbation solutions 
 
The initial state described by (7) be slightly perturbed so that perturbed state is given by 
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Where φθδδρ ,,,),,,( pwvu  denote respectively the perturbations in velocity (0, 0, 0), density, pressure p, 

temperature T, solute concentration C. The change in density δρ caused by perturbation θ  and φ  in temperature and 
solute concentration is given by 

)(0 φααθρδρ ′−−=                  (9) 

 
Then the linearized perturbation equations of continuity, momentum, heat conduction and mass diffusion (1)-(5) using 
equation (9) give 
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3. NORMAL MODE AND STABILITY ANALYSIS 
 
Analyze an arbitrary perturbation into a complete set of normal modes and assume that the perturbed quantities are of 
the form  
[ ] [ ] ( )[ ]ntykxkizzzWw yx ++ΓΘ= exp)(),(),(,, φθ                   (14) 

Where 22
yx kka +=  is the resultant wave member of the perturbation, kx and ky are wave numbers along x and y 

directions respectively and n is the time constant (which is complex in general). Using equation (14), the linearized 
perturbation equations (10) – (13) in the non-dimensional form becomes 
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In the resulting equations omitting the asterisks for simplicity. 
 
The appropriate boundary conditions with respect to which equations (15)-(17), must possess a solution are  

0W DW at= = Θ = Γ = 1,0 == zz                                                                                                      (19) 

(both the boundaries rigid) 
20or W D W at= = Θ = Γ = 1,0 == zz                                                                         (20) 

(both the boundaries dynamically free) 
20 0, 1

0 1, 0
or W D W at z z
and or W DW at z z
 = = Θ = Γ = = =
 = = Θ = Γ = = = 

                                                                                  (21) 

 (one dynamically free and other is rigid) 
 
It may further be noted that the system of equations (15)-(17) together with one of the boundary conditions (19)-(21) 
constitutes an eigenvalue problem for σ that govern Soret driven Double diffusive convection in Rivlin- Ericksen 
Viscoelastic fluid of Veronis type in a porous medium for any combination of dynamically free and rigid boundaries. 
we wish to characterize iσ when 0≥rσ  
 
Remarks  

(i) A given state of the system is stable, neutral or unstable according as; ,0<rσ 0=rσ  or 0>rσ  for all 

wave numbers 2a  (where  rσ and iσ  are the real and imaginary parts of σ )  

(ii) The system of equations (15)-(17) together with one of the boundary conditions (19)-(21) when 0=TS  
yields the non dimensional linear perturbation equations governing Veronis Type Double diffusive convection 
inRivlin- Ericksen Viscoelastic fluid in a porous medium for any combination of dynamically free and rigid 
boundaries.. 

 
Theorem 1: If ),,,( ΓΘWσ ), ir iσσσ += , 0≥rσ 0≠iσ  is a non-trivial solution of equation (15)-(17) together 

with one of the boundary conditions (19)-(21) with 0>TR , 0>SR  and 0,0,0 >>> lr PPF , then 
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Proof: Using linear transformations 

WW ˆ= , Θ=Θ ˆ , Γ+Θ=Γ BAˆ                                                                                                                                (22) 
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Equations (15)-(17) upon using the transformation (22), assumes the following form: 
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and the sign of cap has been ignored for the sake of convenience in writing. It is important to note here that in the 
absence of Soret effect )0( =TS , we have RRT = and RRS ′= hence, in the absence of Soret effect the equations 
(23)-(25) yield Doublediffusive convection in Rivlin- Ericksen Viscoelastic fluid of Veronis type in a porous medium.

  
Multiplying equation (23) by W *(complex conjugate ofW ) and integrating the resulting equation over the vertical 
range of z, we get 
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Integrating by parts, the various terms of equation (33) for an appropriate number of times by using either of the 
boundary conditions (26)-(28), it follows that 
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Equating real and imaginary parts of equation (34) and cancelling )0(≠iσ throughout from the imaginary part, we get 
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Multiplying equation (36) by rσ and adding the resulting equation to the equation (35), we get 
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Since ΓΘ,,W vanishes at 0=z  and 1=z , therefore Rayleigh-Ritz inequality (Schultz [25]) gives 
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                                                                                                                   (38)

 

dzdzD ∫∫ Θ≥Θ
1

0

22
1

0

2 π
                                                                                                                                             

(39)
 

dzdzD ∫∫ Γ≥Γ
1

0

22
1

0

2 π
                                                                                                                                               

(40)
 

 
Equation (36) implies 

}{ ∫∫∫ Γ′≤+







+ dzPEaRdzWaDW

P
F

rS
l

2
1

0

2
1

0

2221
ε

                                                                                      (41)
 

 
Combining equation (38) and (41), we get 

∫∫ Γ≤+







+

′

1

0

22
1

0

222 )(11 dzaRdzWa
P
F

PE S
lr

π
ε

(42) 

dzPEaRdzWa
P
F

rS
l

∫∫ Γ′≤+







+

1

0

22
1

0

222 )(1 π
ε

                                                                                     (43) 

 
Also upon using inequality (40), we have  

[ ] ∫∫∫ Γ+≥Γ+Γ dzaRadzaDaR Ss
2

1

0

222
1

0

2222 )(π
                                                                                       

(44)
 

 
Combining (42) and (44), we get 

1 1
2 2 22 2 2 2 2

0 0

1 1 ( )s
r l

FR a D a dz a W dz
E P P

π
ε

  Γ + Γ ≥ + +   ′  
∫ ∫                                                                       (45) 

 
Multiplying equation (24) by its complex conjugate and integrating the resulting equation over the vertical range of z, 
we get 

( ) ( )[ ] ∫∫ =Θ−−Θ−−
1

0

*
1

0

**2222 dzWWdzEPaDEPaD rr σσ                         (46) 
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Integrating by parts, the equation (46) for an appropriate number of times by using either of the boundary conditions 
(26)-(28), it follows that 

( ) ( )∫ ∫∫∫ =Θ+Θ+Θ+Θ−
1

0

1

0

2
1

0

2222
1

0

2222222 2 dzWdzPEdzaDEPdzaD rrr σσ (47) 

 
Since 0≥rσ , it follow from inequality (47) that 

        
( ) dzPEdzaDdzW r ∫∫∫ Θ+Θ−≥

1

0

2222
1

0

222
1

0

2 σ                   (48) 

And ( )∫∫ Θ−≥
1

0

222
1

0

2 dzaDdzW                                   (49) 

 
Further, utilizing the Schwartz inequality (Fitts [26]), we have 

∫∫∫∫∫ Θ≥Θ=ΘΘ−≥



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
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2
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2
1
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2
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2 dzdzDdzDdzDdz π
                                                        

(50)                                       

 
Consequently, 

∫∫ Θ≥Θ
1

0

24
1

0

22 dzdzD π                                                                                                                                 (51) 

 
Thus we have 
1 1

2 2 2 22 2 2 2 4

0 0

( ) ( 2 )D a dz D a D a dz− Θ = Θ + Θ + Θ∫ ∫  

                                
1

22 2 2

0

( )a dzπ≥ + Θ∫                                                                                                                  (52) 

 
Combining inequality (48) and (52), we obtain 
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1

0

2222222
1

0

2 )( dzPEadzW r σπ
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22 21 1
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
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
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
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Making use of equations (49) and (54), the equation (55) yields 
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1 1 1
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a
σ

π
π

 
= + + Θ + Θ 

+  
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Using inequality (38), (45), (56) in equation (37) we obtain 

1
22 2 21 12

2 22 2 2 2 2
2 2 2 2 2

0 0

1 1( ) ( ) 1
( ) ( )
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ε π π
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∫ ∫                (57) 
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Since the minimum value of 2

222 )(
a

a+π
 is 24π (for 22 π=a ) and the minimum value of 2

322 )(
a

a+π
is 

4
27 4π

    

at 
2

2
2 π
=a , therefore it follows from inequality (58) that 
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2 2
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Further 
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it follows from equation (57) that 
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   + + + + <  ′   
                                                                                               (61) 

 

Since the minimum value of 2

222 )(
a

a+π
 is 24π therefore it follows from inequality (61) that 
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Combining inequalities (60) and (62), we get 
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1 1
1 4 1
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l c l

R J
EP F

P E S P

σ
π

ε
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   + +  ′   

                                                                                                             (63) 

Which complete the proof of the theorem. 
 
Theorem 1, from the physical point of view of hydrodynamic stability theory , may be stated as: the complex growth 
rate ir iσσσ += of an arbitrary oscillatory perturbation of neutral or growing amplitude of thermosolutal convection 
in a porous layer of Rivlin- Ericksenviscoelastic fluid of Veronis type in the presence of Soret effect lies inside a semi 
circlein the right half of the irσσ -plane whose centre is origin and whose radius is  
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Corollary 1: If ( ΓΘ,,,Wσ ), ir iσσσ += , 0≠iσ  is a non trivial solution of equation (15)-(17) together with one 

of the boundary conditions (19)-(21) with 0>TR , 0>SR  and 1≤J , then 0<rσ  
 
Proof: Follows from Theorem 1.  
 
Corollary 1 yields that oscillatory motion of growing amplitude are not allowed in thermosolutal convection in a porous 
layer of Rivlin- Ericksenviscoelastic fluid of Veronis type in the presence of Soret effect if 1≤J  
 
Corollary 2: In the absence of Soret effect ( 0=TS ), the complex growth rate ir iσσσ += of an arbitrary 
oscillatory perturbation of neutral or growing amplitude in thermosolutal convection in a porous layer of Rivlin- 
Ericksenviscoelastic fluid of Veronis type must lies inside a semi circle in the right half of the irσσ -plane whose 

centre is origin and whose radius is 1
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Where















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Proof: In the absence of Soret effect ( 0=TS ), we have RRT =  hence on replacing TR by R in Theorem 1, we 
obtain the required result. 
 
CONCLUSIONS 
 
In the present analysis firstly, the eigenvalue problem governing the Soret-driven doublediffusive  convection in a 
porous layer of Rivlin- Ericksenviscoelastic fluid of Veronis type has been transformed into an eigenvalue problem 
(using some linear relations) which behaves nicely as per the scheme of Banerjee et al. [20,21] for the treatment of the 
problem. In the second part, using linear stability theory based upon normal mode technique, our analysis of the 
governing equations of the problem for any combination of free and rigid boundaries leads to the following important 
conclusions. 
(i) The complex growth rate ir iσσσ += of an arbitrary oscillatory perturbation of neutral or growing amplitude(

0≥rσ ) in thermosolutal convection in a porous layer of Rivlin- Ericksenviscoelastic fluid of Veronis type in 

the presence of Soret effectmust lies inside a semi  circle in the right half of the irσσ -plane whose centre is  at 

origin and whose radius is 1
141

1 2
2

−

















+

′
+

J

P
F

SEP

R
EP

lcl

T

r

ε
π

. 

(ii) The oscillatory motion of growing amplitude are not allowed in thermosolutal convection in a porous layer of 
Rivlin- Ericksenviscoelastic fluid of Veronis type in the presence of Soret effect if 1≤J  

(iii) In the absence of Soret effect ( 0=TS ), the complex growth rate ir iσσσ += of an arbitrary oscillatory 
perturbation of neutral or growing amplitude in thermosolutal convection in a porous layer of Rivlin- 
Ericksenviscoelastic fluid of Veronis typemust lies inside a semi circle in the right half of the irσσ -plane 

whose centre is origin and whose radius is 1
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where 


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


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.

 

 
Further, utilizing the remarks contained in Banerjee et al. [20,21] Gupta et al. [22] for obtaining the eigenvalue 
equations for the present problem but of Stern type  and then following the present analysis, one can easily obtain the 
analogous results for case of Stern type configuration. 
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