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ABSTRACT 
In this paper we introduce the idea of comparative growth properties of entire functions of two complex variable on 
the basis relative order, relative L -order and relative ∗L -order. 
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INTRODUCTION 
 
In the poly disc, f be an entire function of two complex variables holomorphic  

}0,0  2,1,|:|),{( 2121 ≥≥∀=≤= rrirzzzU ii  
and  

}2,1,||:|),({|max),( 2121 =≤= irzzzfrrM iif  
 
From maximum principle and Hartog's theorem in [2], ),( 21 rrM f  is increasing function of 21, rr  in [2]. 
 
Definition 1: In [1, 2] the order fv ρ

2
 and the lower order fv λ2

 of an entire function f of two complex variables are 
defined as  

)log(
),(log

suplim
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]2[
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rrfv ∞→
=ρ  

and 

)log(
),(log

inflim
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rrM f

rrfv ∞→
=λ  

 
If f is regular then order and lower order are the same .An entire function of two complex variables which is not equal 
is called irregular .For single variable, above definition concides with the classical definition of order in [18] L.Bernal 
in [3, 4] introduced the definition of relative order between two entire functions of single variable. During the past 
decades, several authors in see [13, 14, 15, 16] made close investigations on the properties of relative order of entire 
functions of single variable. In facts, some works relating to the growth estimates of composite entire functions of 
single variable on the basis of relative order of entire functions have been explored in [6, 7, 8, 9, 10]. In case of relative 
order Banerjee and Dutta [5] to define the relative order of entire functions of two complex variables as follows. 
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Definition 2: The relative order between two entire functions of two complex variables denoted by  
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suplim

21

21
1

, 21
2 rr

rrMM
f fg
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where g is an entire function holomorphic in the closed polydisc 2,1,|:|),{( 21 =≤= irzzzU ii ∀ , 01 ≥r  , 

}02 ≥r  and if 21)( zzezg =  the definition coincides with definition 1 in see [5] the relative lower order of f with 
respect to g   
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for two complex variable relative order and relative lower order of entire function with respect to another entire 
functions are the same is said to be regular relative growth not regular is called irregular relative growth. 
 
Definition 3: The relative hyper order )(

2
fgv ρ  and relative hyper lower order )(

2
fgv λ  of an entire function f of 

two complex variable with respect to another entire g  of two complex variable are defined as follows:  
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Somasundaram and Thamizharasi [18] introduced the notion of L -order ( L -lower order) for entire functions where 

),( 21 rrLL =  is a positive continuos functions increasing slowely i.e., ),(),( 2121 rrLararL ≈  as ∞→21, rr  for 
every positive constant 'a' their definition are as follows: 
 
Definition 4: [18] The L-order L

fv ρ
2

 and the L -lower order L
fv λ2

 of an entire function f of two variable defined as 
follows: 
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Similarly one can define the L -hyper order and 
L
fv ρ

2
 the L -hyper lower order of 

L
fv λ2

 an entire function f . 
 
Definition 5: The definition of relative L-order of f with respect to g denoted by )(

2
fL

gv ρ  as follows 
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Similarly we may define the relative order L -lower order of f  of two complex variable with respect to g  denoted by  
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Definition 6: The relative L -hyper order )(
2

f
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2

f
L
gv λ   of an entire function f  

of two complex variable with respect to another entire function g  of two complex variable are defined as follows: 
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the more generalized concept of ∗L -order( ∗L -lower order ) of an entire function is ∗L -order( ∗L -lower order) their 
definition as follows: 
 
Definition 7: The ∗L -order and ∗L -lower order of an entire function f denoted by 
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the more generalized concept of relative L -order and the relative L -hyper oder are the relative ∗L -order and relative 
∗L -hyper order respectively their definitions as follows: 

 
Definition 8: The relative ∗L -order of an entire function f of two complex variable with respect to another entire 
function g , denoted by 
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Definition 9: The relative ∗L -hyper order )(
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Some results on the comparative growth properties of entire of two complex variable functions on the basis of relative 
order(relative lower order),relative L -order(relative L -lower order) and relative ∗L -order(relative ∗L -lower order)have 
been proved earlier.         
 
In this section we present the main results of the paper. 
 
Theorem 1: Let ,f g and h  be three entire functions such that ( ) ( )
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Proof: From the definition of relative order and relative lower order we have for arbitrary positive ε  and for all large 
values of 1r , 2r   
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As  0>ε  is arbitrary, we obtain that 
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Again for a sequence of values of 1 2,r r tending to infinity 
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Since 0>ε  is arbitrary it follows that 
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Also for sequence of values of 21, rr tending to infinity, 
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Now from (1) and (7) we obtain for a sequence of values of 21, rr  tending to infinity 
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Choosing 0→ε  we get from above that 
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Also for all large values of 21, rr   
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Thus the theorem follows from (3) (6), (8) and (10).The following theorem can be proved in the line Theorem 1 and so 
the proof is omitted. 
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Theorem 2: Let gf , and h  be three entire functions such that ( ) ( )
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Using the more generalized concept of relative L -order (relative L -lower order) and relative ∗L -order (relative         

∗L -lower order) of an entire functions of two complex variable with respect to another entire function we may state the 
following theorem without proof. 
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Theorem 4: Let gf ,  and h be three entire functions such that <0 ( ) ≤fgv λ2
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Proof: From definition of relative order we get for sequence of values of 21, rr  tending to infinity 
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as  )0(>ε is arbitrary we obtain that 
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Thus the theorem follows from (12) and (14). The following two theorems can be carried out in the line of theorem 4  
and therefore we omit their proofs. 
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the following theorem is a natural consequence of theorem 1 and theorem 4 . 
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the proof is omitted. Analogously the following two theorems without proof. 
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We state the following theorems without proof based on relative hyper order, relative L -hyper order and relative      

∗L -hyper order of an entire function with respect to another entire function. 
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Theorem 10: Let gf ,  and h  be three entire functions such that <0 )(

2
fgv λ ≤ ∞<)(

2
fgv ρ and 

<0 )(
2

hgv λ ≤ ∞<)(
2

hgv ρ  then  

2 2

1 2
2 2

1
1 2

1,
1 2

( ) ( )log ( , )
lim inf

log ( , )( ) ( )
g gv vg f

r r gg hgv v

f fM M r r
M M r rh h

λ λ
ρ λ

−

−→∞
≤ ≤  

                  2

1 2
2

[2] 1
1 2

[2] 1,
1 2

( )log ( , )
lim sup .

log ( , ) ( )
gvg f

r r gg h v

fM M r r
M M r r h

ρ
λ

−

−→∞
≤ ≤  
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