International Journal of Mathematical Archive-2(7), July - 2011, Page: 1099-1104 MA Available online through <u>www.ijma.info</u> ISSN 2229 - 5046

WEYL TYPE THEOREMS FOR CLASS A(k) OPERATORS

¹Anuradha Gupta

¹Department of Mathematics, Delhi College of Arts and Commerce, University of Delhi, Netaji Nagar, New Delhi-110023, India

Email: dishna2@yahoo.in

²Neeru Kashyap*

²Department of Mathematics, Bhaskaracharya College of Applied Sciences, University of Delhi, Dwarka, New Delhi-110075, India

*Email: neerusharma4569@yahoo.co.in

(Received on: 17-06-11; Accepted on: 30-06-11)

ABSTRACT

If T is a class A(k) operator where $k \ge 1$ and \hat{T} is its hyponormal transform, then generalized Weyl's theorem is proved for T via \hat{T} .

2000 Mathematics Subject Classification: Primary 47A10, 47A11, 47A53.

Keywords: Class A(k) operators, Generalized Weyl's theorem, Generalized Browder's theorem, SVEP.

1. INTRODUCTION:

Let H be a complex Hilbert space and B(H) the algebra of all bounded linear operators on H. For an operator $T \in B(H)$, let T^* , $\sigma(T)$, $\sigma_p(T)$, $\sigma_{ap}(T)$ denote the adjoint, spectrum, point spectrum and approximate point spectrum of T, respectively. We denote by $\alpha(T)$ and $\beta(T)$ the dimension of the kernel ker T and the codimension of the range R(T), respectively. The operator $T \in B(H)$ is called an upper semi-Fredholm operator if $\alpha(T) < \infty$ and T(X) is closed, while $T \in B(H)$ is called lower semi-Fredholm operator, while T is either upper or lower semi-Fredholm then T is called a semi-Fredholm operator, while T is said to be a Fredholm operator if it is both upper and lower semi-Fredholm.

We denote by $\phi_+(H)$ the class of all upper semi-Fredholm operators, by $\phi_-(H)$ the class of all lower semi-Fredholm operators, and by $\phi(H)$ the class of all Fredholm operators. If $T \in B(H)$ is semi-Fredholm, then the index of T is defined by $\operatorname{ind}(T) = \alpha(T) - \beta(T)$.

The ascent of T is defined as the smallest non-negative integer $p \coloneqq p(T)$ such that $N(T^p) = N(T^{p+1})$. If such an integer does not exist we put $p(T) = \infty$. Analogously, the descent of T is defined as the smallest nonnegative integer $q \coloneqq q(T)$ such that $R(T^q) = R(T^{q+1})$ and if such an integer does not exist we put $q(T) = \infty$.

An operator $T \in B(H)$ is called a Weyl operator if it is a Fredholm operator of index 0, and $T \in B(H)$ is called a Browder if it is a Fredholm operator of finite ascent and descent.

Corresponding author: Neeru Kashyap, *E-mail: neerusharma4569@yahoo.co.in

International Journal of Mathematical Archive- 2 (7), July – 2011

¹Anuradha Gupta and ²Neeru Kashyap*/Weyl type theorems for class A(k) operators / IJMA- 2(7), July-2011, Page: 1099-1104 The essential spectrum $\sigma_e(T)$, the Weyl spectrum $\sigma_W(T)$ and the Browder spectrum $\sigma_b(T)$ of T are defined as

$$\begin{split} \sigma_e(T) &= \{ \ \lambda \in \mathbb{C} \ T - \lambda I \ \text{ is not Fredholm} \}, \\ \sigma_W(T) &= \{ \ \lambda \in \mathbb{C} \ T - \lambda I \ \text{ is not Weyl} \}, \\ \sigma_b(T) &= \{ \ \lambda \in \mathbb{C} \ T - \lambda I \ \text{ is not Browder} \}. \end{split}$$

We say that Weyl's theorem holds for T if

 $\sigma(T) \setminus \sigma_{W}(T) = E_0(T),$

where $E_0(T)$ is the set of all isolated points of $\sigma(T)$ which are eigen values of finite multiplicity. Let $p_{00}(T) = \sigma(T) \setminus \sigma_b(T)$ denote the set of Riesz points of T. T is said to satisfy Browder's theorem if $\sigma(T) \setminus \sigma_w(T) = p_{00}(T)$.

The essential approximate point spectrum is

$$\sigma_{ea}(T) = \bigcap \{ \sigma_a(T+K) \colon K \in K(H) \}$$

and the Browder essential point spectrum is

 $\sigma_{ab}(T) = \bigcap \{ \sigma_a(T+K) : TK = KT, K \in K(H) \}.$

It is well known that $\sigma_{ea}(T) = \{\lambda \in : T - \lambda \notin \phi_+^-(H)\}$, where $\phi_+^-(H) = \{T \in \phi_+(H) : ind(T) \le 0\}.$

We say that a-Weyl's theorem holds for $T \in B(H)$ if $\sigma_a(T) \setminus \sigma_{ea}(T) = E_0^a(T)$, where $E_0^a(T)$ is the set of all eigen values of T of finite multiplicity which are isolated in $\sigma_a(T)$.

For a bounded linear operator T and a nonnegative integer n we define T_n to be the restriction of T to $R(T^n)$ viewed as a map from $R(T^n)$ into itself (in particular $T_0 = T$). If for some integer n, the range space $R(T^n)$ is closed and T_n is an upper (resp., a lower) semi- Fredholm operator, then T is called an upper (resp., a lower) semi B - Fredholm operator. In this situation, T_m is a semi - Fredholm operator and ind $(T_m) = ind(T_n)$ for each $m \ge n$ [8, proposition 2.1]. Thus the index of a semi-B-Fredholm operator T is the index of the semi- Fredholm operator T_n where n is any integer such that $R(T^n)$ is closed and T_n is a semi - B- Fredholm operator. Moreover, if T_n is a Fredholm operator, then T is called a B-Fredholm operator. A semi - B- Fredholm operator is an upper or a lower semi -B-Fredholm operator.

An operator $T \in B(H)$ is called a B-Weyl operator if it is a B-Fredholm operator of index 0. The B-Weyl spectrum $\sigma_{BW}(T)$ of T is defined as

$$\sigma_{_{BW}}(T) = \{ \lambda \in \mathbb{C} \ T - \lambda I \text{ is not a B-Weyl operator} \}.$$

We say that generalized Weyl's theorem holds for T if $\sigma(T) \setminus \sigma_{BW}(T) = E(T)$,

where E(T) is the set of isolated eigen values of T ([7], Definition2.13). Let $SBF_+(H)$ be the class of all upper semi -B-Fredholm operators on H, and $SBF_+^-(H)$ the class of all $T \in SBF_+(H)$ such that ind(T) ≤ 0 . Also let

$$\sigma_{_{SBF^+_+}}(T) = \{ \lambda \in \mathbb{C} \ T - \lambda I \text{ is not in } SBF^-_+(H) \}.$$

¹Anuradha Gupta and ²Neeru Kashyap*/Weyl type theorems for class A(k) operators / IJMA- 2(7), July-2011, Page: 1099-1104 We say that T obeys generalized a-Weyl's theorem if $\sigma_a(T) \setminus \sigma_{SBF_+}(T) = E^a(T)$, where $E^a(T)$ is the set of all eigenvalues of T which are isolated in $\sigma_a(T)$ [7, Definition2.13].

The operator $T \in B(H)$ is said to have the single valued extension property at $\lambda_0 \in \mathbb{C}$ (abbreviated as SVEP at $\lambda_0 \in \mathbb{C}$), if for every open disc U of λ_0 the only analytic function $f: U \to H$ which satisfies the equation $(T - \lambda I) f(\lambda) = 0$ for all $\lambda \in U$, is the function $f \equiv 0$.

An operator $T \in B(H)$ is said to have SVEP if T has SVEP at every point $\lambda \in \mathbb{C}$. It is known that an operator $T \in B(H)$ has SVEP at every point of the resolvent $\rho(T) = \mathbb{C} \setminus \sigma(T)$. Also every operator T has SVEP at every isolated point of the spectrum. An operator is called isoloid if each $\lambda \in iso\sigma(T)$ is an eigen value of T.

2. GENERALIZED WEYL'S THEOREM FOR CLASS A(k) OPERATORS:

An operator T has a unique polar decomposition T = U | T |, where $|T| = (T^*T)^{\frac{1}{2}}$ and U is the suitable partial isometry satisfying ker $U = \ker T = \ker(|T|)$ and ker $(U^*) = \ker(T^*)$.

Furuta et al. [10] defined a new class of operators, namely class A(k) where k > 0. T belongs to class A(k) if $(T^* |T|^{2k} T)^{\frac{1}{k+1}} \ge |T|^2$ where k > 0. A class A(1) operator T is known as a class A operator and satisfies an operator inequality $|T^2| \ge |T|^2$.

Mary and Panayappan [13, 14] studied the properties of A(k) operators using its hyponormal transform T. Using those properties we prove generalized Weyl's theorem for class A(k) operators via its hyponormal transform \hat{T} .

Limit Condition 2.1: [13], For each $\lambda \in \sigma_a(T)$ and a corresponding

sequence $\{y_n\}$ of unit vectors, \hat{T} satisfies the condition $\lim_{n\to\infty} \| \hat{T} \|^2 y_n \| = |\lambda|^2$ where T is a class A(k) operator, k > 1 and \hat{T} is its hyponormal operator transform.

Proposition2.2: [14, Lemma 5]: If T is a class A(k) operator, where k > 1 and M is an invariant subspace of T, then $T \mid_{M}$ is also a class A(k) operator.

Proposition 2.3: [14, Lemma 6]: Suppose T is a class A(k) operator and T its hyponormal transform such that the limit condition is satisfied. Then the Eigen space of T reduces T

Proposition 2.4: [14, Lemma 7]: If T is a class A(k) operator satisfying the Limit condition, then T is isoloid.

Proposition 2.5: [13, Corollary10]: Every quasinilpotent class A(k) operator satisfying limit condition is a zero operator.

Our first result is as follows:

Theorem 2.6: Let $T \in B(H)$ be a class A(k) operator and \hat{T} its hyponormal operator transform such that limit condition is satisfied. Then $\sigma_{ea}(f(T)) = f(\sigma_{ea}(T))$ for every $f \in H(\sigma(T))$.

Proof: Let $f \in H(\sigma(T))$. It suffices to show that $f(\sigma_{ea}(T)) \subseteq \sigma_{ea}(f(T))$. © 2011, IJMA. All Rights Reserved Suppose that $\lambda \notin \sigma_{_{ea}}(f(T))$. Then $f(T) - \lambda I \in \phi_{_+}(H)$ and $i(f(T) - \lambda I) \leq 0$ and

where $c, \alpha_1, \alpha_2, ..., \alpha_n \in \mathbb{C}$ and g(T) is invertible .Since the operators on the right hand side of (2.1) commute, therefore $T - \alpha_i I \in \phi_+(H)$ for each i = 1, 2, ..., n. Since T has SVEP [13, Theorem 11], it follows from [2, Theorem 2.6] that each $T - \alpha_i$ has finite ascent. Therefore by [1, Theorem 3.4] $i(T - \alpha_i) \leq 0$ for each i = 1, 2, ..., n. It follows that $\lambda \notin f(\sigma_{ea}(T))$.

Theorem 2.7: Let $T \in B(H)$ be a class A(k) operator and \hat{T} its hyponormal operator transform such that limit condition is satisfied. Then a sufficient condition for f(T) to satisfy a-Weyl's theorem for every $f \in H(\sigma(T))$ is that T^* has SVEP.

Proof: If T^* has SVEP, then $\sigma(T) = \sigma_a(T)$. Hence $\sigma_{ea}(T) = \sigma_w(T)$ and $E_0^a(T) = E_0(T)$. As we know

T satisfies Weyl's theorem [14, Theorem 2], therefore T satisfies a-Weyl's theorem. Since T is isoloid and $\sigma_{eq}(T)$ satisfies Theorem 2.6, therefore f(T) satisfies a-Weyl's theorem.

Theorem 2.8: Let T be a class A(k) operator and \hat{T} its hyponormal operator transform such that for each $\lambda \in \sigma_a(T)$ and a corresponding sequence $\{y_n\}$ of unit vectors, \hat{T} satisfies the condition $\lim_{n\to\infty} \| \hat{T} \|^2$ $y_n \| = |\lambda|^2$ Then generalized Weyl's theorem holds for f(T) for every $f \in H(\sigma(T))$.

Proof: Since T is isoloid and has SVEP [13, Theorem11], therefore it suffices to prove that generalized Weyl's theorem holds for T.

Let $\lambda \in \sigma(T) \setminus \sigma_{BW}(T)$. Then $T - \lambda I$ is a B-Fredholm operator of index zero. Hence it follows from [5, Lemma4.1] that there exist two closed linear spaces M and N of H such that $H = M \oplus N$ and $T - \lambda I = U \oplus V$ with $U = (T - \lambda I) \mid_{M}$ a Fredholm operator of index zero and $V = (T - \lambda I) \mid_{N}$ a nilpotent operator. Let $S = T \mid_{M}$ and $I_{M} = I \mid_{M}$.

Since T is class A(k) operator, then by Proposition 2.2, S is also class A(k) operator and $S - \lambda I_M = U$ is a Fredholm operator of index zero.

If $\lambda \in \sigma(S)$, then by [14, Theorem2], we have $\sigma_w(S) = \sigma(S) \setminus E_0(S)$. As $S - \lambda I_M$ is Fredholm operator of index zero, we have $\lambda \in E_0(S)$. In particular λ is isolated in $\sigma(S)$. 0 is isolated in $\sigma(S - \lambda I_M) = \sigma(U)$.

Since $T - \lambda I = U \oplus V = (S - \lambda I_M) \oplus V$, and V is a nilpotent operator then $\sigma(U) \setminus \{0\} = \sigma(T - \lambda I) \setminus \{0\}$.

Therefore 0 is isolated in $\sigma(T - \lambda I)$ or equivalently λ is isolated in $\sigma(T)$. As $\lambda \in E_0(S)$, then $\lambda \in E(T)$.

If $\lambda \notin \sigma(S)$, then we also deduce from $T - \lambda I = (S - \lambda I_M) \oplus V$, that λ is isolated in $\sigma(T)$. Since $T - \lambda I$ is not invertible and hence $\lambda \in E(T)$.

Conversely, if $\lambda \in E(T)$, then λ is isolated in $\sigma(T)$. From [12, Theorem 7.1] we have $H = M \oplus N$ where Mand N are closed linear subspace of H, $U = (T - \lambda I) |_{M}$ is an invertible operator and $V = (T - \lambda I) |_{N}$ is a quasinilpotent operator. Since T is class A(k) operator, then V is also class A(k) operator. As V is ¹Anuradha Gupta and ²Neeru Kashyap*/Weyl type theorems for class A(k) operators / IJMA- 2(7), July-2011, Page: 1099-1104 quasinilpotent operator, from Proposition 2.5, we have V = 0. Since V is invertible it follows from [5, Lemma4.1] $T - \lambda I$ is a B-Fredholm operator of index zero.

Remark 2.9: The inclusion $\sigma(T) \setminus \sigma_{BW}(T) \subset E(T)$ in the above result can also be proved as follows:

Proof: Assume $\lambda \in \sigma(T) \setminus \sigma_{BW}(T)$. Then $T - \lambda I$ is B-Weyl and not invertible. We claim that $\lambda \in \partial \sigma(T)$. Assume to the contrary that λ is an interior point of $\sigma(T)$. Then there exists a neighbourhood U of λ such that dim $N(T - \mu I) > 0$ for all $\mu \in U$. It follows from [9, Theorem 10] that T does not have SVEP. On the other hand, since T is class A(k) operator, it follows from [13, Theorem11] that T has SVEP, which is a contradiction. Therefore $\lambda \in \partial \sigma(T) \setminus \sigma_{BW}(T)$ and it follows from the punctured neighbourhood theorem that $\lambda \in E(T)$.

Corollary 2.10: Let $T \in B(H)$ be a class A(k) operator and T its hyponormal operator transform such that limit condition is satisfied. If $\sigma(T)$ has no isolated points then T^* satisfies generalized Weyl's theorem.

Proof: We know $\sigma(T^*) = \overline{\sigma(T)}$, $\sigma_{BW}(T^*) = \overline{\sigma_{BW}(T)}$ and $E_0(T^*) = \overline{E_0(T)} = \phi$. and from Theorem 2.8 generalized Weyl's theorem holds for T. Therefore we have that $\sigma(T^*) \setminus \sigma_{BW}(T^*) = E_0(T^*)$.

The following corollary is an immediate consequence of the above Theorem and [6, Proposition 3.6]:

Corollary 2.11: Let $T \in B(H)$ be a class A(k) operator and T its hyponormal operator transform such that limit condition is satisfied. Let F be a finite rank nilpotent operator commuting with T. Then generalized Weyl's theorem holds for f(T) + F for every $f \in H(\sigma(T))$.

ACKNOWLEDGMENT:

The authors are grateful to Prof. S.C. Arora for his valuable suggestions concerning the paper.

REFERENCES:

[1] P. Aiena, Fredholm and local spectral theory with applications to multipliers, Kluwer, 2004.

[2] P. Aiena, O. Monslave, *Operators which do not have the single valued* extension property, J. Math. Anal. Appl. 250 (2000), 435-438.

[3] M. Amouch, *Generalized a-Weyl's theorem and the single valued extension property*, Extracta Mathematicae Vol.21(2006) No.1, 51-56.

[4] M. Berkani, On a class of quasi-Fredholm operators, Integr.equ. oper. theory 34 (1999), 244-249.

[5] M. Berkani, Index of B-Fredholm operators and generalization of a Weyl theorem, Proc. Amer. Math. Soc. 130 (2002), 1717-1723.

[6] M. Berkani, A. Arroud, *Generalized Weyl's theorem and hyponormal operators*, J. Aust. Math. Soc.76 (2004), 291-302.

[7] M. Berkani, J. J. Koliha, Weyl type theorems for bounded linear operators, Acta Sci. Math. (Szeged) 69 (2003), 359-376.

[8] M. Berkani, M.Sarih, On semi-B-Fredholm operators, Glasgow Math. J. 43(3)(2001), 457-465.

[9] J. K. Finch, The single valued extension property on a Banach space, Pacific J. Math., 58(1975), 61-69.

[10] T. Furuta, M. Ito and T. Yamazaki, A subclass of paranormal operators including class of log-hyponormal and several related classes, Sci Math 1(1998), 389-403.

[11] H. Heuser, *Functional Analysis*, Marcel Dekker, N.Y., 1982 © 2011, IJMA. All Rights Reserved

¹Anuradha Gupta and ²Neeru Kashyap* / Weyl type theorems for class A(k) operators / IJMA- 2(7), July-2011, Page: 1099-1104

[12] J. J. Koliha, A generalized Drazin inverse, Glasgow Math J.38 (1996), 367-381.

[13] J. S. I. Mary, S. Panayappan, Some properties of class A(k) operators and their hyponormal transforms, Glasgow Math J.49 (2007), 133-143.

[14] J. S. I. Mary, S. Panayappan, Weyl's theorem for class A(k) operatos, Glasgow Math. J. 50(2008) 39-46.

[15] M. Schechter, Principles of functional analysis, Academy Press, New York, 1971.
