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ABSTRACT 

If  T  is a class ( )A k  operator where 1k ≥  and T
∧

 is its hyponormal transform, then generalized Weyl’s 

theorem is proved for T  viaT
∧

. 
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1.  INTRODUCTION: 

 

Let  H  be a complex Hilbert space and ( )B H  the algebra of all bounded linear operators on H . For an 

operator ( )T B H∈ , letT
∗

, ( )Tσ , ( )
p

Tσ , ( )ap Tσ denote the adjoint, spectrum, point spectrum and 

approximate point spectrum of T , respectively. We denote by ( )Tα and ( )Tβ  the dimension of the kernel 

ker T  and the codimension of the range ( )R T , respectively. The operator ( )T B H∈  is called an upper semi-

Fredholm operator if ( )Tα < � and ( )T X   is closed, while ( )T B H∈  is called lower semi-Fredholm 

if ( )Tβ < �. If T  is either upper or lower semi- Fredholm then T  is called a semi-Fredholm operator, 

while T is said to be a Fredholm operator if it is both upper and lower semi-Fredholm.  

 

We denote by ( )Hφ+ the class of all upper semi-Fredholm operators, by ( )Hφ− the class of all lower 

semi-Fredholm operators, and by ( )Hφ  the class of all Fredholm operators. If ( )T B H∈   is semi-

Fredholm, then the index of  T  is defined by ind( T ) = ( )Tα - ( )Tβ .  

      

The ascent of T is defined as the smallest non-negative integer : ( )p p T=  such that
1( ) ( )p p

N T N T
+= . If 

such an integer does not exist we put ( )p T = ∞  . Analogously, the descent of T  is defined as the smallest 

nonnegative integer : ( )q q T=  such that 
1( ) ( )q qR T R T +=  and if such an integer does not exist we 

put ( )q T = ∞ .  

 

An operator  ( )T B H∈  is called a Weyl operator if it is a Fredholm operator of index 0, and ( )T B H∈  is called a 

Browder if it is a Fredholm operator of finite ascent and descent. 
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The essential spectrum ( )e Tσ  , the Weyl spectrum ( )
W

Tσ  and the Browder spectrum ( )b Tσ of T  are 

defined as 

                  ( )e Tσ    = { ∈λ � T Iλ−  is not Fredholm}, 

                  ( )
W

Tσ   = { ∈λ � T Iλ−  is not Weyl}, 

                  ( )b Tσ    = { ∈λ � T Iλ−  is not Browder}. 

 

We say that Weyl’s theorem holds for T    if 

     
( )Tσ  \ ( )

W
Tσ = 0 ( )E T ,  

 

where 0 ( )E T  is the set of all isolated points of ( )Tσ  which are eigen values of finite multiplicity. Let 

00 ( ) ( ) \ ( )bp T T Tσ σ=  denote the set of Riesz points of T . T  is said to satisfy Browder’s theorem  if   

 ( )Tσ  \ ( )W Tσ = 00 ( )p T . 

 

The essential approximate point spectrum is  

( ) { ( ) : ( )}ea aT T K K K Hσ σ= + ∈�   

  

and the Browder essential point spectrum is 

                          ( ) { ( ) : , ( )}ab aT T K TK KT K K Hσ σ= + = ∈� . 

 

It is well known that ( ) { : ( )}ea T T Hσ λ λ φ −
+= ∈ − ∉� , where 

                     { }( ) ( ) : ( ) 0 .H T H ind Tφ φ−
+ += ∈ ≤  

 

We say that a-Weyl’s theorem holds for ( )T B H∈  if 0( ) \ ( ) ( )a

a eaT T E Tσ σ = , where 0 ( )a
E T  is the set of all 

eigen values of T  of finite multiplicity which are isolated in ( )a Tσ . 

 

For a bounded linear operator T and a nonnegative integer  n  we define 
n

T  to be the restriction of  T  to ( )n
R T  

viewed as a map from ( )n
R T  into itself (in particular 0T  =T ). If for some integer n, the range space ( )n

R T  is 

closed and 
n

T  is an upper (resp., a lower) semi- Fredholm operator, then T  is called an upper (resp., a lower) semi B - 

Fredholm operator. Ιn this situation, 
mT  is a semi - Fredholm operator and ind (

mT ) = ind(
nT ) for each m≥n [8, 

proposition 2.1].Thus  the index of a semi-B-Fredholm operator T  is  the index of the semi- Fredholm operator 
n

T   

where n is any integer such that ( )n
R T is closed and  

n
T  is a semi- Fredholm operator. Moreover, if 

n
T  is a Fredholm 

operator, then T  is called a B-Fredholm operator. A semi - B- Fredholm operator is an upper or a lower semi -B-

Fredholm operator.  

 

An operator  ( )T B H∈  is called a B-Weyl operator if it is a B-Fredholm operator of index 0. The B-Weyl spectrum 

( )
BW

Tσ  of T  is defined as  

                   ( )BW Tσ  = { ∈λ � T Iλ−  is not a B-Weyl operator}. 

  

We say that generalized Weyl’s theorem holds for T  if  

                    
( )Tσ  \ ( )

BW
Tσ = ( )E T , 

 

where ( )E T is the set of isolated eigen values of T  ([7], Definition2.13). 

Let ( )SBF H+  be the class of all upper semi -B-Fredholm operators on H  , and ( )SBF H
−

+  the class of all 

T ∈ ( )SBF H+  such that ind(T) ≤ 0. Also let  

                    ( )
SBF

Tσ −
+

= { ∈λ � T Iλ−  is not in ( )SBF H
−

+ }. 
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We say that T  obeys generalized a-Weyl’s theorem if ( )
a

Tσ  \ ( )
SBF

Tσ −
+

= ( )a
E T , where ( )a

E T  is the 

set of all eigenvalues of T  which are isolated in ( )
a

Tσ  [7, Definition2.13]. 

 

The operator ( )T B H∈  is said to have the single valued extension property at ∈0λ � ( abbreviated as 

SVEP at ∈0λ �), if for every open disc U  of  0λ  the only analytic function :f U → H which satisfies 

the equation ( T Iλ− ) ( )f λ =0 for all Uλ ∈ , is the  function 0f ≡ .  

 

An operator ( )T B H∈  is said to have SVEP if T  has SVEP at every point ∈λ �. It is known that an 

operator ( )T B H∈  has SVEP at every point of the resolvent ( )Tρ =�� \ ( )Tσ . Also every operator T  has 

SVEP at every  isolated point of the spectrum. An operator is called isoloid if each ( )iso Tλ σ∈ is an eigen 

value of T . 

  

2.  GENERALIZED WEYL’S THEOREM FOR CLASS ( )A k  OPERATORS: 

An operator T  has a unique polar decomposition T U= ||||T ||||, where ||||T ||||=

1

2( )T T
∗

 and U  is the suitable 

partial isometry satisfying kerU =ker T =ker( ||||T ||||) and ker (U
∗

)=ker ( T
∗

). 

 

Furuta et al. [10] defined a new class of operators, namely class ( )A k  where k > 0 . T  belongs to class 

( )A k  if ( T ∗
||||T ||||2k T )

1

1k +  ≥  ||||T ||||2 
 where k > 0  

.  A class (1)A  operator T  is known as a class A  operator 

and satisfies an operator inequality ||||
2

T |||| ≥ ||||T ||||2. 
 

Mary and Panayappan [13, 14] studied the properties of  ( )A k  operators using its hyponormal transform T
∧

 . 

Using those properties we prove generalized Weyl’s theorem for class  ( )A k  operators via its hyponormal 

transform T
∧

. 

 

Limit Condition 2.1: [13], For each ( )a Tλ σ∈  and a corresponding  

sequence { }ny of  unit vectors , T
∧

 satisfies the condition  limn→∞ ||||||||  ||||T
∧

||||2 ny |||||||| = |||| λ ||||2  where  T  is a class 

( )A k  operator , k >1 and T
∧

 is its hyponormal operator transform.  

 

Proposition2.2: [14, Lemma 5]: If  T  is a class ( )A k  operator, where k >1 and M  is an invariant 

subspace of T , then T � M  is also a class ( )A k  operator . 

Proposition 2.3: [14, Lemma 6]: Suppose T  is a class ( )A k  operator and T
∧

 its hyponormal transform 

such that the limit condition is satisfied. Then the Eigen space of T reduces T  

 

Proposition 2.4: [14, Lemma 7]: If  T  is a class ( )A k  operator satisfying the Limit condition, then  T  is 

isoloid. 

 

Proposition 2.5: [13, Corollary10]: Every quasinilpotent class ( )A k   operator satisfying limit condition is a zero 

operator. 

 

Our first result is as follows: 

 

Theorem 2.6: Let T  ∈ ( )B H be a class ( )A k  operator and  T
∧

  its hyponormal operator transform such that 

limit condition is satisfied. Then ( ( )) ( ( ))ea eaf T f Tσ σ=  for every ( ( ))f H Tσ∈ . 

 

Proof:   Let ( ( ))f H Tσ∈ .  It suffices to show that ( ( )) ( ( ))ea eaf T f Tσ σ⊆ .  
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Suppose that ( ( ))ea f Tλ σ∉ . Then ( ) ( )f T I Hλ φ+− ∈ and ( ( ) ) 0i f T Iλ− ≤   

and  

                                                                          1 2( ) ( )( )......( ) ( ),nf T I c T I T I T I g Tλ α α α− = − − − ……….. (1) 

 

where ∈nc ααα ,...,,, 21 � and g(T) is invertible .Since the operators on the right hand side of (2.1) commute, 

therefore ( )iT I Hα φ+− ∈  for each  1,2..... .i n=  Since T  has SVEP  [13, Theorem 11], it follows from [2, 

Theorem 2.6] that each  iT α−  has finite ascent. Therefore by [1, Theorem 3.4] ( ) 0ii T α− ≤  for each 

1,2..... .i n=  It follows that ( ( ))eaf Tλ σ∉ . 

 

Theorem 2.7: Let T  ∈ ( )B H be a class ( )A k  operator and  T
∧

  its hyponormal operator transform such that 

limit condition is satisfied. Then a sufficient condition for ( )f T  to satisfy a-Weyl’s theorem for every  

( ( ))f H Tσ∈  is that T
∗

 has SVEP. 

 

Proof: If T
∗

 has SVEP, then ( ) ( )aT Tσ σ= . Hence ( ) ( )ea wT Tσ σ=  and 0 0( ) ( )a
E T E T= .  As we know  

T  satisfies Weyl’s theorem [14, Theorem 2], therefore  T  satisfies a- Weyl’s theorem. Since T  is isoloid  

and ( )ea Tσ  satisfies Theorem 2.6, therefore ( )f T  satisfies a-Weyl’s theorem. 

Theorem 2.8: Let T  be a class ( )A k   operator and  T
∧

  its hyponormal operator transform such that for each 

( )a Tλ σ∈  and a corresponding sequence { }ny of  unit vectors , T
∧

 satisfies the condition  limn→∞ ||||||||  ||||T
∧

||||2 

ny |||||||| = |||| λ ||||2  Then generalized  Weyl’s theorem holds for ( )f T  for every   ( ( ))f H Tσ∈ .          

 

Proof: Since T  is isoloid and has SVEP [13 ,Theorem11], therefore  it suffices to prove that generalized Weyl’s 

theorem holds for T . 

 

Let ( ) \ ( )BWT Tλ σ σ∈ . Then T Iλ−  is a B-Fredholm operator of index zero. Hence it follows from [5, 

Lemma4.1] that there exist two closed linear spaces M  and N of H  such that H M N= ⊕  and  

T I U Vλ− = ⊕  with   ( )U T Iλ= − � M  a  Fredholm operator of index zero and   ( )V T Iλ= − � N   a nilpotent 

operator. Let S T= �
M

 and 
MI I= �

M
.     

   

Since T  is class ( )A k  operator, then by Proposition 2.2, S  is also class ( )A k  operator and MS I Uλ− =  is a 

Fredholm operator of index zero. 

 

If ( )Sλ σ∈ , then by [14, Theorem2], we have 0( ) ( ) \ ( )w S S E Sσ σ= . As MS Iλ−  is Fredholm operator of index 

zero, we have 0 ( )E Sλ ∈ .  In particular  λ  is isolated in ( )Sσ . 0 is isolated in ( ) ( )MS I Uσ λ σ− = .  

 

Since ( )MT I U V S I Vλ λ− = ⊕ = − ⊕ , and V  is a nilpotent operator then ( ) \{0} ( ) \{0}U T Iσ σ λ= − .  

 

Therefore 0 is isolated in ( )T Iσ λ− or equivalently λ  is isolated in ( )Tσ .  As 0 ( )E Sλ ∈ , then ( )E Tλ ∈ . 

 

If ( )Sλ σ∉ , then we also deduce from ( )MT I S I Vλ λ− = − ⊕ , that λ  is isolated in ( )Tσ . Since T Iλ−  is 

not invertible and hence ( )E Tλ ∈ .  

 

Conversely, if ( )E Tλ ∈ , then λ  is isolated in ( )Tσ . From [12, Theorem7.1] we have H M N= ⊕  where M  

and N are closed linear subspace of H , ( )U T Iλ= − � M    is an invertible operator and ( )V T Iλ= − � N   is a 

quasinilpotent operator. Since T  is class ( )A k  operator, then  V   is also class ( )A k  operator. As V  is 
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quasinilpotent operator, from Proposition 2.5, we have 0V = . Since V  is invertible it follows from [5, Lemma4.1] 

T Iλ−  is a B-Fredholm operator of index zero.  

 

Remark 2.9: The inclusion   ( ) \ ( ) ( )BWT T E Tσ σ ⊂   in the above result can also be proved as follows: 

 

Proof:  Assume ( ) \ ( )BWT Tλ σ σ∈ . Then T Iλ− is B-Weyl and not invertible. We claim that ( )Tλ σ∈ ∂  . 

Assume to the contrary that  λ   is an interior point of ( )Tσ . Then there exists a neighbourhood  U  of   λ   such that    

dim ( )N T Iµ− >0      for all   Uµ ∈ .  It follows from [9, Theorem 10] that  T  does not have SVEP.  On the other 

hand, since T  is class ( )A k  operator, it follows from [13, Theorem11] that T  has SVEP,   which is a contradiction. 

Therefore ( ) \ ( )BWT Tλ σ σ∈∂  and it follows from the punctured neighbourhood theorem that λ ∈ ( )E T . 

 

Corollary 2.10: Let T  ∈ ( )B H be a class ( )A k  operator and  T
∧

 its hyponormal operator transform such 

that limit condition is satisfied. If ( )Tσ  has no isolated points then T
∗

 satisfies generalized Weyl’s 

theorem. 

 

Proof: We know ( ) ( )T Tσ σ∗ = , ( ) ( )BW BWT Tσ σ∗ =  and 0 0( ) ( )E T E T φ∗ = = . and from Theorem 2.8 

generalized Weyl’s  theorem holds for T . Therefore we have that 0( ) \ ( ) ( )BWT T E Tσ σ∗ ∗ ∗= . 

 

The following corollary is an immediate consequence of the above Theorem and [6, Proposition 3.6]: 

 

Corollary 2.11: Let T  ∈ ( )B H  be a class ( )A k  operator and  T
∧

  its hyponormal operator transform such 

that limit condition is satisfied. Let F  be a finite rank nilpotent operator commuting withT . Then generalized 

Weyl’s theorem holds for ( )f T F+ for every ( ( ))f H Tσ∈ .  
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