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ABSTRACT

Ir T isaclass A(k) operator wherek =1 and T is its hyponormal transform, then generalized Weyl’s

A
theorem is proved forT viaT .
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1. INTRODUCTION:

Let H be a complex Hilbert space and B(H) the algebra of all bounded linear operators on H . For an
operatorT € B(H), 1etT",0(T), o, (T).o, (T') denote the adjoint, spectrum, point spectrum and
approximate point spectrum of 7', respectively. We denote by @(T)and S(T) the dimension of the kernel
kerT and the codimension of the range R(T'), respectively. The operator T € B(H) is called an upper semi-
Fredholm operator if @(T)< o and T(X) is closed, while T € B(H) is called lower semi-Fredholm
if B(T)< . If T is either upper or lower semi- Fredholm then 7 is called a semi-Fredholm operator,

while T is said to be a Fredholm operator if it is both upper and lower semi-Fredholm.

We denote by @, (H )the class of all upper semi-Fredholm operators, by @ (H)the class of all lower
semi-Fredholm operators, and by @(H) the class of all Fredholm operators. If T€ B(H) is semi-
Fredholm, then the index of T is defined by ind(7T ) =a(T)- B(T).

The ascent of T is defined as the smallest non-negative integer p:= p(T') such that N(T") = NT"" . 1f

such an integer does not exist we put p(T) =co . Analogously, the descent of T is defined as the smallest
nonnegative integer ¢:=g(T) such that R(T?)=R(T"") and if such an integer does not exist we
putg(T)=oo.

An operator T € B(H) is called a Weyl operator if it is a Fredholm operator of index 0, and 7' € B(H) is called a
Browder if it is a Fredholm operator of finite ascent and descent.
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The essential spectrum O,(T) , the Weyl spectrum Oy, (T) and the Browder spectrum O, (T)of T are
defined as

o,(T) =¢{ Ae ¢ T - Al is not Fredholm},
o, (T) ={AeC T—AI isnot Weyl},
o,(T) ={Ae ¢ T—-AI is not Browder}.

We say that Weyl’s theorem holds for T if
o(T)\ 0,(T)= E,T),

where E,(T) is the set of all isolated points of 0(7T") which are eigen values of finite multiplicity. Let
Poo(T)=0(T)\0,(T) denote the set of Riesz points of 7. T is said to satisfy Browder’s theorem if

o(T)\ 0,(T)= py(T).

The essential approximate point spectrum is

o, (T)=No,(T+K):KeK(H)}

and the Browder essential point spectrum is

0, (T)=No,T+K):TK =KT,K € K(H)}.

Itis well known that o, (T)={Ael :T—A¢ ¢ (H)}, where
¢-(H)={T € ¢.(H):ind(T) < 0}.

We say that a-Weyl’s theorem holds for T€ B(H) ifo,(T)\o,,(T)=E;(T), where Ej(T) is the set of all

ea

eigen values of 7' of finite multiplicity which are isolated in o, (T).

For a bounded linear operator 7" and a nonnegative integer 7 we define 7, to be the restriction of 7 to R(T")
viewed as a map from R(T") into itself (in particular 7, =7 ). If for some integer n, the range space R(T") is
closed and T, is an upper (resp., a lower) semi- Fredholm operator, then T is called an upper (resp., a lower) semi B -
Fredholm operator. In this situation, T, is a semi - Fredholm operator and ind (7, ) = ind(7,,) for each m>n [8,
proposition 2.1].Thus the index of a semi-B-Fredholm operator 7 is the index of the semi- Fredholm operator T,
where n is any integer such that R(7")is closed and T, is a semi- Fredholm operator. Moreover, if 7 is a Fredholm

operator, then T is called a B-Fredholm operator. A semi - B- Fredholm operator is an upper or a lower semi -B-
Fredholm operator.

An operator T € B(H) is called a B-Weyl operator if it is a B-Fredholm operator of index 0. The B-Weyl spectrum
Oy (T') of T is defined as
0,y (T) ={Ae  T—Al isnot a B-Weyl operator}.

We say that generalized Weyl’s theorem holds for T if
o)\ o, (T)= ET),

where E(T)is the set of isolated eigen values of T ([7], Definition2.13).
Let SBF,(H) be the class of all upper semi -B-Fredholm operators on H , and SBF, (H) the class of all
T € SBF,(H) such that ind(T) <0. Also let

O'SBF+,(T)= {Aec T—Al isnotinSBF, (H) }.
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We say that T obeys generalized a-Weyl’s theorem if o, (T') \O'SBF,(T)= E“(T), where E“(T) is the

set of all eigenvalues of T which are isolated in o, (T") [7, Definition2.13].

The operator T € B(H) is said to have the single valued extension property at ﬂo € C ( abbreviated as

SVEP at ﬂo € (), if for every open disc U of ﬂ() the only analytic function f :U —H which satisfies
the equation (T'— Al ) f(A)=0 for all A€ U ,is the function f=0.

An operator T € B(H) is said to have SVEP if T has SVEP at every point A € C. It is known that an
operator 7€ B(H) has SVEP at every point of the resolvent p(T)=C \o(T). Also every operator T has
SVEP at every isolated point of the spectrum. An operator is called isoloid if each A€ isoo(T)is an eigen

value of T .

2. GENERALIZED WEYL’S THEOREM FOR CLASS A(k) OPERATORS:
1
An operator T has a unique polar decompositionT =U |T |, where |T |=(T°T)? and U is the suitable

partial isometry satisfying ker U =ker T =ker(|T"|) and ker (U *)=ker (T").

Furuta et al. [10] defined a new class of operators, namely class A(k) where k>0. T belongs to class
1

A(k) if (T"|T P* T)m > |T | wherek>0 . Aclass A(1) operator T is known as a class A operator

and satisfies an operator inequality |T*|>|T P

Mary and Panayappan [13, 14] studied the properties of A(k) operators using its hyponormal transform 7T .

Using those properties we prove generalized Weyl’s theorem for class A(k) operators via its hyponormal

transform 7" .
Limit Condition 2.1: [13], For each A€ 0,(T') and a corresponding

A A
sequence {yn} of unit vectors , T satisfies the condition lim ITFP y,I=1AP where T is a class

nseo l
A
A(k) operator, k>1 and T is its hyponormal operator transform.

Proposition2.2: [14, Lemma 5]: If 7T is a class A(k) operator, where k>1 and M is an invariant

subspace of T', then T | ,, is also a class A(k) operator .

Proposition 2.3: [14, Lemma 6]: Suppose T is a class A(k) operator and T its hyponormal transform

such that the limit condition is satisfied. Then the Eigen space of T reduces T

Proposition 2.4: [14, Lemma 7]: If T is a class A(k) operator satisfying the Limit condition, then 7T is
isoloid.

Proposition 2.5: [13, Corollary10]: Every quasinilpotent class A(k) operator satisfying limit condition is a zero
operator.

Our first result is as follows:

Theorem 2.6: Let T € B(H ) be a class A(k) operator and T its hyponormal operator transform such that
limit condition is satisfied. Then ©,,(f(T))= f(0,,(T)) forevery f € H(o(T)).

Proof: Let f € H(o(T)). It suffices to show that f (0, (1)) c 0, (f(T)).
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Suppose that A& o, (f(T)).Then f(T)—Al€ ¢, (H)and i(f(T)—AI)<0
and

FT)=A =T -, I)T - ,]).....T—a,1)g(T), ... )

where C, &, Q,,...,&, € C and g(T) is invertible .Since the operators on the right hand side of (2.1) commute,
therefore T —a,l € ¢, (H) for each i=1,2....n. Since T has SVEP [13, Theorem 11], it follows from [2,
Theorem 2.6] that each 7T —¢, has finite ascent. Therefore by [1, Theorem 3.4] (T —¢;)<0 for each
i=1,2....n. Itfollows that A & f (o, (T)).

Theorem 2.7: Let T € B(H ) be a class A(k) operator and T its hyponormal operator transform such that
limit condition is satisfied. Then a sufficient condition for f(T) to satisfy a-Weyl’s theorem for every

fe H(o(T)) is that T has SVEP.

Proof: If T" has SVEP, theno(T)=0,(T). Hence 0, (T)=0,(T) and E;(T)=E,(T). As we know

ea

T satisfies Weyl’s theorem [14, Theorem 2], therefore T satisfies a- Weyl’s theorem. Since T is isoloid
and 0, (T) satisfies Theorem 2.6, therefore f(T') satisfies a-Weyl’s theorem.

A

Theorem 2.8: Let T be a class A(k) operator and T its hyponormal operator transform such that for each

A A
Ae o, (T) and a corresponding sequence {yn} of unit vectors, T satisfies the condition lim 17 P

n—oo

Y, 1= A Then generalized Weyl’s theorem holds for f(T) forevery f € H(o(T)).

Proof: Since T is isoloid and has SVEP [13 ,Theoreml1], therefore it suffices to prove that generalized Weyl’s
theorem holds for T .

Let A€ 0(T)\Oy, (T). Then T—Al is a B-Fredholm operator of index zero. Hence it follows from [5,

Lemmad4.1] that there exist two closed linear spaces M and N of H such that H=M @ N and
T—-A=U®V with U=(T—AI)|,, a Fredholm operator of index zeroand V =(T —AI) |, anilpotent

operator. Let S=T |, and I,, =11, .

Since T is class A(k) operator, then by Proposition 2.2, S is also class A(k) operator and S —Al,, =U isa
Fredholm operator of index zero.

If A€ 0(S), then by [14, Theorem2], we have 0, (S) = 0(S)\ E,(S) . As S —AI,, is Fredholm operator of index
zero, we have A€ E(S) . In particular A isisolated in (S) . 0 is isolated in (S — A1, ) = o (U) .

SinceT —AI =U ®V =(S—Al,,)®V ,and V is anilpotent operator then (U ) \ {0} = o(T — A1) \{0}.
Therefore 0 is isolated in &(T — A1) or equivalently A isisolatedino(T). As A€ E,(S),thende E(T).

IfA¢ o(S), then we also deduce fromT — Al =(S—A1,,)®V , that A is isolated ino(T) . Since T — Al is
not invertible and hence A€ E(T).

Conversely, if A€ E(T), then A is isolated ino(T) . From [12, Theorem7.1] we have H =M @ N where M
and N are closed linear subspace of H , U = (T — AI) | , is an invertible operator and V = (T — AI) | y isa
quasinilpotent operator. Since T is class A(k) operator, then V s also class A(k) operator. As V is
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quasinilpotent operator, from Proposition 2.5, we haveV =0 . Since V is invertible it follows from [5, Lemma4.1]
T — Al is a B-Fredholm operator of index zero.

Remark 2.9: The inclusion 0(T)\ 0, (T') € E(T) in the above result can also be proved as follows:

Proof: Assume A€ 0(T)\ 0, (T). Then T — Al is B-Weyl and not invertible. We claim that A€ do(T) .
Assume to the contrary that A is an interior point of '(T') . Then there exists a neighbourhood U of A such that
dimN(T —pul)>0 forall e U . Itfollows from [9, Theorem 10] that 7" does not have SVEP. On the other
hand, since T is class A(k) operator, it follows from [13, Theorem11] that 7 has SVEP, which is a contradiction.
Therefore A€ d0(T)\ 0, (T) and it follows from the punctured neighbourhood theorem that A € E(T').

Corollary 2.10: Let T € B(H)be a class A(k) operator and T its hyponormal operator transform such

that limit condition is satisfied. If o(T) has no isolated points then T satisfies generalized Weyl’s
theorem.

Proof: We knowo(T")=0o(T), Opw (T = Oy (T) andE (T = E,(T)=¢. and from Theorem 2.8
generalized Weyl’s theorem holds for 7" . Therefore we have that 6(T )\ 0, (T") = E,(T") .

The following corollary is an immediate consequence of the above Theorem and [6, Proposition 3.6]:

A
Corollary 2.11: Let T € B(H) be a class A(k) operator and T its hyponormal operator transform such

that limit condition is satisfied. Let F' be a finite rank nilpotent operator commuting with 7" . Then generalized
Weyl’s theorem holds for f(T)+ F forevery f € H(o(T)) .
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