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ABSTRACT
In the present paper, we introduce and study a new subclass of analytic bi-univalent functions defined in the open unit
disc using convolution. We determine estimates of the general Taylor-Maclaurin coefficients of the functions in this
class subject to certain gap series as well as providing bounds for coefficients |a,| and |as|. For this purpose, we use
the Faber polynomial approach. Also connections to earlier well-known results are briefly indicated.

Mathematics Subject Classification: 30C45.

Keywords: Bi-univalent functions; Convolution, Faber polynomials, Taylor-Maclaurin series expansion.

1. INTRODUCTION AND DEFINITIONS

Let A denote the class of functions of the form:

f(z)=z+ ianzn (1.1)
n=2

which are analytic in the open unit disc U = {Z :zeC and|z|< 1} and satisfy the normalization conditions
f(0)= f'(0)=1.

Let S be the class of A consisting of the functions of the form (1.1) which are also univalent in U. It is well known that
every functionf € S hasan inverse f -1 which is defined by

f 1(f(2))=z(zeV) and f(f *(w))=w for |w]| < 1/4, according to Koebe one quarter theorem[14].

A function f(z)e A is said to be bi-univalent in U if both f(z) and f (z) are univalent in U. Let. denote the
class of all bi-univalent functions in U given by the Taylor-Maclaurin series expansion (1.1).

In 1967, Lewin [12] first investigated the bi-univalent function classX and showed that |a,| < 1.51. Subsequently,

Brannan and clunie [3] conjectured that |a,] <+/2 .However Netanyahu [4] showed that n?ax |a, |:%. Also, Ali et.al
eX

[15] remarked that finding the bounds for |a;,| when n > 4 is an open problem. This is because the bi-univalency
condition imposed on the functions f(z) e A makes the behaviour of their coefficients unpredictable.

Recently, several researchers such as ([1, 2, 9, 16, 20]) obtained the coefficients |a,| and |as| of bi-univalent functions
for the various subclasses of the function class X.

S.G.Hamidi and J.M.Jahangiri [10] used Faber polynomial coefficient for finding the estimates on the coefficient
bounds for the classes of bi-univalent functions. These bounds prove to be better than those estimates provided by
Srivastava et al [9] and Frasin and Aouf [2]. Motivated by their work, we have used Faber polynomial approach to
obtain the coefficient estimates of our new subclass of bi-univalent functions.
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The object of the present paper is to introduce a new subclass of the function class X and use the Faber polynomial
approach to determine estimates for the general coefficient bounds. We also obtain estimates for the first two
coefficients |a,| and |as| of these functions.

Definition 1.1: Givenareal a (0 < a < 1), 121 and functions ¢(z) = z + i(ﬁnz” and y(z2)=z+ iy/nzn , analytic
n=2 n=2

inU,suchthat ¢,>0, y, >0 ,wesaythat f(z)eZX isin Hy(d,;0,4) if
Re{(l_}“)(f *9)(@) + AT *"’/)(Z)}>a forallz e U.

z

Remark 1.1: The class Hy (¢,y;a, 1), for suitable choices of ¢5 and y lead to the following known classes of
analytic bi-univalent functions studied earlier in the literature.

i) For ¢(2) = h(2)= z+ ibnzn and w(z)= z > *h(z) we obtain the class Q, (h, ) defined and studied by
n=2 1

R.M.EI-Ashwah [16].
i) For ¢(2) = z+ ¥n°z" and w(z)=z+ 3 (n)°* 2" we obtain the bi-univalent function class Q(3,.,0) studied by
n=2 n=2

Saurabh Porwal, M.Darus[17].
- z - z

iii) If we choose ¢ (2) =(z + Z:n‘sz”j*—a+l and w(z) = (z + Z(n)5+1z"]*—5+lwe obtain the
n=2 (1_ Z) n=2 (1_ Z)

subclass Q(n,,0,)) studied by A.G.Alamoush and M.Darus[1].

iv) For ¢(2) = —— and y () =

1 ( z 2 we obtain the bi-univalent function class Q;(a) introduced by Ding et al
-z 1-z

[18].
The estimates for the coefficents |a,| and |as| for this class of functions were obtained by B.A.Frasin and M.K.Aouf [2]

employing the techniques used earlier by Srivastava et al [9] and also by Jay.M.Jahangiri and Samaneh G.Hamidi[10]
using Faber Polynomial expansions.

2. COEFFICIENT BOUNDS FOR THE CLASS H. (d,w;a, 1)

Using the Faber Polynomial expansion of functions f(z) e A of the form (1.1), the coefficients of its inverse map

g="f 1 may be expressed as [5],

= © 1 _
gw)=f*(w) = W+EZFKn_"1(a2,a3,...)w”

where
o= ) ay ™+ Cn)! ay%a + ___m ay)*a,
(-2n+D!I(n-1)! @2(-=n+21))!(n-3)! (-2n+3)!(n-4)!

(=n)!
(2(=n+2))!/(n-5)!

(=n)!
(-2n+5)!(n—6)!

ay™® [a5 +(-n+2)aZ ]+ a)[ag + (-2n +5)aza, |+ Y as 'V,
i>7

such that V; with 7 <i < n is a homogenous polynomial in the variables a,,as,...a,[6].

In particular, the first three terms of Kn’_"1 are [see, 5]

1.2
—K;{“=-a
5 2

1. 3 2
—K,>=2a; —a
32 2~ 83
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In general, for any p € N, an expansion of Knp is as, [5, pagel83]

- ] ]
p(p —1) D2 + P D2 fr—P D,
2 (p-3)& (p—=n)!n!

K =pa, +

where

D} =Dy (a,a3,...)
and by [13] or [8],
2 mi(a)" ()"

Dy (ay,8p,.8,) = X P
m=1 Myl

while a;=1, and the sum is taken over all non negative integers ..., 1, Satisfying

Wt poto gy =m,
W2t npa=n

It is clear that
Dy (a;,8,,-a,) =a; [7].

Theorem 2.1: For(0<a<1)and A>1 let f(z)e Hs (4, w;a,4))and g(z) e Hy (4, v;, 1)
2(l-a)

Ifa,=0;2<k<n-1,then |a,|<———~— n> (2.1)
A=, + Ay,
Proof: For the function f(z) e Hy (¢4, a, A) of the form (1.1) we have
1-A)(f *@)(2) + A(f *w)(z ® _
n=,
and for its inverse map, g = f*, we have
1-2)(g *@)(w) + A(g *w)(W ® _
( )(g ¢)( ) (g V/)( ):1+ 3 [(1_2')¢n +ﬂl//n]ann 1
w n=2
® 1 _ _
=1+ T [0 + Ava]x oK@ a5, a)w (23)
n=

On the other hand, since f(z)eHy (4, v;a,A)and g(z) = flz)e Hs(¢,v;,4), by definition, there exist two
positive real part functions

p(z) = 1+ icnzn
n=1
and g(w) = 1+ idnwn
n=1
where Re{p(z)} > 0 and Re{q(w)} > 0in U so that

A-A)(f =g)(@2) + Af *y)(2) _ e n
; =1+(1 oz)n%lKn(cl,c2 ..... Ch)Z (2.4)
w nt oo e '
Comparing the corresponding coefficients of (2.2) and (2.4) yields
(@~ Do + Av)ag = (L= a)Ki1 (€1, €. Coy) (26)
and similarly, from (2.3) and (2.5) we obtain
2 (@ D+ A )Kis (B by by) = (- @K1 (A o) 27)

Note that for ax = 0; 2 <k < n-1 we have b, = -a, and so
[(l_ /1)¢n + ﬂ'l/jn]an = (1_ a)cn—l )
-[A-D¢, + Ay,la, =1-a)d, . (2.8)
Taking the absolute values of the above equalities, we obtain
|an|: (l-a)|c, | _ (l-a)|d, |
I(l_ﬂ“)¢n +ﬂ"//n I |(l_i)¢n| +ﬂ'l/ln |
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By applying the Caratheodory Lemma [14], (n € N) we have,
|an| < 2(l-«a)

N “

Theorem 2.2: For (0<a<1)andA>1let f(z) e Hy (¢, v, ¢, A)and g(z) e Hy (¢, 7, &, 1) . Then one has the following

i) Ja,| < min{ 21-a) 2-a) }
? VA=A + Avs =Dy + 2wz

i) [ag < 2L=%)

A=A + Ay
2(l-a)
|||) ‘8.3 —ZaS‘Sm (210)
Proof: If we setn=2and n=3in (3.6) and (3.7) respectively, we get
[A-A)¢, + Ay,la; =(1-a)cy (2.11)
[A-2)ps + Ayslag =(1-a)c,, (2.12)
—[A-2)¢; + Ay,la; = (1-a)dy, (2.13)
[~ A)s + Avs])(2a5 ~2a3) =(L-a)d,. (2.14)

Dividing (2.11) or (2.13) by [(1- A)¢, + Ay, ] ,taking their absolute values and applying the Cartheodory lemma [14],
we have

|a |: L-a)lc| _ (l-a)ld|
-y Ay, U=y + Ay,
L l-a) (2.15)
A=), + Ay,
Adding (2.12) to (2.14) implies
[A-2)e, +ﬂ“'/’3](2a22) =(1-a)(c,+d,)
a22 _ (1-a)(c, +d,) (2.16)

A~ )3 + Ay5]

Using the caratheodory lemma [14], followed by taking the square roots yields
a, lz\/(l—am ¢, | +1d, ) S\/ 2(-a)
21— )P + Ays] 1-A)¢s + Ay

and combining this with the inequality (2.15) we obtain the desired estimate on the coefficient |a,| as asserted in (2.10).
Dividing (2.12) by [(1 - 4)¢5 + Aw4], taking the absolute value on both sides and applying the caratheodory lemma
[14] yield
| 3|: -a)lcy | < 21-a)

A-Ags + Ays (1= + Ay

Dividing (2.14) by (1— A)¢; + A5, taking the absolute values on both sides and applying the caratheodory lemma[14],
we obtain

2(l-a)
a,—2a%|l<— %)
‘3 2‘ A- )5 + Avs

Remark 2.1: By taking special values in the above theorems for the functions ¢(z)and w(z), as mentioned in

Remark 1.1, we obtain the results due to R.M.EIl-Ashwah[16], Saurath Porwal and M.Darus[17], A.G.Alamoush and
M.Darus[1], B.A.Frasin and M.K.Aouf[2] , J.M.Jahangiri and G.Hamidi[10].
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