International Journal of Mathematical Archive-6(12), 2015, 75-89 MMA Available online through www.ijma.info ISSN 2229-5046

3-EQUITABLE AND 3-CORDIAL LABELING IN DUPLICATE GRAPH OF SOME GRAPHS

P. VIJAYA KUMAR*
Department of Mathematics, Sriram Engineering College, Perumalpattu, Tiruvallur-602024, India.
P. P. ULAGANATHAN, K. THIRUSANGU
Department of Mathematics, S.I.V.E.T College, Gowrivakkam, Chennai-600073, India.

(Received On: 30-10-15; Revised \& Accepted On: 21-11-15)

Abstract

In this paper, we prove that the duplicate graph of ladder graph, cycle graph, circular twig graph and extended duplicate graph of the twig graph are 3 -equitble and 3 -cordial.

Keywords: Graph labeling, duplicate graph, extended duplicate graph of Twig graph, 3-cordial and 3-equitable.
AMS Subject Classification: 05C78.

1. INTRODUCTION

The concept of graph labeling was introduced by Rosa in 1967 [5]. A graph labeling is an assignment of integers to the vertices or edges or both subject to certain condition(s). If the domain of the mapping is the set of vertices (or edges), then the labeling is called a vertex labeling (or an edge labeling). In the intervening years various labeling of graphs have been investigated in over 1100 papers [3]. Labeled graphs serve as useful models in a broad range of applications such as circuit design, communication network addressing, X-ray crystallography, radar, astronomy, data base management and coding theory. The concept of cordial labeling was introduced by I. Cahit[1]. The concept of 3-equitable labeling was introduced by Cahit [1] and he proved that an Eulerian graph with number of edges congruent to $3(\bmod 6)$ is not 3 -equitable [1]. Hovey introduced simultaneous generalizations of harmonious and cordial labellings. He defines a graph G of vertex set $V(G)$ and edge set $E(G)$ to be k-cordial if there is a vertex labelling f from $V(G)$ to Z_{k}, the group of integers modulo k, so that when each edge uv is assigned the label ($f(u)+f(v)$) (mod k), the number of vertices (respectively, edges) labelled with i and the number of vertices (respectively, edges) labelled with j differ by at most one for all i and j in Z_{k} [4]. K. Thirusangu, P.P. Ulaganathan and B. Selvam, have proved that the duplicate graph of a path graph P_{m} is Cordial [7]. K. Thirusangu, P.P. Ulaganathan and P. Vijaya kumar have proved that the duplicate graph of Ladder graph $L_{m}, m \geq 2$, is cordial, total cordial and prime cordial[8]. P. Vijaya kumar, K. Thirusangu and P.P. Ulaganathan have proved that the duplicate graph of Ladder graph $L_{m}, m \geq 2$, is product cordial and E- cordial[10].

In this paper, we prove that the duplicate graph of the ladder graph $L_{m}, m \geq 3$, the duplicate graph of the cycle graph $\mathrm{C}_{\mathrm{m}}, \mathrm{m}>2$, the duplicate graph of the circular twig graph $\mathrm{CT}_{\mathrm{m}}, m \geq 3$ and the extended duplicate graph of the twig graph $\mathrm{T}_{\mathrm{m}}, m \geq 2$, are 3-equitable and 3-cordial.

II. PRELIMINARIES

In this section, we give the basic notions relevant to this paper.
Definition 2.1: A graph labeling is an assignment of integers to the vertices or edges or both subject to certain condition(s). If the domain of the mapping is the set of vertices (or edges), then the labeling is called a vertex labeling (or an edge labeling).

Definition 2.2: Let $G(V, E)$ be a simple graph. A duplicate graph of G is $D G=\left(V_{1}, E_{1}\right)$ where the vertex set $V_{1}=V \cup V^{\prime}$ and $V \cap V^{\prime}=\emptyset$ and $f: V \rightarrow V^{\prime}$ is bijective (for $v \in V$, we write $f(v)=v^{\prime}$) and the edge set E_{1} of DG is defined as: The edge uv is in E if and only if both $u v^{\prime}$ and $u^{\prime} v$ are edges in E_{1}.

Definition 2.3: The ladder graph L_{m} is a planar undirected graph with 2 m vertices and $3 \mathrm{~m}-2$ edges. It is obtained as the cartesian product of two path graphs, one of which has only one edge: $L_{m, 1}=P_{m} X P_{1}$, where m is the number of rungs in the ladder.

Example 2.1: The following figures show the Ladder graph L_{3} and its duplicate graph.

$v_{2} \quad v_{4} \quad v_{6}$

Clearly the duplicate graph of the ladder graph L_{m} contains 4 m vertices and $6 \mathrm{~m}-4$ edges.
Definition 2.4: The cycle graph C_{m} is a path graph of length m , in which the initial and the terminal vertices are the same. The cycle graph C_{m} has m vertices and m edges.

Example 2.2: The following figures show the cycle graph C_{4} and its duplicate graph.

Clearly the duplicate graph of the cycle graph C_{m}, have 2 m vertices and 2 m edges
Definition 2.4: A graph $G(V, E)$ obtained from a path by joining exactly two pendent edges to each internal vertices of the path is called a Twig graph, denoted by T_{m}. A Twig T_{m} with m internal vertices has $3 \mathrm{~m}+2$ vertices and $3 \mathrm{~m}+1$ edges. [6].

Definition 2.5: The extended duplicate graph of the Twig graph is obtained by adding an edge between any one vertex from V to any one vertex in V^{\prime}, except the terminal vertices of V and V '. Here we join v_{2} and v_{2}^{\prime} such that $v_{2} v_{2}^{\prime}=e_{3 m+3}$. Clearly the extended duplicate graph of Twig graph has $6 \mathrm{~m}+4$ vertices and $6 \mathrm{~m}+3$ edges. [6].

Structure of extended duplicate graph of Twig graph

Fix $v_{1} v_{2}^{\prime} \leftarrow e_{1} ; v_{1}^{\prime} v_{2} \leftarrow e_{1}^{\prime} ; v_{2} v_{2}^{\prime} \leftarrow e_{3 m+2} ;$
For $1 \leq k \leq m$
For $1 \leq i \leq 3$
$v_{3 k-1} v_{(3 k-1)+i}^{\prime} \leftarrow e_{(3 k-1)+(i-1)} ;$
$v_{3 k-1}^{\prime} v_{(3 k-1)+i} \leftarrow e_{(3 k-1)+(i-1)}^{\prime} ;$

Example 2.3: The following figures show the Twig graph T_{2} and the extended duplicate graph of T_{2}

Duplicate graph of Twig graph T_{2}

Definition 2.6: A graph $G(V, E)$ obtained from the cycle graph C_{m} by joining exactly two pendent edges to each of the vertices is called a circular twig. It is denoted by CT_{m}. and it has 3 m vertices and 3 m edges.

Structure of duplicate graph of Circular twig:

Fix $v_{1} v_{3 m-2}^{\prime} \leftarrow e_{3 m} ; v_{1}^{\prime} v_{3 m-2} \leftarrow e_{3 m}^{\prime}$;
For $1 \leq k \leq m-1$
$v_{3 k-2} v_{3 k-1} \leftarrow e_{3 k-2} ; v_{3 k-2} v_{3 k} \leftarrow e_{3 k-1} ; v_{3 k-2} v_{3 k+1} \leftarrow e_{3 k} ;$
$v_{3 k-2} v_{3 k+1} \leftarrow e_{3 k} ; v_{3 k-2} v_{3 k-1} \leftarrow e_{3 k-2} ; v_{3 k-2} v_{3 k} \leftarrow e_{3 k-1} ;$
For $\mathrm{k}=\mathrm{m}$
$v_{3 k-2} v_{3 k-1}^{\prime} \leftarrow e_{3 k-2} ; v_{3 k-2} v_{3 k}^{\prime} \leftarrow e_{3 k-1} ;$
Example 2.4: The following figures show the Circular Twig graph CT_{3} and its duplicate graph.

Circular Twig CT_{3}

Duplicate graph of Circular Twig T_{3}

Remark: The duplicate graph of CT_{m}, has 6 m vertices and 6 m edges.
Definition 2.7: Let G be a graph with vertex set $V(G)$ and edge set $E(G)$. A mapping f: V $(\mathrm{G}) \rightarrow\{0,1,2\}$ is called ternary vertex labeling of G and $f(v)$ is called the label of the vertex v of G under f. For an edge uv, the induced edge labeling $f^{*}: E(G) \rightarrow\{0,1,2\}$ is given by $f^{*}(u v)=|f(u)-f(v)|$. Let $v_{f}(0), v_{f}(1)$ and $v_{f}(2)$ be the number of vertices of G having labels 0,1 and 2 respectively under f and let $e_{f}(0), e_{f}(1)$ and $e_{f}(2)$ be the number of edges having labels 0,1 and 2 respectively under f^{*}.

Definition 2.8: A ternary vertex labeling of a graph G is called a 3-equitable labeling if $\left|v_{f}(i)-v_{f}(j)\right| \leq 1$ and $\left|e_{f}(i)-e_{f}(j)\right| \leq 1$ for all $0 \leq \mathrm{i}, \mathrm{j} \leq 2$. A graph G is 3-equitable if it admits 3-equitable labeling. [9], [11].

Definition 2.9: Let G be a graph with vertex set $V(G)$ and edge set $E(G)$. A vertex labeling $f: V(G) \rightarrow Z_{k}$ induces an edge labeling $f^{*}: E(G) \rightarrow Z_{k}$ defined by $f^{*}(u v)=[f(u)+f(v)](\bmod k)$, for all edges $u v \in E(G)$. For $i \in Z_{k}$, let $\mathrm{n}_{\mathrm{i}}(\mathrm{f})=|\{\mathrm{v} \in \mathrm{V}(\mathrm{G}) \mid \mathrm{f}(\mathrm{v})=\mathrm{i}\}|$ and $\mathrm{m}_{\mathrm{i}}(\mathrm{f})=\left|\left\{\mathrm{e} \in \mathrm{E}(\mathrm{G}) \mid f^{*}(e)=\mathrm{i}\right\}\right|$. A labeling f of a graph G is called k-cordial if $\left|\mathrm{n}_{\mathrm{i}}(\mathrm{f})-\mathrm{n}_{\mathrm{j}}(\mathrm{f})\right| \leq 1$ and $\left|\mathrm{m}_{\mathrm{i}}(\mathrm{f})-\mathrm{m}_{\mathrm{j}}(\mathrm{f})\right| \leq 1$ for all $i, j \in Z_{k}$. A graph G is called k-cordial if it admits a k-cordial labeling. [1], [4].

Definition 2.10: Let G be a graph with vertex set $V(G)$ and edge set $E(G)$. A vertex labeling $f: V(G) \rightarrow\{0,1,2\}$ induces an edge labeling $f^{*}: E(G) \rightarrow\{0,1,2\}$ defined by $f^{*}(u v)=[f(u)+f(v)](\bmod 3)$, for all edges $u v \in E(G)$. For $i \in Z_{3}$, let $\mathrm{n}_{\mathrm{i}}(\mathrm{f})=|\{\mathrm{v} \in \mathrm{V}(\mathrm{G}) \mid \mathrm{f}(\mathrm{v})=\mathrm{i}\}|$ and $\mathrm{m}_{\mathrm{i}}(\mathrm{f})=\left|\left\{\mathrm{e} \in \mathrm{E}(\mathrm{G}) \mid f^{*}(e)=\mathrm{i}\right\}\right|$. A labeling f of a graph G is called 3-cordial if $\left|\mathrm{n}_{\mathrm{i}}(\mathrm{f})-\mathrm{n}_{\mathrm{j}}(\mathrm{f})\right| \leq 1$ and $\left|\mathrm{m}_{\mathrm{i}}(\mathrm{f})-\mathrm{m}_{\mathrm{j}}(\mathrm{f})\right| \leq 1$ for all $i, j \in Z_{3}$. A graph G is called 3-cordial if it admits a 3-cordial labeling.

III. MAIN RESULTS

3 - Equitable labeling in duplicate graph of ladder graph \mathbf{L}_{m}.

Algorithm:

// Assignment of labels to vertices//
Case-(i): When $m \equiv 0 \bmod 3$

$$
\begin{aligned}
& \text { For } 1 \leq \mathrm{k} \leq \frac{2 m}{3} \\
& v_{3 k-2} \leftarrow 1 ; v_{3 k-1} \leftarrow 2 ; v_{3 k} \leftarrow 0 ; v_{3 k-2}^{\prime} \leftarrow 2 ; v_{3 k-1}^{\prime} \leftarrow 1 ; v_{3 k}^{\prime} \leftarrow 0 \text { : }
\end{aligned}
$$

Case-(ii): When $\mathrm{m} \equiv 1 \bmod 3$

$$
\begin{aligned}
& \text { Fix } v_{1}=2, v_{2 m}=0, v_{1}^{\prime}=2, v_{2 m}^{\prime}=1 \\
& \text { For } 1 \leq \mathrm{k} \leq \frac{2(m-1)}{3} \\
& v_{3 k-1} \leftarrow 2 ; v_{3 k} \leftarrow 0 ; v_{3 k+1} \leftarrow 1 ; v_{3 k-1}^{\prime} \leftarrow 1 ; v_{3 k}^{\prime} \leftarrow 0 ; v_{3 k+1}^{\prime} \leftarrow 2 \text { : }
\end{aligned}
$$

Case-(iii): When $\mathrm{m} \equiv 2 \bmod 3$ and $m \geq 5$

$$
\begin{aligned}
& \text { Fix } v_{1}=2, v_{1}^{\prime}=0 \\
& \text { For } 1 \leq \mathrm{k} \leq \frac{2 m-1}{3} \\
& v_{3 k-1} \leftarrow 2 ; v_{3 k} \leftarrow 0 ; v_{3 k+1} \leftarrow 1 ; v_{3 k-1}^{\prime} \leftarrow 1 ; v_{3 k}^{\prime} \leftarrow 0 ; v_{3 k+1}^{\prime} \leftarrow 2 \text { : }
\end{aligned}
$$

Theorem 3.1: The duplicate graph of the ladder graph $L_{m}, m \geq 2$, admits 3 - equitable labeling.

Proof:

Case-(i): when $m \equiv 0 \bmod 3$.

The vertices are labeled using the algorithm in such a way that $\frac{4 m}{3}$ vertices receive label $0, \frac{4 m}{3}$ vertices receive label 1 and $\frac{4 m}{3}$ vertices receive label 2 , so that the 4 m vertices are labeled in such a way that the number of vertices labeled with $0,1,2$ mutually differ at most by one.

Using the induced function f^{*} defined by $f^{*}\left(v_{i} v_{j}\right)=\left|f\left(v_{i}\right)-f\left(v_{j}\right)\right|$, the $2 \mathrm{~m}-2$ edges namely $e_{1}, e_{3}, e_{8}, e_{10}, e_{12}$, $e_{17} \ldots e_{3 m-15}, e_{3 m-10}, e_{3 m-8}, e_{3 m-6}, e_{1}^{\prime}, e_{3}^{\prime}, e_{8}^{\prime}, e_{10}^{\prime}, e_{12}^{\prime}, e_{17}^{\prime} \ldots e_{3 m-15}^{\prime}, e_{3 m-10}^{\prime}, e_{3 m-8}^{\prime}$, and $e_{3 m-6}^{\prime}$ receive label 0 , the $2 \mathrm{~m}-1$ edges namely $e_{2}, e_{5}, e_{6}, e_{9}, e_{11}, e_{14}, e_{15}, e_{18} \ldots e_{3 m-13}, e_{3 m-12}, e_{3 m-9}, e_{3 m-7}, e_{3 m-4}, e_{3 m-3}, e_{4}^{\prime}, e_{7}^{\prime}, e_{13}^{\prime}$, $e_{16}^{\prime}, \ldots, e_{3 m-5}^{\prime}, e_{3 m-2}^{\prime}$ receive label 1 and the $2 m-1$ edges namely $e_{4}, e_{7}, e_{13}, e_{16}, \ldots e_{3 m-5}, e_{3 m-2}, e_{2}^{\prime}, e_{5}^{\prime}, e_{6}^{\prime}, e_{9}^{\prime}, e_{11}^{\prime}$, $e_{14}^{\prime}, e_{15}^{\prime}, e_{18}^{\prime} \ldots e_{3 m-13}^{\prime}, e_{3 m-12}^{\prime}, e_{3 m-9}^{\prime}, e_{3 m-7}^{\prime}, e_{3 m-4}^{\prime}, e_{3 m-3}^{\prime}$ receive label 2. Hence the $6 \mathrm{~m}-4$ edges are labeled such that the number of edges labeled with $0,1,2$ mutually differ at most by one.

Case-(ii): when $m \equiv 1 \bmod 3$.

The vertices are labeled using the algorithm in such a way that $\frac{4 m-1}{3}$ vertices receive label $0, \frac{4 m-1}{3}$ vertices receive label 1 and $\frac{4 m+2}{3}$ vertices receive label 2 , so that the 4 m vertices are labeled in such a way that the number of vertices labeled with $0,1,2$ mutually differ at most by one.

Using the induced function as in case (i), the $2 \mathrm{~m}-1$ edges namely $e_{3}, e_{8}, e_{10}, e_{12}, e_{17}, e_{19} \ldots e_{3 m-9}, e_{3 m-4}, e_{3 m-2}, e_{1}^{\prime}$, $e_{3}^{\prime}, e_{8}^{\prime}, e_{10}^{\prime}, e_{12}^{\prime}, e_{17}^{\prime} \ldots e_{3 m-9}^{\prime}, e_{3 m-4}^{\prime}, e_{3 m-2}^{\prime}$ receive label 0 , the $2 m-2$ edges namely $e_{1}, e_{5}, e_{6}, e_{9}, e_{11}, e_{15}, e_{18}, e_{20}$, $e_{23} \ldots e_{3 m-12}, e_{3 m-7}, e_{3 m-6}, e_{3 m-3}, e_{4}^{\prime}, e_{7}^{\prime}, e_{13}^{\prime}, e_{16}^{\prime} \ldots e_{3 m-8}^{\prime}, e_{3 m-5}^{\prime}$ receive label 1 and the $2 \mathrm{~m}-1$ edges namely e_{2}, $e_{4}, e_{7}, e_{13}, e_{16} \ldots e_{3 m-8}, e_{3 m-5}, e_{2}^{\prime}, e_{5}^{\prime}, e_{6}^{\prime}, e_{9}^{\prime}, e_{11}^{\prime}, e_{14}^{\prime}, e_{15}^{\prime}, e_{18}^{\prime} \ldots e_{3 m-10}^{\prime}, e_{3 m-7}^{\prime}, e_{3 m-6}^{\prime}, e_{3 m-3}^{\prime}$ receive label 2. Hence the $6 \mathrm{~m}-4$ edges are labeled such that the number of edges labeled with $0,1,2$ mutually differ at most by one.

Case-(iii): when $m \equiv 2 \bmod 3$ and $m>2$.

The vertices are labeled using the algorithm in such a way that $\frac{4 m+1}{3}$ vertices receive label $0, \frac{4 m-2}{3}$ vertices receive label 1 and $\frac{4 m+1}{3}$ vertices receive label 2 , so that the 4 m vertices are labeled in such a way that the number of vertices labeled with $0,1,2$ mutually differ at most by one.

Using the induced function as in case (i), the $2 \mathrm{~m}-1$ edges namely $e_{3}, e_{8}, e_{10}, e_{12}, e_{17}, e_{19} \ldots e_{3 m-12}, e_{3 m-7}, e_{3 m-5}$, $e_{3 m-3}, e_{2}^{\prime}, e_{3}^{\prime}, e_{8}^{\prime}, e_{10}^{\prime}, e_{12}^{\prime} \ldots e_{3 m-12}^{\prime}, e_{3 m-7}^{\prime}, e_{3 m-5}^{\prime}, e_{3 m-3}^{\prime}$ receive label 0 , the $2 m-2$ edges namely $e_{1}, e_{5}, e_{6}, e_{9}$, $e_{11}, e_{14}, e_{15}, e_{18}, e_{20} \ldots e_{3 m-10}, e_{3 m-9}, e_{3 m-6}, e_{3 m-4}, e_{4}^{\prime}, e_{7}^{\prime}, e_{13}^{\prime}, e_{16}^{\prime} \ldots e_{3 m-11}^{\prime}, e_{3 m-8}^{\prime}, e_{3 m-2}^{\prime}$ receive label 1 and the $2 m-1$ edges namely $e_{2}, e_{4}, e_{7}, e_{13}, e_{16} \ldots e_{3 m-11}, e_{3 m-8}, e_{3 m-2}, e_{1}^{\prime}, e_{5}^{\prime}, e_{6}^{\prime}, e_{9}^{\prime}, e_{11}^{\prime}, e_{14}^{\prime}, e_{15}^{\prime}, e_{18}^{\prime}, e_{20}^{\prime} \ldots e_{3 m-10}^{\prime}$, $e_{3 m-9}^{\prime}, e_{3 m-6}^{\prime}, e_{3 m-4}^{\prime}$ receive label 2. Hence the $6 m-4$ edges are labeled such that the number of edges labeled with 0 , 1,2 mutually differ at most by one.

Case-(iv): when $\mathbf{m}=2$.

The vertices $v_{1}, v_{3}, v_{2}^{\prime}$ are labeled with 0 , the vertices, v_{2}, v_{4}^{\prime} are labeled with 1 and the vertices , v_{4}, v_{1}^{\prime}, , v_{3}^{\prime} are labeled with 2 . Using the induced function as in case (i), the edges, $e_{1}, e_{3}, e_{4}^{\prime}$ receive label 0 , the edges e_{4}, e_{1}^{\prime} receive label 1 and the edges $e_{2}, e_{2}^{\prime}, e_{3}^{\prime}$ receive label 2.

Hence the $6 m-4$ edges are labeled such that the number of edges labeled with $0,1,2$ mutually differ at most by one.
Hence the duplicate graph of the ladder graph $\mathrm{L}_{\mathrm{m}}, \mathrm{m} \geq 2$ admits 3 - equitable labeling.

Illustration:

3 - Equitable labeling in duplicate graph of cycle graph \mathbf{C}_{m}

// Assignment of labels to vertices//
Case-(i): $\mathrm{m} \equiv 0 \bmod 3$

$$
\begin{aligned}
& \text { For } 1 \leq \mathrm{k} \leq \frac{m}{3} \text {; } \\
& v_{3 k-2} \leftarrow 0 ; v_{3 k-1} \leftarrow 1 ; v_{3 k} \leftarrow 2: v_{3 k-2}^{\prime} \leftarrow 1 ; v_{3 k-1}^{\prime} \leftarrow 0 ; v_{3 k}^{\prime} \leftarrow 2 \text { : }
\end{aligned}
$$

Case-(ii): $\mathrm{m} \equiv 1 \bmod 3$

$$
\begin{aligned}
& \text { For } 1 \leq \mathrm{k} \leq \frac{m-1}{3} \text {; } \\
& v_{3 k-2} \leftarrow 0 ; v_{3 k-1} \leftarrow 1 ; v_{3 k} \leftarrow 2: v_{3 k-2}^{\prime} \leftarrow 1 ; v_{3 k-1}^{\prime} \leftarrow 0 ; v_{3 k}^{\prime} \leftarrow 2 \text { : } \\
& \text { For } \mathrm{k}=\frac{m+2}{3} \text {; } \\
& v_{3 k-2} \leftarrow 0 ; v_{3 k-2}^{\prime} \leftarrow 2 \text { : }
\end{aligned}
$$

Case-(iii): $m \equiv 2 \bmod 3$

```
For \(1 \leq \mathrm{k}<\frac{m+1}{3}\);
\(v_{3 k-2} \leftarrow 0 ; v_{3 k-1} \leftarrow 1 ; v_{3 k-2}^{\prime} \leftarrow 1: v_{3 k} \leftarrow 2 ; v_{3 k-1}^{\prime} \leftarrow 0 ; v_{3 k}^{\prime} \leftarrow 2:\)
```

For $\mathrm{k}=\frac{m+1}{3}$;
$v_{3 k-2} \leftarrow 0 ; v_{3 k-1} \leftarrow 0 ; v_{3 k-1}^{\prime} \leftarrow 1: v_{3 k-2}^{\prime} \leftarrow 2 ;$
Theorem 3.2: The duplicate graph of the cycle $C_{m}, m \geq 3$ admits 3 - equitable labeling.

Proof:

Case-(i): when $m \equiv 0 \bmod 3$.

Using the algorithm, $\frac{2 m}{3}$ vertices receive label $0, \frac{2 m}{3}$ vertices receive label $1, \frac{2 m}{3}$ vertices receive label 2 , so that the number of vertices labeled with $0,1,2$ mutually differ at most by one.

Using the induced function f^{*} defined by $f^{*}\left(v_{i} v_{j}\right)=\left|f\left(v_{i}\right)-f\left(v_{j}\right)\right|$, the $\frac{2 m}{3}$ edges namely $e_{1}, e_{4}, e_{7}, e_{10} \ldots e_{m-2}$, $e_{1}^{\prime}, e_{4}^{\prime}, e_{7}^{\prime}, e_{10}^{\prime} \ldots e_{m-2}^{\prime}$ receive label 0 , the $\frac{2 m}{3}$ edges namely $e_{2}, e_{3}, e_{5}, e_{6}, e_{8}, e_{9} \ldots e_{m-4}, e_{m-3}, e_{m-1}$ receive label 1 and the $\frac{2 m}{3}$ edges namely $e_{2}^{\prime}, e_{3}^{\prime}, e_{5}^{\prime}, e_{6}^{\prime}, e_{8}^{\prime}, e_{9}^{\prime} \ldots e_{m-4}^{\prime}, e_{m-3}^{\prime}, e_{m-1}^{\prime}$ receive label 2 . Hence the 2 m edges are labeled so that the number of edges receive label $0,1,2$ mutually differ at most by one.

Case-(ii): when $m \equiv 1 \bmod 3$.
Using the algorithm, $\frac{2 m+1}{3}$ vertices receive label $0, \frac{2 m-1}{3}$ vertices receive label $1, \frac{2 m+1}{3}$ vertices receive label 2 , so that the number of vertices labeled with $0,1,2$ mutually differ at most by one.

Using the induced function as in case (i), the,$\frac{2 m+1}{3}$ edges namely $e_{1}, e_{4}, e_{7}, e_{10} \ldots e_{m-3}, e_{m-1} e_{1}^{\prime}, e_{4}^{\prime}, e_{7}^{\prime}, e_{10}^{\prime} \ldots e_{m-3}^{\prime}$ receive label 0 , the $\frac{2 m-2}{3}$ edges namely $e_{2}, e_{3}, e_{5}, e_{6}, \ldots e_{m-5}, e_{m-4}, e_{m-2}, e_{m}^{\prime}$ receive label 1 and the $\frac{2 m+1}{3}$ edges namely $e_{m}, e_{2}^{\prime}, e_{3}^{\prime}, e_{5}^{\prime}, e_{6}^{\prime} \ldots e_{m-5}^{\prime}, e_{m-4}^{\prime}, e_{m-2}^{\prime}, e_{m-1}^{\prime}$ receive label 2 . Hence the 2 m edges are labeled so that the number of edges receive label $0,1,2$ mutually differ at most by one.

Case-(iii): when $m \equiv 1 \bmod 3$.

Using the algorithm, $\frac{2 m+2}{3}$ vertices receive label $0, \frac{2 m-1}{3}$ vertices receive label $1, \frac{2 m-1}{3}$ vertices receive label 2 , so that the number of vertices labeled with $0,1,2$ mutually differ at most by one.

Using the induced function as in case (i), the , $\frac{2 m-1}{3}$ edges namely $e_{1}, e_{4}, e_{7} \ldots e_{m-4}, e_{m-2}, e_{1}^{\prime}, e_{4}^{\prime}, e_{7}^{\prime} \ldots e_{m-4}^{\prime}$ receive label 0 , the $\frac{2 m+2}{3}$ edges namely $e_{2}, e_{3}, e_{5}, e_{6} \ldots e_{m-6}, e_{m-5}, e_{m-3}, e_{m-1}, e_{m}, e_{m}^{\prime}$ receive label 1 and the $\frac{2 m-1}{3}$ edges namely $e_{2}^{\prime}, e_{3}^{\prime}, e_{5}^{\prime}, e_{6}^{\prime}, e_{8}^{\prime}, e_{9}^{\prime} \ldots e_{m-3}^{\prime}, e_{m-2}^{\prime}, e_{m-1}^{\prime}$ receive label 2 . Hence the 2 m edges are labeled so that the number of edges receive label $0,1,2$ mutually differ at most by one.

Illustration:

Duplicate graph of cycle C 6

3-equitable labeling in the extended duplicate graph of twig graph \mathbf{T}_{m}

Algorithm:

// Assignment of labels to vertices//
For $1 \leq k \leq m+1$,
$v_{3 k-2} \leftarrow 2 ; \quad v_{3 k-1} \leftarrow 0 ; v_{3 k-2}^{\prime} \leftarrow 1 ; v_{3 k-1}^{\prime} \leftarrow 2 ;$
For $1 \leq k \leq m$,
$v_{3 k} \leftarrow 1 ; v_{3 k}^{\prime} \leftarrow 0$;

Theorem 3.3: The extended duplicate graph of the twig graph (T_{m}), $m \geq 2$, is 3 - equitable.
Proof: Using the algorithm the $2 m+1$ vertices are labeled with $0,2 m+1$ vertices are labeled with 1 and the $2 m+2$ vertices are labeled with 2 . Thus, the $6 \mathrm{~m}+4$ vertices are labeled with $0,1,2$ so that the number of vertices labeled with $0,1,2$ mutually differ at most by one.

Using the induced function f^{*} defined by $f^{*}\left(v_{i} v_{j}\right)=\left|f\left(v_{i}\right)-f\left(v_{j}\right)\right|$, the $2 \mathrm{~m}+1$ edges namely $e_{1}, e_{2}, e_{5}, e_{8} \ldots$ $e_{3 m-1}, e_{3}^{\prime}, e_{6}^{\prime}, e_{9}^{\prime} \ldots e_{3 m}^{\prime}$ receive label 0 , the $2 m+1$ edges namely $e_{3}, e_{6}, e_{9} \ldots e_{3 m}, e_{1}^{\prime}, e_{2}^{\prime}, e_{5}^{\prime}, e_{8}^{\prime} \ldots e_{3 m-1}^{\prime}$ receive label 1 and the $2 \mathrm{~m}+1$ edges namely $e_{4}, e_{7}, e_{10} \ldots e_{3 m+1}, e_{3 m+2}, e_{4}^{\prime}, e_{7}^{\prime}, e_{10}^{\prime} \ldots e_{3 m+1}^{\prime}$ receive label 2 . Thus, the $6 \mathrm{~m}+$ 3 edges are labeled so that the number of edges receive label $0,1,2$ mutually differ at most by one.

Hence the extended duplicate graph of the twig graph $\left(T_{m}\right), m \geq 2$, is 3 - equitable.

Illustration:

Extended duplicate graph of Twig graph (T_{2})

Extended duplicate graph of Twig graph (T_{3})

3 - equitable labeling in the duplicate graph of circular twig graph $\mathbf{C T}_{m}$

Algorithm:

// Assignment of labels to vertices //
For $1 \leq \mathrm{k} \leq \mathrm{m}$,
$v_{3 k-2} \leftarrow 0 ; v_{3 k-1} \leftarrow 1 ; v_{3, k} \leftarrow 2 ;$
$v_{3 k-2}^{\prime} \leftarrow 0 ; v_{3 k-1}^{\prime} \leftarrow 1 ; v_{3 k}^{\prime} \leftarrow 2 ;$
Theorem 3.4: The duplicate graph of the circular twig ($\mathrm{DGCT}_{\mathrm{m}}$), $\mathrm{m} \geq 2$, is 3 - equitable.
Proof: Using the algorithm, the 2 m vertices are labeled with 0 , the 2 m vertices are labeled with 1 , the 2 m vertices are labeled with 2 . Hence the 6 m vertices are labeled with $0,1,2$ so that the number of vertices labeled with $0,1,2$ mutually differ at most by one.

Using the induced function f^{*} defined by $f^{*}\left(v_{i} v_{j}\right)=\left|f\left(v_{i}\right)-f\left(v_{j}\right)\right|$, the 2 m edges namely $e_{3}, e_{6}, e_{9}, \ldots$ $e_{3 m-3}, e_{3 m}, e_{3}^{\prime}, e_{6}^{\prime}, e_{9}^{\prime} \ldots e_{3 m-3}^{\prime}, e_{3 m-2}^{\prime}$ receive label 0 , the 2 m edges namely $e_{1}, e_{4}, e_{7}, e_{10} \ldots e_{3 m-2}, e_{1}^{\prime}, e_{4}^{\prime}, e_{7}^{\prime} \ldots$ $e_{3 m-2}^{\prime}$ receive label 1 and the 2 m edges namely $e_{2}, e_{5}, e_{8} \ldots e_{3 k-1}, e_{2}^{\prime}, e_{5}^{\prime}, e_{8}^{\prime} \ldots e_{3 k-1}^{\prime}$ receive label 2 . Thus the 6 m edges are labeled with $0,1,2$ such that the number of edges with labels $0,1,2$ mutually differ at most by one.

Hence, the duplicate graph of the circular twig $\left(\mathrm{DGCT}_{\mathrm{m}}\right), \mathrm{m} \geq 2$, is 3 - equitable.

Illustration:

Extended duplicate graph of Circular Twig graph $\left(\mathrm{CT}_{3}\right)$

Extended duplicate graph of Circular Twig graph (CT_{4})

3 - cordial labeling in duplicate graph of ladder graph \mathbf{L}_{m}.
Algorithm:
// Assignment of labels to vertices//
Case-(i): when $m \equiv 0 \bmod 3$ and $m>3$.
$v_{2 m-1} \leftarrow 0 ; v_{2 m} \leftarrow 2 ; v_{1}^{\prime} \leftarrow 2 ; v_{2}^{\prime} \leftarrow 0:$
For $k=\frac{m}{3}$
$v_{6 k-1}^{\prime} \leftarrow 0 ; v_{6 k}^{\prime} \leftarrow 0 ;$
For $1 \leq \mathrm{k} \leq \frac{m}{3}$
$v_{6 k-5} \leftarrow 2 ; v_{6 k-4} \leftarrow 2 ; v_{6 k-3} \leftarrow 1 ; v_{6 k-2} \leftarrow 1 ; v_{6 k-3}^{\prime} \leftarrow 1 ; v_{6 k-2}^{\prime} \leftarrow 1 ;$
For $1 \leq \mathrm{k} \leq \frac{m}{3}-1$
$v_{6 k-1} \leftarrow 0 ; v_{6 k} \leftarrow 0 ; v_{6 k-1}^{\prime} \leftarrow 2 ; v_{6 k}^{\prime} \leftarrow 2 ;$
Case-(ii): when $\mathbf{m} \equiv 1 \bmod 3$.
Fix $v_{1} \leftarrow 0 ; v_{2} \leftarrow 1 ; v_{1}^{\prime} \leftarrow 2 ; v_{2}^{\prime} \leftarrow 0$;
For $1 \leq \mathrm{k} \leq \frac{m-1}{3}$
$v_{6 k-3} \leftarrow 1 ; v_{6 k-2} \leftarrow 1 ; v_{6 k-1} \leftarrow 0 ; v_{6 k} \leftarrow 0 ; v_{6 k+1} \leftarrow 2 ; v_{6 k+2} \leftarrow 2$
$v_{6 k-3}^{\prime} \leftarrow 1 ; v_{6 k-2}^{\prime} \leftarrow 1 ; v_{6 k-1}^{\prime} \leftarrow 2 ; v_{6 k}^{\prime} \leftarrow 2 ; v_{6 k+1}^{\prime} \leftarrow 0 ; v_{6 k+2}^{\prime} \leftarrow 0 ;$

Case-(iii): when $m \equiv 2 \bmod 3$.
Fix $v_{2 m}^{\prime} \leftarrow 2 ; v_{2 m-1}^{\prime} \leftarrow 1$;
For $1 \leq \mathrm{k} \leq \frac{m+1}{3}$
$v_{6 k-5} \leftarrow 2 ; v_{6 k-4} \leftarrow 2 ; v_{6 k-3} \leftarrow 1 ; v_{6 k-2} \leftarrow 1 ; v_{6 k-5}^{\prime} \leftarrow 0 ; v_{6 k-4}^{\prime} \leftarrow 0 ;$
For $1 \leq \mathrm{k} \leq \frac{m-2}{3}$
$v_{6 k-3}^{\prime} \leftarrow 1 ; v_{6 k-2}^{\prime 3} \leftarrow 1 ; v_{6 k-1}^{\prime} \leftarrow 2 ; v_{6 k}^{\prime} \leftarrow 2 ; v_{6 k-1} \leftarrow 0 ; v_{6 k} \leftarrow 0 ;$
Theorem 3.5: The duplicate graph of the ladder graph $L_{m}, m \geq 3$, is 3 - cordial.

Proof:

Case-(i): when $m \equiv 0 \bmod 3$ and $m>3$.

Using the algorithm the $\frac{4 m}{3}$ vertices receive label 0 , the $\frac{4 m}{3}$ vertices receive label 1 and the $\frac{4 m}{3}$ vertices receive label 2 . Thus the 4 m vertices are labeled such that the number of vertices with label $0,1,2$ mutually differs at most by one.

Using the induced function f^{*}, defined by $f^{*}(u v)=[f(u)+f(v)](\bmod 3)$, the $2 \mathrm{~m}-1$ edges namely $e_{2}, e_{3}, e_{5}, e_{6}$, $e_{8} \ldots e_{3 m-7}, e_{3 m-6}, e_{3 m-2}, e_{2}^{\prime}, e_{3 m-3}^{\prime}$ receive label 0 , the $2 m-1$ edges namely $e_{3 m-4}, e_{3 m-3}, e_{1}^{\prime}, e_{3}^{\prime}, e_{5}^{\prime}, e_{6}^{\prime}, e_{8}^{\prime} \ldots$ $e_{3 m-8}^{\prime}, e_{3 m-6}^{\prime}$ receive label 1and the $2 m-2$ edges namely $e_{1}, e_{4}, e_{7} \ldots e_{3 m-5}, e_{4}^{\prime}, e_{7}^{\prime}, e_{10}^{\prime} \ldots e_{3 m-5}^{\prime}, e_{3 m-2}^{2}$ receive label 2 . Thus the $6 \mathrm{~m}-4$ edges are labeled with $0,1,2$ so that the number of edges labeled with $0,1,2$ mutually differ at most by one.

Case-(ii): when $\mathbf{m} \equiv 1 \bmod 3$.

Using the algorithm the $\frac{4 m+2}{3}$ vertices receive label 0 , the $\frac{4 m-1}{3}$ vertices receive label 1 and the $\frac{4 m-1}{3}$ vertices receive label 2 . Thus the 4 m vertices are labeled such that the number of vertices with label $0,1,2$ mutually differs at most by one.

Using the induced function as in case (i), the $2 \mathrm{~m}-1$ edges namely $e_{1}, e_{5}, e_{6}, e_{8}, e_{9} \ldots e_{3 m-4}, e_{3 m-3}, e_{1}^{\prime}, e_{2}^{\prime}$ receive label 0 , the $2 \mathrm{~m}-2$ edges namely $e_{2}, e_{3}^{\prime}, e_{5}^{\prime}, e_{6}^{\prime}, e_{8}^{\prime} \ldots e_{3 m-4}^{\prime}, e_{3 m-3}^{\prime}$ receive label 1 and the $2 \mathrm{~m}-1$ edges namely e_{3}, $e_{4}, e_{7}, e_{10}, e_{13} \ldots e_{3 m-5}, e_{3 m-2}, e_{4}^{\prime}, e_{7}^{\prime}, e_{10}^{\prime} \ldots e_{3 m-2}^{\prime}$ receive label 2 . Thus the $6 \mathrm{~m}-4$ edges are labeled with $0,1,2$ so that the number of edges labeled with $0,1,2$ mutually differ at most by one.

Case-(iii): when $m \equiv 2 \bmod 3$.

Using the algorithm the $\frac{4 m-2}{3}$ vertices receive label 0 , the $\frac{4 m+1}{3}$ vertices receive label 1 and the $\frac{4 m+1}{3}$ vertices receive label 2 . Thus the 4 m vertices are labeled such that the number of vertices with label $0,1,2$ mutually differs at most by one.

Using the induced function as in case (i), the $2 m-2$ edges namely $e_{2}, e_{3}, e_{5}, e_{6} \ldots e_{3 m-6}, e_{3 m-4}, e_{3 m-2}$ receive label 0 , the $2 \mathrm{~m}-1$ edges namely $e_{3 m-3}, e_{2}^{\prime}, e_{3}^{\prime}, e_{5}^{\prime}, e_{6}^{\prime}, e_{8}^{\prime}, e_{9}^{\prime} \ldots e_{3 m-4}^{\prime}, e_{3 m-3}^{\prime}$ receive label 1 and the $2 \mathrm{~m}-1$ edges namely $e_{1}, e_{4}, e_{7}, e_{10} \ldots e_{3 m-8}, e_{3 m-5}, e_{1}^{\prime}, e_{4}^{\prime}, e_{7}^{\prime} \ldots e_{3 m-8}^{\prime}, e_{3 m-5}^{\prime}, e_{3 m-2}^{\prime}$ receive label 2. Thus the $6 \mathrm{~m}-4$ edges are labeled with $0,1,2$ so that the number of edges labeled with $0,1,2$ mutually differ at most by one.

Case (iv): when $\mathrm{m}=3$.

The vertices $v_{5}, v_{6}, v_{2}^{\prime}, v_{6}^{\prime}$ are labeled with 0 , the vertices $v_{3}, v_{4}, v_{3}^{\prime}, v_{4}^{\prime}$ are labeled with 1 and the vertices $v_{1}, v_{2}, v_{1}^{\prime}$, v_{5}^{\prime} are labeled with 2 . Using the induced function as in case (i), the edges $e_{2}, e_{3}, e_{5}, e_{7}, e_{2}^{\prime}$ receive label 0 , the edges $e_{6}, e_{1}^{\prime}, e_{3}^{\prime}, e_{5}^{\prime}, e_{6}^{\prime}$ receive label 1 and the edges $e_{1}, e_{4}, e_{4}^{\prime}, e_{7}^{\prime}$ receive label 2 . Thus the $6 \mathrm{~m}-4$ edges are labeled with 0 , 1 , 2 so that the number of edges labeled with $0,1,2$ mutually differ at most by one.

Hence, the duplicate graph of the ladder graph $L_{m}, m \geq 3$, is 3 - cordial.

Illustration:

3 - Cordial labeling in duplicate graph of cycle graph $C_{m}, m \geq 3$.

Algorithm:

// Assignment of labels to vertices //

Case (i): when $m \equiv 0 \bmod 3$.
For $1 \leq \mathrm{k} \leq \frac{m}{3}$
$v_{3 k-2} \leftarrow 0 ; v_{3 k-1} \leftarrow 1 ; v_{3 k} \leftarrow 2 ; v_{3 k-2}^{\prime} \leftarrow 1 ; v_{3 k-1}^{\prime} \leftarrow 2 ; v_{3 k}^{\prime} \leftarrow 0 ;$
Case-(ii): when $\mathbf{m} \equiv 1 \bmod 3$.
For $1 \leq \mathrm{k} \leq \frac{m-1}{3}$
$v_{3 k-2} \leftarrow 0 ; v_{3 k-1} \leftarrow 1 ; v_{3 k} \leftarrow 2 ; v_{3 k-2}^{\prime} \leftarrow 1 ; v_{3 k-1}^{\prime} \leftarrow 2 ; v_{3 k}^{\prime} \leftarrow 0 ;$
For $\mathrm{k}=\frac{m+2}{3}$
$v_{3 k-2} \leftarrow 2 ; v_{3 k-2} \leftarrow 1 ;$
Case-(iii): when $m \equiv 2 \bmod 3$.
For $1 \leq \mathrm{k}<\frac{m-2}{3}$
$v_{3 k-2} \leftarrow 0 ; v_{3 k-1} \leftarrow 1 ; v_{3 k} \leftarrow 2 ; v_{3 k-2}^{\prime} \leftarrow 0 ; v_{3 k-1}^{\prime} \leftarrow 1 ; v_{3 k}^{\prime} \leftarrow 2 ;$
For $\mathrm{k}=\frac{m+1}{3}$
$v_{3 k-2} \leftarrow 0 ; v_{3 k-1} \leftarrow 1: v_{3 k-1}^{\prime} \leftarrow 2 ; v_{3 k-2}^{\prime} \leftarrow 1 ;$

P. Vijaya Kumar*, P. P. Ulaganathan, K. Thirusangu /

3-Equitable and 3-Cordial Labeling in Duplicate Graph of Some Graphs / IJMA- 6(12), Dec.-2015.
Theorem 3.6: The duplicate graph of the cycle graph $C_{m}, m \geq 3$, is 3 - cordial.

Proof:

Case-(i): when $\mathbf{m} \equiv 0 \bmod 3$.

Using the algorithm the 2 m vertices are labeled in such a way that $\frac{2 m}{3}$ vertices receive label $0, \frac{2 m}{3}$ vertices receive label $1, \frac{2 m}{3}$ vertices receive label 2 , so that the number of vertices labeled with $0,1,2$ mutually differ at most by one.

Using the induced function f^{*} defined by $f^{*}(u v)=[f(u)+f(v)](\bmod 3)$, the $\frac{2 m}{3}$ edges namely $e_{3}, e_{6}, e_{9} \ldots e_{m}$, $e_{3}^{\prime}, e_{6}^{\prime}, e_{9}^{\prime} \ldots e_{m}^{\prime}$ receive label 0 , the $\frac{2 m}{3}$ edges namely $e_{2}, e_{5}, e_{8} \ldots e_{m-1}, e_{2}^{\prime}, e_{5}^{\prime}, e_{8}^{\prime} \ldots e_{m-1}^{\prime}$ receive label 1and the $\frac{2 m}{3}$ edges namely $e_{1}, e_{4}, e_{7} \ldots e_{m-2}, e_{1}^{\prime}, e_{4}^{\prime}, e_{7}^{\prime} \ldots e_{m-2}^{\prime}$ receive label 2 . Thus the 2 m edges are labeled with $0,1,2$, so that the number of edges labeled with $0,1,2$ mutually differ at most by one.

Case-(ii): when $m \equiv 1 \bmod 3$.

Using the algorithm the 2 m vertices are labeled in such a way that $\frac{2 m-2}{3}$ vertices receive label $0, \frac{2 m+1}{3}$ vertices receive label $1, \frac{2 m+1}{3}$ vertices receive label 2 , so that the number of vertices labeled with $0,1,2$ mutually differ at most by one.

Using the induced function as in case(i), the $\frac{2 m-2}{3}$ edges namely $e_{3}, e_{6}, e_{9} \ldots e_{m-1}, e_{3}^{\prime}, e_{6}^{\prime}, e_{9}^{\prime} \ldots e_{m-4}^{\prime}, e_{m}^{\prime}$ receive label 0 , the $\frac{2 m+1}{3}$ edges namely $e_{2}, e_{5}, e_{8} \ldots e_{m-2}, e_{m}, e_{2}^{\prime}, e_{5}^{\prime}, e_{8}^{\prime} \ldots e_{m-2}^{\prime}$ receive label 1and the $\frac{2 m+1}{3}$ edges namely $e_{1}, e_{4}, e_{7} \ldots e_{m-3}, e_{1}^{\prime}, e_{4}^{\prime}, e_{7}^{\prime} \ldots e_{m-3}^{\prime}, e_{m-1}^{\prime}$ receive label 2 . Thus the 2 m edges are labeled with $0,1,2$, so that the number of edges labeled with $0,1,2$ mutually differ at most by one.

Case-(iii): when $m \equiv 2 \bmod 3$.

Using the algorithm the 2 m vertices are labeled in such a way that $\frac{2 m-1}{3}$ vertices receive label $0, \frac{2 m+2}{3}$ vertices receive label $1, \frac{2 m-1}{3}$ vertices receive label 2 , so that the number of vertices labeled with $0,1,2$ mutually differ at most by one.

Using the induced function as in case(i), the $\frac{2 m-1}{3}$ edges namely $e_{2}, e_{5}, e_{8} \ldots e_{m-3}, e_{m-2}, e_{2}^{\prime}, e_{5}^{\prime}, e_{8}^{\prime} \ldots e_{m-3}^{\prime}$ receive label 0 , the $\frac{2 m-1}{3}$ edges namely $e_{1}, e_{4}, e_{7} \ldots e_{m-4}, e_{1}^{\prime}, e_{4}^{\prime}, e_{7}^{\prime} \ldots e_{m-4}^{\prime}, e_{m}^{\prime}$ receive label 1 and the $\frac{2 m+2}{3}$ edges namely $e_{3}, e_{6}, e_{9} \ldots e_{m-5}, e_{m-1}, e_{m}, e_{3}^{\prime}, e_{6}^{\prime}, e_{9}^{\prime} \ldots e_{m-2}^{\prime}, e_{m-1}^{\prime}$ receive label 2 . Thus the 2 m edges are labeled with 0,1 , 2 , so that the number of edges labeled with $0,1,2$ mutually differ at most by one.

Hence, the duplicate graph of the cycle graph $\mathrm{C}_{\mathrm{m}}, \mathrm{m} \geq 3$, is 3 - cordial.

Illustration:

3 - Cordial labeling in duplicate graph of Twig graph $\mathrm{T}_{\mathrm{m}}, \mathrm{m} \geq 1$.

Algorithm:

// Assignment of labels to vertices //

For $1 \leq k \leq m+1$
$v_{3 k-2} \leftarrow 2 ; v_{3 k-1} \leftarrow 1$;
$v_{3 k-2} \leftarrow 2 ; v_{3 k-1} \leftarrow 0$;
For $1 \leq \mathrm{k} \leq \mathrm{m}$
$v_{3 k} \leftarrow 0 ; v_{3 k}^{\prime} \leftarrow 1 ;$
Theorem 3.7: The extended duplicate graph of twig graph $\mathrm{T}_{\mathrm{m}}, \mathrm{m} \geq 1$, is 3 - cordial.
Proof: Using the algorithm the $6 m+4$ vertices are labeled in such a way that $2 m+1$ vertices receive label $0,2 m+1$ vertices receive label 1 and $2 m+2$ vertices receive label 2 so that the number of vertices labeled with $0,1,2$ mutually differ at most by one.

Using the induced function f^{*} defined by $f^{*}(u v)=[f(u)+f(v)](\bmod 3)$, the $2 \mathrm{~m}+1$ edges namely $e_{3}, e_{6}, e_{9} \ldots$ $e_{3 m}, e_{1}^{\prime}, e_{2}^{\prime}, e_{5}^{\prime}, e_{8}^{\prime} \ldots e_{m-1}^{\prime}$ receive label 0 , the $2 \mathrm{~m}+1$ edges namely, $e_{4}, e_{7}, e_{10}, \ldots e_{3 m+1}, e_{3 m+2}, e_{4}^{\prime}, e_{7}^{\prime} \ldots e_{m+1}^{\prime}$ receive label 1 and the $2 \mathrm{~m}+1$ edges namely $e_{1}, e_{2}, e_{5}, e_{8} \ldots e_{3 m-1}, e_{3}, e_{6}, e_{9} \ldots e_{3 m}$ receive label 2 . Thus the $6 \mathrm{~m}+$ 3 edges are labeled with $0,1,2$, so that the number of edges labeled with $0,1,2$ mutually differ at most by one.

Hence the extended duplicate graph of twig graph is 3 - cordial.

Illustration:

Extended duplicate graph of Twig graph (T_{2})

Extended duplicate graph of Twig graph (T_{3})

3 - cordial labeling in duplicate graph of Circular Twig graph $\mathbf{C T}_{\mathbf{m}}, \mathbf{m} \geq 3$.

Algorithm:

// Assignment of labels to vertices //

For $1 \leq \mathrm{k} \leq \mathrm{m}$
$v_{3 k-2} \leftarrow 2 ; v_{3 k-1} \leftarrow 1 ; v_{3 k} \leftarrow 0 ;$
$v_{3 k-2}^{\prime} \leftarrow 2 ; v_{3 k-1}^{\prime} \leftarrow 0 ; v_{3 k}^{\prime} \leftarrow 1 ;$
Theorem 3.8: The duplicate graph of the circular twig $\mathrm{CT}_{\mathrm{m}}, \mathrm{m} \geq 3$, is 3 - cordial.
Proof: Using the algorithm the 6 m vertices are labeled in such a way that 2 m vertices receive label $0,2 \mathrm{~m}$ vertices receive label 1 and 2 m vertices receive label 2 so that the number of vertices labeled with $0,1,2$ mutually differ at most by one.

Using the induced function f^{*} defined by $f^{*}(u v)=[f(u)+f(v)](\bmod 3)$, the 2 m edges namely $e_{2}, e_{5}, e_{8} \ldots$ $e_{3 m-1}, e_{1}^{\prime}, e_{4}^{\prime}, e_{7}^{\prime} \ldots e_{3 m-2}^{\prime}$ receive label 0 , the 2 m edges namely $e_{3}, e_{6}, e_{9} \ldots e_{3 m}, e_{3}^{\prime}, e_{6}^{\prime}, e_{9}^{\prime} \ldots e_{3 m}^{\prime}$ receive label 1 and the 2 m edges namely $e_{1}, e_{4}, e_{7}, e_{10}, \ldots e_{3 m-2}, e_{2}^{\prime}, e_{5}^{\prime}, e_{8}^{\prime} \ldots e_{3 m-1}^{\prime}$ receive label 2 ,. Thus the 6 m edges are labeled with $0,1,2$, so that the number of edges labeled with $0,1,2$ mutually differ at most by one.

Hence, the duplicate graph of the circular twig $\mathrm{CT}_{\mathrm{m}}, \mathrm{m} \geq 3$, is 3 - cordial.

Illustration:

Extended duplicate graph of Circular Twig graph $\left(\mathrm{CT}_{3}\right)$

Extended duplicate graph of Circular Twig graph (CT_{4})

IV. CONCLUSION

We proved that the duplicate graph of ladder graph, cycle graph, circular twig graph and the extended duplicate graph of the twig graph are 3-equitble and 3-cordial.

V. REFERENCES

1. I. Cahit, On cordial and 3-equitable labeling of graphs, Utilitas. Math., 37(1990) 189-198.
2. I. Cahit, Cordial graphs; a weaker version of graceful and harmonious graphs, Ars Combinatorica, 23 (1987) 201-207.
3. J. A. Gallian, A Dynamic Survey of Graph Labeling, The Electronic Journal of Combinatorics, 18 (2014).
4. M. Hovey, A-cordial graphs, Discrete Math. 93 (1991), 183-194.
5. A. Rosa, On certain valuations of the vertices of a graph, Theory of graphs (Internat. Symposium, Rome, July 1996), Gordon and Breach, N. Y. and Dunod Paris (1967) 349 - 355.
6. B. Selvam, Graph labeling for some new classes of graphs, Ph.D thesis, University of Madras (2012).
7. K. Thirusangu, P.P. Ulaganathan and B. Selvam, Cordial labeling in duplicate graphs, Int. J. Computer Math. Sci. Appl. 4(1-2) (2010) 179-186.
8. K. Thirusangu, P.P. Ulaganathan and P. Vijaya kumar, Some cordial labeling of duplicate graph of ladder graph, Annals of Pure and Applied Mathematics, 8(2) (2014), 43 - 50 .
9. S.K. Vaidya, N.H. Shah, 3-Equitable Labeling for Some Star and Bistar Related Graphs International Journal of Mathematics and Scintific Computing (ISSN: 2231-5330), Vol. 2, No. 1, 2012, 3 - 8.
10. P. Vijaya kumar, K. Thirusangu and P.P. Ulaganathan, Product cordial and E - cordial labeling of duplicate graph of ladder graph, International Journal of Applied Engineering Research, Vol. 10 No. 70 (2015), 198-205.
11. M.Z. Youssef, " A necessary condition on k-equitable labelings", Util. Math. 64, pp 193-195, 2003.

Source of support: Nil, Conflict of interest: None Declared

[Copy right © 2015. This is an Open Access article distributed under the terms of the International Journal of Mathematical Archive (IJMA), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.]

