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ABSTRACT 
In this paper, a new class of symmetric duality for multiobjective optimization and their scalar parametric problems 
are formulated and the duality results are established under convexity assumption using the concept of proper 
efficiency. Also the duality relations with saddle point theory are presented. 
 
Kew words: symmetric duality, proper efficiency, saddle point, convex function. 
 
 
INTRODUCTION 
 
The importance of convex function is well known in optimization theory. But for many mathematical model used in 
decision sciences, applied mathematics and engineering, the notion of convexity does no longer suffice. So it is 
possible to generalize the notion of convexity and to extend the validity of results to larger class of optimization 
problems. Consequently, various generalization of convex function has been introduced in the literature. The field of 
multiobjective programming, also known as vector programming has grown remarkable in different direction in the 
setting of optimality condition and duality theory since the 1980. It has been enriched by the application of various 
types of generalization of convex theory with and without differentiable assumption and in the frame work of 
continuous time programming, fractional programming, inverse vector optimization saddle point theory, symmetric 
duality, variational problem etc.  
 
Symmetric duality in nonlinear programming problem was first introduced by Dorn [1] who defined a mathematical 
programming problem and it’s dual to be symmetric if the dual is the primal problems. Later Dantzing et al. [2] and 
Mond [3] formulated a pair of symmetric dual programs for scalar function f (x, y) that is convex in the first variable 
and that is concave in the second variable respectively. 
 
Bazaars [1] and Dantzing et al. [2] studied on symmetric duality in nonlinear programming. Devi [4] studied symmetric 
duality for nonlinear programming problem involving 𝜂𝜂-bonvex functions. Dorn [5] formulated symmetric dual 
theorem for quadratic programs. Egudo established efficiency and generalized convex duality for multiobjective 
programs. 
 
Geoffrion [6] gave the idea of proper efficiency and the theory of vector maximization. Gulati et al. [7] established 
second order symmetric duality with cone constraints where as Gulati and Geeta [8] established Mond-Weir type 
second order symmetric duality in multiobjective programming over cones. Gupta and Danger [9] duality for second 
order symmetric multiobjective programming with cone constraint. Kassem [10] established multiobjective nonlinear 
symmetric duality involving generalized pseudo convexity. Khurana [11] established symmetric duality in 
multiobjective programming involving generalized cone-invex functions. Kim et al. [12] established Multiobjective 
symmetric duality with cone constraint. Preda [13] studied on efficiency and duality for multiobjective programs. 
Suneja et al. [14] established multiobjective symmetric duality involving cones.  
 
In this paper, we introduced a new class of symmetric duality for multiobjective optimization under convexity 
assumption using the concept of proper efficiency. Also the duality relations with saddle point theory are presented. 
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NOTATION AND DEFINITION 
 
Let C1 and C2 denote closed convex cones with nonempty interiors in Rn and Rm respectively.  
 
Let  ∗

iC (i=1,2,)  be the polar of Ci   ,i.e. }0:{ i
T

i CxforzxzC ∈∀≤=∗ , where xT  denote the transpose of x.  Let 
f(x, y) be a vector valued function defined on an open set in R n+m. 
 
Definition 1: A real-valued function φ  is said to be convex if  

)()()()( xxxxx T φφφ ∇−≥−  for all x, 1Cx ∈ .  
 

Definition 2: A real-valued function ( , ) ( ( , ), ( , ),. . . ,( , ))1 2
T

kf x y f x y f x y f x y=  is said to be convex in the first 

variable if each )(., yfi   is convex for fixed y , i =1, 2, 3,……k. 
 
Similarly f  is said to be convex in second variable if ,.)(xfi  is convex for fixed  x , ki ,...3,2,1= . 
 
Primal (Pv):  

            Min  ( , ) { ( , ) ( , ),. . . ,( , ) ( , )}1 1
T T T

y k y kF x y f x y y f x y f x y y f x y= − ∇ − ∇  

            Subject to .,,),(,),( 21
*
221

nm
iy RCRCCyxfCCyx ⊂⊂∈∇×∈  

 
Dual (D): 

           Max ( , ) { ( , ) ( , ),. . . ,( , ) ( , )}1 1
T T T

x k x kG x y f x y x f x y f x y x f x y= − ∇ − ∇  

           Subject to .,,),(,),( 21
*
121

nm
i RCRCCyxxfCCyx ⊂⊂∈−∇×∈  

 
Now we introduced the following scalar parametric problem: 
 
Primal ( λP ):  Min ),(),( yxfyyxf y

T λλ ∇− ,    

                         Subject to  *( , ) , ( , ) , , ,1 2 2 1 2
m nx y C C f x y C C R C Ry i∈ × ∇ ∈ ⊂ ⊂  

                                            ( ), ,...,1 2
T nRkλ λ λ λ= ∈  

 
Dual   )( λD :   Max ),( yxGλ  

                        Subject to .,,),(,),( 21
*
121

nm
iy RCRCCyxfCCyx ⊂⊂∈−∇×∈  

( ), ,...,1 2
T nRkλ λ λ λ= ∈  

 
We denote the set of feasible solution  of P by S i.e  

                           ∗∈∇×∈= 221 ),(|),{( CyxfCCyxS iy  
 
Definition 3: A feasible point ( ), yx  is said to be an efficient solution of ( vP ) if  

      ),(),(),(),( yxfyyxfyxfyyxf iy
T

iiy
T

i ∇−≥∇−  

),(),(),(),( yxfyyxfyxfyyxf iy
T

iiy
T

i ∇−=∇−⇒  for all i=1,2,3,  ……k. 

and               ),(),(),(),( yxfyyxfyxfyyxf iy
T

iiy
T

i ∇−≤∇−  

),(),(),(),( yxfyyxfyxfyyxf iy
T

iiy
T

i ∇−=∇−⇒  
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Definition 4: A feasible point ),( yx  is said to be properly efficient if it is efficient for vP  and if there exist scalars 
M1>0 and M2 >0, such that 

1),(),(),(),(
),(),((),(),((

M
yxfyyxfyxfyyxf
yxfyyxfyxfyyxf

jy
T

jjy
T

j

iy
T

iy
T

i ≤
∇−−∇−

∇−−∇−
 for some j,  

),(),(),(),( yxfyyxfyxfyyxf jy
T

jjy
T

j ∇−>∇−  and  

),(),(),(),( yxfyyxfyxfyyxf iy
T

iiy
T

i ∇−<∇−  whenever  ),( yx  is a feasible for ( vP ). 

and       2),(),(),(),(
),(),((),(),((

M
yxfyyxfyxfyyxf
yxfyyxfyxfyyxf

jy
T

jjy
T

j

iy
T

iy
T

i ≤
∇−−∇−

∇−−∇−
 for some j,  

),(),(),(),( yxfyyxfyxfyyxf jy
T

jjy
T

j ∇−>∇−  

and       ).,(),(),(),( yxfyyxfyxfyyxf iy
T

iiy
T

i ∇−<∇−  whenever ),( yx  is feasible for vP . 
 
Lemma 3.1: If  ( , )x y  is a feasible solution of ( λP ) then ( , )x y  is properly efficient solution of ( vP ) where 

ki ,...2,1=λ  
 
Proof: Since ( , )x y  is feasible solution of vP  then obviously it is efficient in vP  .Now we have to show that ( , )x y  

is properly efficient solution in vP . If it is not properly efficient solution then  

>∇−−∇− )),(),(()),(),(( yxfyyxfyxfyyxf iy
T

iiy
T

i  

[ ( , ) ( , ) ( , ) ( , )]T TM f x y y f x y f x y y f x yj y j j y j− ∇ > − ∇1  

 
Let us consider ( ) max( / )

,
11M k j i

i j
λ λ= −  where 2≥k  for all j such that  

),(),((),(),( yxfyyxfyxfyyxf jy
T

jjy
T

j ∇−<∇− . 
 
Hence >∇−−∇− )),(),(()),(),(( yxfyyxfyxfyyxf iy

T
iiy

T
i  

(k-1) [( ( , ) ( , )) ( ( , ) ( , ))]j T T
j y j j y j

i
f x y y f x y f x y y f x y

λ

λ
− ∇ − − ∇   

for all j i≠  Multiplying both  sides by 
)1( −k

iλ  then we get  

[( ( , ( , ) ( ( , ) ( , ))]
( )1

T Ti
i y i i yf x y y f x y f x y y f x y

k
λ

− ∇ − − ∇
−

 

[( ( , ) ( , )) ( ( , ) ( , ))]T Tf x y y f x y f x y y f x yj j y j j y jλ> − ∇ − − ∇  for all .1≠j  

 
By summing over  

j i≠ , [( ( , ) ( , )) ( ( , ) ( , ))]T Tf x y y f x y f x y y f x yi i y i i y i
j i

λ − ∇ − − ∇∑
≠

 

[( ( , ) ( , )) ( ( , ) ( , ))]T T
j j y j j y j

j i
f x y y f x y f x y y f x yλ∑

≠
> − ∇ − − ∇  

which contradicts to feasible solution of λP . 
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Lemma 3.2: Let  ( , )x y  is a is  properly efficient  solution of  ( vP ) where ki ,...2,1=λ . If each  if is convex in the 

first variable and if−   is convex in second variable then ( , )x y  is a feasible solution of  λP . 
 
Proof: Since if is convex in the first variable, from the properties of convexity, we obtain  

( ( , ) ( , )) ( ( , ) ( , )) ( ( , ) ( , ))1
i

f x y y f x y f x y y f x y M f x y y f x yi T i T Ti y i j y j j y jj
j i

λ λ  − ∇ + − ∇ + − ∇  
∑
≠

( ( , ) ( , )) ( ( , ) ( , )) ( ( , ) ( , ))f x y y f x y f x y y f x y f x y y f x yi T i T Ty i j y j j y jj j
j i

λ λ  ≥ − ∇ + − ∇ − − ∇  
∑
≠

 

Since  kji
j ,...3,2,1,0 =≥λ  and 1

1
=∑

=

k

j

i
jλ , from above inequation, we get 

( ( , ) ( , )) (( ( , ) ( , ))1f x y y f x y M f x y y f x yT i Ti y i j y jj
j i

λ− ∇ + − ∇∑
≠

 

( ( , ) ( , )) ( ( , ) ( , )) ( ( , ) ( , ))f x y y f x y f x y y f x y f x y y f x yi T i T Ty i j y j j y jj j
j i

λ λ  ≥ − ∇ + − ∇ − − ∇  
∑
≠

 

summing over j yields after some rearrangement, 

      ( )(( ( , ) ( , )) ( )(( ( , ) ( , ))1 11 1
1 1

M f x y y f x y M f x y y f x y
k ki T i Tj y j j y jj j

j i j j i j
λ λ+ − ∇ ≥ + − ∇∑ ∑ ∑ ∑

= ≠ = =
 

).,(),(

)),(),(()),(),((

yxFyxF
yxfyyxfyxfyyxf iy

T
iiy

T
i

≥⇒

∇−≥∇−⇒
 

 
Similarly we can prove  ),(),( yxFyxF ≤  by taking if−  as convex in second variable. 
 
Hence ),( yx  is a saddle point of F. 
 
Now  ),(minmax),(maxmin),(

0,00,0
yxFyxFyxF

xyyx ≥≥≥≥
==  

 
This shows that the component x of a saddle point ),( yx  solves the minimization problem λP . 
 

Lemma 3.3: Let ),( yx  be a saddle point of  fTλ  in λP   , where  , , . .... ,0 1 2 3i kiλ > =  and 1
1

k
i

j
λ =

=
∑ . 

 
If each if  is convex in first variable and if−  is convex in second variable then it satisfies   

( , ) , ( , ) ,0 01f x y C f x y x xx i x i
∗∇ ∈ ∇ = ≥  and ( , ) , ( , ) ,0 02f x y C f x y y yy i y i

∗∇ ∈ ∇ = ≥  
 
Lemma 3.4: Suppose the feasible point ),( yx  satisfies  

( , ) , ( , ) ,0 01f x y C f x y x xx i x i
∗∇ ∈ ∇ = ≥  and ( , ) , ( , ) ,0 02f x y C f x y y yy i y i

∗∇ ∈ ∇ = ≥ , , , , ..., .1 2 3i k= . 
 
If if  is convex in first variable and if−  is convex in second variable then it ),( yx is a saddle point of  fTλ   in λP  

for all , , . .... ,0 1 2 3i kiλ > =  and 1
1

k
i

j
λ =

=
∑ . 
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Theorem 3.1 (Weak duality): Let ),( yx   be feasible for vP  and ),( vu  be feasible for (D). If each if  is convex in 

first variable and if−  is convex in second variable   then  ( , ) ( , ).F x y G u v≥  
 
Proof: Since each if  is convex in first variable and if−  is convex in second variable   then  

∑ ∑
= =

∇−≥−
k

i

k

i
ixi

T
iii vufuxvufvxf

1 1
),()()),(),(( λλ                                                                             (1) 

and         ∑ ∑
= =

∇−≤−
k

i

k

i
iyi

T
iii vufyvyxfvxf

1 1
),()()),(),(( λλ                                                                            (2) 

 

For all 
1

0, 1, 2.3.... , 1
k

i i
j

i k andλ λ
=

> = =∑ . 

 
Multiplying-1 in inequality (2) and adding to inequality (1) we get  

1 1 1 1
( ( , ) ( , ) ( ) ( , ) ( ) ( , )

k k k k
T T

i i i x i i x i i y i
i i i i

f x y f u v x u f u v v y f x yλ λ λ λ
= = = =

− ∇ ≥ − ∇ − − ∇∑ ∑ ∑ ∑  

 
Since 1)( Cux ∈−   and 2)( Cyv ∈− , therefore  ( , ) ( , ).F x y G u v≥   
 
Theorem 3.2 (Strong Duality): Let  ),( yx be  said to be properly efficient  solution  for   vP  assume that each if  is 

convex  in first variable and if−  is convex in second  variable . Then ),( yx be said to be properly efficient solution 

for )(D  and the objective values of vP  and (D) are equal. 
 
Proof: Since ),( yx is properly efficient solution for vP , Therefore from Lemma 3.2 and Lemma 2.3  it follows that  

( , ) , ( , ) ,0 01f x y C f x y x xx i x i
∗∇ ∈ ∇ = ≥  and  

( , ) , ( , ) ,0 02f x y C f x y x yy i y i
∗∇ ∈ ∇ = ≥  for , , , ...,1 2 3i k=  

Thus ( , ) ( )x y D∈   
 

Now ( , ) ( ( , ) ( , ) ( ( , )T TF x y f x y f x y y f x yyλ λ= −∇ =  

and ( , ) ( ( , ) ( , ) ( ( , )T TG x y f x y f x y y f x yyλ λ= −∇ =  
 
Hence  ),(),( yxGyxF = . 
 
CONCLUSION 
 
In this paper, we present a new class of symmetric duality for multiobjective optimization and their scalar parametric 
problems and established the duality results under convexity assumption using the concept of proper efficiency. Also 
we discussed the duality relations with saddle point theory.  
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