Some Properties of a Quarter-Symmetric Non-Metric Connexion in a LP- Sasakian Manifold

Nutan Kumari*

Department of Mathematics, Faculty of Science, Banaras Hindu University, Varanasi – 221005, INDIA

E-mail: nutanbhu@gmail.com

(Received on: 23-06-11; Accepted on: 04-07-11)

ABSTRACT

In this paper I have studied a quarter-symmetric non-metric connexion in a Lorentzian para-Sasakian manifold. Some properties of the curvature tensor and the Ricci tensor of the manifold for quarter-symmetric non-metric connexion have been obtained.

Keywords: Quarter- symmetric connexion, LP-Sasakian manifold, curvature tensor, Ricci tensor.

Mathematics subject classification: [53]

1. INTRODUCTION

We consider a n–dimensional C^∞-manifold V_n. Let there exist in V_n, a tensor F of the type (1,1), a vector field U, a 1–form u and a Riemannian metric g such that

1. $\bar{X} = X + u(X)U$,
2. $u(\bar{X}) = 0$,
3. $g(\bar{X}, \bar{Y}) = g(X, Y) + u(X)u(Y)$,
4. $g(X, U) = u(X)$,
5. $(D_\pi F)(Y) = g(X, Y)U + u(Y)X + 2u(X)u(Y)U$,
6. $D_X U = \bar{X}$

where

for arbitrary vector fields X, Y. Then V_n satisfying (1.1), (1.2), (1.3), (1.4), (1.5) and (1.6) is called a Lorentzian para–Sasakian manifold [2] (in short LP-Sasakian manifold) while the set $\{F, U, u, g\}$ satisfying (1.1) to (1.6) is called a LP-Sasakian structure. It may be noted that D is the Riemannian connexion with respect to the Riemannian metric g.

In a LP-Sasakian manifold it is easy to calculate that

1. $u(U) = -1$,
2. $U = 0$.

and

$\text{rank}(F) = n - 1$.

Let us define a fundamental 2–form $'F$ in a LP-Sasakian manifold as below:

1. $'F(X, Y) \equiv g(\bar{X}, \bar{Y})$.

Barring Y in (1.3) and using (1.1) and (1.2), we get

$g(\bar{X}, \bar{Y}) = g(X, Y)$

From (1.8) and (1.9), we obtain that

1. $'F(X, Y) = 'F(Y, X)$

Which shows that $'F$ is symmetric in a LP-Sasakian manifold.

Barring X and Y both in (1.8) and using (1.1), (1.2), (1.8) and (1.9), we get

1. $'F(\bar{X}, \bar{Y}) = 'F(X, Y)$

Corresponding author: Nutan Kumari, *E-mail: nutanbhu@gmail.com

Department of Mathematics, Faculty of Science, Banaras Hindu University, Varanasi – 221005, INDIA
which implies that \(F \) is hybrid in a LP-Sasakian manifold.

(1.4) implies

\[
u(Y) = g(Y, U).
\]

Taking the covariant derivative of above with respect to the connexion \(D \) along the vector field \(X \) and using (1.4), (1.6) and (1.8), we get

\[
\gamma'(X, Y) = (D_X u)(Y).
\] (1.12)

The Conformal curvature tensor \(Q \), the Conharmonic curvature tensor \(L \), the Concircular curvature tensor \(C \) and the Projective curvature tensor \(P \) in \(V_n \) are given by [3]

\[
\begin{align*}
Q(X, Y, Z) &= K(X, Y, Z) - \frac{1}{n-2}[Ric(Y, Z)X - Ric(X, Z)Y + g(Y, Z)RX - g(X, Z)RY] \\
&+ \frac{r}{(n-1)(n-2)}[g(Y, Z)X - g(X, Z)Y],
\end{align*}
\] (1.13)

\[
L(X, Y, Z) = K(X, Y, Z) - \frac{1}{n-2}[Ric(Y, Z)X - RX(Y, Z)Y + g(Y, Z)RX - g(X, Z)RY],
\] (1.14)

\[
C(X, Y, Z) = K(X, Y, Z) - \frac{r}{n(n-1)}[g(Y, Z)X - g(X, Z)Y]
\] (1.15)

and

\[
P(X, Y, Z) = K(X, Y, Z) - \frac{1}{n-1}[Ric(Y, Z)X - Ric(X, Z)Y]
\] (1.16)

Agreement (1.1): A LP-Sasakian manifold will always be denoted by \(V_n \).

2. CERTAIN PROPERTIES ON \(V_n \)

Theorem (2.1): In \(V_n \), we have

\[
(D_X' F)(Y, U) = g(\bar{X}, \bar{Y}).
\] (2.1)

\[
(D_X' F)(\bar{Y}, Z) + (D_X' F)(Y, \bar{Z}) = u(Z)(D_X u)(Y) + u(Y)(D_X u)(Z).
\] (2.2)

\[
(D_X' F)(\bar{Y}, \bar{Z}) + (D_X' F)(Y, Z) = u(Y)g(\bar{X}, \bar{Z}) - u(Z)g(\bar{X}, \bar{Y}).
\] (2.3)

Proof: In view of (1.7 b) and (1.8), we have

\[
\gamma'(F, Y, U) = 0
\] (2.4)

Taking the covariant derivative of (2.4) with respect to the connexion \(D \) along the vector field \(X \) and using (1.8) and (2.4), we get (2.1).

We know that

\[
(D_X F)(Y, Z) = g((D_X F)(Y), Z)
\] (2.5)

which implies

\[
(D_X' F)(\bar{Y}, Z) = g((D_X F)(\bar{Y}), Z).
\] (2.6)

Since

\[
F\bar{Y} = F^2 Y.
\]

Therefore taking the covariant derivative of above with respect to the connexion \(D \) along the vector field \(X \) and using (1.1), we get

\[
(D_X F)(\bar{Y}) + (D_X F)(\bar{Y}) = u(Y)D_X U + (D_X u)(Y)U.
\]

Operating \(g \) on both the sides of above and using (1.6) and (2.5), we get (2.2).

Barring \(Z \) in (2.2) and using (1.1), (1.2), (1.4), we get (2.3).

Theorem (2.2): In \(V_n \), we have

\[
K(X, Y, Z, T) = g(Y, Z)g(X, T) - g(X, Z)g(Y, T),
\] (2.7)

\[
Ric(Y, Z) = (n-1)g(Y, Z),
\] (2.8)

\[
RY = (n-1)Y,
\] (2.9)

\[
r = n(n-1).
\] (2.10)
Proof: From (1.12), we have
\[F(Y, Z) = (D_Y u)(Z). \]
(2.11)

Taking the covariant derivative of above with respect to the connexion \(D \) along the vector field \(X \) and using (2.11), we get
\[(D_X F)(Y, Z) = (D_X D_Y u)(Z) - (D_{[X,Y]} u)(Z). \]
(2.12)

Interchanging \(X \) and \(Y \) in above, we get
\[(D_Y F)(X, Z) = (D_Y D_X u)(Z) - (D_{[X,Y]} u)(Z). \]
(2.13)

Subtracting (2.13) from (2.12), we get
\[(D_X F)(Y, Z) - (D_Y F)(X, Z) = (D_X D_Y u)(Z) - (D_Y D_X u)(Z) - (D_{[X,Y]} u)(Z). \]
(2.14)

From (1.14), we have
\[u(Z) = g(Z, U). \]
(2.15)

Taking the covariant derivative of (2.15) with respect to the connexion \(D \) along the vector field \(Y \) and using (2.15), we get
\[(D_Y u)(Z) = g(Z, D_Y U). \]
(2.16)

Taking the covariant derivative of above with respect to the connexion \(D \) along the vector field \(X \) and using (2.16), we get
\[(D_X D_Y u)(Z) = g(Z, D_Y D_X U). \]
(2.17)

Interchanging \(X \) and \(Y \) in above, we get
\[(D_Y D_X u)(Z) = g(Z, D_Y D_X U). \]
(2.18)

Further (2.16) yields
\[(D_{[X,Y]} u)(Z) = g(Z, D_{[X,Y]} U). \]
(2.19)

Subtracting (2.18) and (2.19) from (2.17) and using (2.14), we get
\[(D_X F)(Y, Z) - (D_Y F)(X, Z) = g(Z, K(X, Y, U)). \]
(2.20)

From (1.5), we have
\[(D_X F)(Y, Z) = g(X, Y) u(Z) + u(Y) g(X, Z) + 2u(X) u(Y) u(Z). \]
(2.21)

Using (2.21) in (2.20), we get
\[g(Z, K(X, Y, U)) = u(Y) g(X, Z) - u(X) g(Y, Z). \]
Which is equivalent to
\['K(X, Y, U, Z) = u(Y) g(X, Z) - u(X) g(Y, Z) \]
(2.22)

where
\['K(X, Y, U, Z) \equiv g(K(X, Y, U), Z). \]
(2.22)

which is equivalent to
\['K(X, Y, Z, U) = u(X) g(Y, Z) - u(Y) g(X, Z) \]
(2.23)

(2.23) is equivalent to (2.7).

Contracting \(X \) in (2.23), we get (2.8).

(2.8) implies
\[g(RY, Z) = (n - 1) g(Y, Z) \]
which is equivalent to (2.9).

Contracting \(Y \) in (2.9), we get (2.10).

Corollary (2.1): In \(V_n \), we have
\['K(\bar{X}, \bar{Y}, Z, T) = 'K(X, Y, \bar{Z}, \bar{T}) \]
and
\['K(\bar{X}, \bar{Y}, Z, T) = 'K(X, Y, Z, T) + u(T)(u(X) g(Y, Z) - u(Y) g(X, Z)) + u(Z)(u(Y) g(X, T) - u(X) g(Y, Z)). \]

The proof is obvious from (1.3), (1.9) and (2.7).

Corollary (2.2): \(V_n \) is conformally flat.

Proof: Using equation (2.7), (2.8), (2.9) and (2.10) in (1.13), we get
\[Q(X, Y, Z) = 0 \]
(2.24)

which proves the corollary.

© 2011, IUMA. All Rights Reserved
Corollary (2.3): In V_n, we have
\[L(X,Y,Z) = \frac{n}{2-n}(g(Y,Z)X - g(X,Z)Y). \] (2.25)

Proof: using equations (2.7), (2.8), (2.9) in (1.14), we get (2.25).

Corollary (2.4): V_n is concircularly flat.

Proof: Using equations (2.7) and (2.10) in (1.15), we get
\[C(X,Y,Z) = 0 \] (2.26)
which proves the corollary.

Corollary (2.5): V_n is projectively flat.

Proof: Using equations (2.7) and (2.8) in (1.16), we get
\[P(X,Y,Z) = 0 \] (2.27)
which proves the corollary.

3. QUARTER-SYMMETRIC NON-METRIC CONNEXION IN V_n

We consider a quarter-symmetric non-metric connexion E [5] defined by
\[E_{\alpha}Y = D_{\alpha}Y + u(Y)\bar{X}. \] (3.1)

Let R and K be the curvature tensor with respect to E and D respectively. Then, it is easy to calculate that
\[R(X,Y,Z) = K(X,Y,Z) + g(\bar{X},Z)\bar{Y} - g(\bar{Y},Z)\bar{X} + u(Z)[u(Y)X - u(X)Y] \] (3.2)
where
\[R(X,Y,Z) = E_{\alpha}E_{\beta}Z - E_{\beta}E_{\alpha}Z - E_{[\alpha\beta]}Z \]
and
\[K(X,Y,Z) = D_{\alpha}D_{\beta}Z - D_{\beta}D_{\alpha}Z - D_{[\alpha\beta]}Z. \]

Contracting X in (3.2), we get
\[\bar{R}(Y,Z) = Ric(Y,Z) + g(Y,Z) + nu(Y)u(Z) \] (3.3)
where
\[\bar{R}(Y,Z) = C_{[\alpha\beta]}R(X,Y,Z) \]
and (3.3) implies
\[Ric(Y,Z) = C_{[\alpha\beta]}K(X,Y,Z). \]

Contracting Y in above, we get
\[\bar{R}(Y) = R(Y) + Y + nu(Y)u. \] (3.5)

Further (3.6) shows that the scalar curvatures of V_n with respect to E and D are equal.

Theorem (3.1): In V_n, we have
\[(E_{X}F)Y = g(\bar{X},\bar{Y})U, \] (3.7)
\[E_{\alpha}U = 0, \] (3.8)
\[(E_{X}u)Y = g(\bar{X},Y), \] (3.9)
\['R(X,Y,Z,T) = 'K(X,Y,Z,T) + g(\bar{X},Z)g(\bar{Y},T) - g(\bar{Y},Z)g(\bar{X},T) + u(Z)[u(Y)g(X,T) - u(X)g(Y,T)]. \] (3.10)

Proof: We known that
\[(E_{X}F)Y = E_{X}\bar{Y} - \bar{E}_{X}\bar{Y}. \]

Using (1.3) and (3.1) in above, we get (3.7).
Replacing Y by U in (3.1), we get

$$E_X U = D_X U + u(U)\bar{X}.$$

Using (1.6) and (1.7a) in above, we get (3.8).

We know that

$$(E_X u) Y = E_X(u(Y)) - u(E_X Y).$$

Using (1.8) and (3.1) in above, we get (3.9).

Operating g on both the sides of (3.2) and using

$$'R(X, Y, Z, T) \equiv g(R(X, Y, Z), T)$$

and

$$'K(X, Y, Z, T) \equiv g(K(X, Y, Z), T)$$

we get (3.10).

Theorem (3.2): In V_n, we have

$$R(X, Y, Z) + R(Y, Z, X) + R(Z, X, Y) = 0$$

(3.11)

Proof: Using equation (3.2) and Bianchi first identity with respect to Levi-Civita connexion D, we get the result.

Theorem (3.3): In V_n, the conformal curvature tensor \tilde{Q} with respect to the quarter-symmetric non-metric connexion E is given by

$$\tilde{Q}(X, Y, Z) = g(\bar{X}, Z)\bar{Y} - g(\bar{Y}, Z)\bar{X} - \frac{2}{n-2} u(Z)[u(Y)X - u(X)Y]$$

$$- \frac{2}{n-2}[g(Y, Z)X - g(X, Z)Y] - \frac{n}{n-2} g(Y, Z)u(X) - g(X, Z)u(Y) U.$$

(3.12)

Proof: In view of (1.13) \tilde{Q} in V_n is given by

$$\tilde{Q}(X, Y, Z) = R(X, Y, Z) - \frac{1}{n-2} [\text{Ric}(X, Z)Y - \text{Ric}(X, Z)Y + g(Y, Z)\tilde{R}X - g(X, Z)\tilde{R}Y]$$

$$+ \frac{2}{(n-1)(n-2)} g(Y, Z)X - g(X, Z)Y.$$

(3.13)

which is equivalent to

$$'\tilde{Q}(X, Y, Z, T) = 'R(X, Y, Z, T) - \frac{1}{n-2} [\text{Ric}(X, Z)g(X, T) - \text{Ric}(X, Z)g(Y, T)]$$

$$+ g(Y, Z)\text{Ric}(X, T) - g(X, Z)\text{Ric}(Y, T) + \frac{2}{(n-1)(n-2)} [g(Y, Z)X - g(X, Z)Y]$$

(3.14)

where

$$'\tilde{Q}(X, Y, Z, T) = g'(\tilde{Q}(X, Y, Z), T).$$

Now using equation (1.13), (3.2), (3.3) and (3.6) in the above equation, we get

$$'\tilde{Q}(X, Y, Z, T) = 'Q(X, Y, Z, T) + g(\bar{X}, Z)\bar{Y} - g(\bar{Y}, Z)\bar{X} - \frac{2}{n-2} u(Z)[u(Y)g(X, T) - u(X)g(Y, T)]$$

$$- \frac{2}{n-2}[g(Y, Z)g(X, T) - g(X, Z)g(Y, T)] - \frac{n}{n-2} [g(Y, Z)u(X) - g(X, Z)u(Y)]u(T).$$

(3.15)

Using (2.24) in above, we get (3.12).

Theorem (3.4): The conharmonic curvature tensors \tilde{L} with respect to quarter-symmetric non-metric connexion E in V_n is given by

$$\tilde{L}(X, Y, Z) = g(\bar{X}, Z)\bar{Y} - g(\bar{Y}, Z)\bar{X} - \frac{2}{n-2} u(Z)[u(Y)X - u(X)Y]$$

$$- \frac{n+2}{n-2} [g(Y, Z)X - g(X, Z)Y] - \frac{n}{n-2} g(Y, Z)u(X) - g(X, Z)u(Y) U.$$

(3.16)

Proof: In view of (1.14), we have

$$\tilde{L}(X, Y, Z) = R(X, Y, Z) - \frac{1}{n-2} [\text{Ric}(X, Z)X - \text{Ric}(X, Z)Y + g(Y, Z)\tilde{R}X - g(X, Z)\tilde{R}Y]$$

which implies

$$'\tilde{L}(X, Y, Z, T) = 'R(X, Y, Z, T) - \frac{1}{n-2} [\text{Ric}(X, Z)g(X, T) - \text{Ric}(X, Z)g(Y, T)]$$

$$+ g(Y, Z)\text{Ric}(X, T) - g(X, Z)\text{Ric}(Y, T)]$$

(3.17)

where

$$'\tilde{L}(X, Y, Z, T) \equiv g'(\tilde{L}(X, Y, Z), T).$$

Now using equation (1.14), (3.2) and (3.3) in (3.17), we get

$$'\tilde{L}(X, Y, Z, T) = 'L(X, Y, Z, T) + g(\bar{X}, Z)\bar{Y} - g(\bar{Y}, Z)\bar{X} - \frac{2}{n-2} u(Z)[u(Y)g(X, T) - u(X)g(Y, T)]$$

$$- \frac{2}{n-2}[g(Y, Z)g(X, T) - g(X, Z)g(Y, T)] - \frac{n}{n-2} [g(Y, Z)u(X) - g(X, Z)u(Y)]u(T).$$
Using (2.25) in above, we get (3.15).

Theorem (3.5): The concircular curvature tensor \(\tilde{\mathcal{C}} \) with respect to the quarter-symmetric non-metric connexion \(E \) is given by
\[
\tilde{\mathcal{C}}(X, Y, Z) = g(\tilde{X}, Z)\tilde{Y} - g(\tilde{Y}, Z)\tilde{X} + u(Z)[u(Y)X - u(X)Y].
\] (3.18)

Proof: In view of (1.15), \(\tilde{\mathcal{C}} \) is given by
\[
\tilde{\mathcal{C}}(X, Y, Z) = R(X, Y, Z) - \frac{\varphi}{n(n-1)}[g(Y, Z)X - g(X, Z)Y].
\] (3.19)

Which is equivalent to
\[
'\tilde{\mathcal{C}}(X, Y, Z, T) = 'R(X, Y, Z, T) - \frac{\varphi}{n(n-1)}[g(Y, Z)g(X, T) - g(X, Z)g(Y, T)]
\] (3.20)

where
\[
'\tilde{\mathcal{C}}(X, Y, Z, T) = g(\tilde{\mathcal{C}}(X, Y, Z), T).
\]

Now using equation (1.15), (2.26), (3.2) and (3.6) in the above equation, we get (3.18).

Theorem (3.6): The projective curvature tensor \(\bar{P} \) in \(V_n \) with respect to quarter-symmetric non-metric connexion \(E \) is given by
\[
\bar{P}(X, Y, Z) = g(\bar{X}, Z)\bar{Y} - g(\bar{Y}, Z)\bar{X} - \frac{1}{n-1}[g(Y, Z)X - g(X, Z)Y] - \frac{1}{n-1}[u(Y)X - u(X)Y]u(Z).
\] (3.21)

Proof: In view of (1.16), the projective curvature tensor in \(V_n \) with respect to \(E \) is given by
\[
\bar{P}(X, Y, Z) = R(X, Y, Z) - \frac{1}{n-1}[\bar{Ric}(Y, Z)X - \bar{Ric}(X, Z)Y]
\]

which is equivalent to
\[
'\bar{P}(X, Y, Z, T) = 'R(X, Y, Z, T) - \frac{1}{n-1}[\bar{Ric}(Y, Z)g(X, T) - \bar{Ric}(X, Z)g(Y, T)]
\] (3.22)

where
\[
'\bar{P}(X, Y, Z, T) = g(\bar{P}(X, Y, Z), T).
\]

Using equations (1.16), (3.2), (3.3) in (3.22), we get
\[
'\bar{P}(X, Y, Z, T) = 'P(X, Y, Z, T) + g(\bar{X}, Z)g(\bar{Y}, T) - g(\bar{Y}, Z)g(\bar{X}, T)
\]
\[
- \frac{1}{n-1}[g(Y, Z)g(X, T) - g(X, Z)g(Y, T)] - \frac{1}{n-1}[u(Y)g(X, T) - u(X)g(Y, T)]u(Z).
\] (3.23)

Using (2.27) in above, we get (3.21).

Acknowledgement: The author is thankful to the Head, Department of Mathematics for his good wishes.

REFERENCES
