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ABSTRACT 
In this paper we obtain the Hyers-Ulam stability for the generalized cubic fuctional equation  
4f(x+my)+4f(x-my)+m2f(2x)=8f(x)+4m2f(x+y)+4m2f(x-y) for  a positive integer m≥ 1 in random normed space. 
 
 
INTRODUCTION 
 
A question in the theory of functional equations is the following “When is it true that a function which approximately 
satisfies a functional equation ∈  must be close to an exact solution∈?” If the problem accepts a solution, we say that 
the equation ∈  is stable. 
 
In 1940, S.M.Ulam [13] gave a wide ranging talk before the Mathematics Club of the University of Wisconsin in which 
he discussed a number of important unsolved problems. Among those was the following question concerning the 
stability of homomorphism:   
 
Let (G1, *) be a group and (G2,  , d) be a metric group with the metric d. Given ∈> 0, does there exists a ∈δ > 0 such 

that if a mapping h: G1 →G2 satisfies the inequality d(h(x*y),h(x)   h(y))< ∈δ  ∀ x, y∈G1, then there is a mapping H: 
G1 →G2 such that for each x, y ∈G1 H(x*y) = H(x) H(y) and d(h(x), H(x)) < ∈? 
 
In the next year, D.H.Hyers [5], gave answer to the above question for additive groups under the assumption that 
groups are Banach spaces. In 1978, T.M.Rassias [12] proved a generalization of Hyers’ theorem for additive mapping 
as a special case in the form of following result. 
 
Suppose that E and F are real normed spaces with F a complete normed space, f: E→F is a mapping such that for each 
fixed x∈E the mapping t→ f (tx) is continuous on R, and let there exist 0∈≥  and p∈[0,1) s.t 

 )()()()( pp yxyfxfyxf +≤−−+ ε  x, y∈E. 

Then there exists a unique linear mapping T: E→F s.t 
)21(

)()( 1−−
≤− p

px
xTxf ε , x∈E. 

 
In this paper, we discuss the generalized cubic functional equation 
4f(x+my)+4f(x-my)+m2f(2x)=8f(x)+4m2f(x+y)+4m2f(x-y),                                                                           (1) 
 
Since the cubic function f(x) = cx3 is its solution and easy to check f(0) = 0 and f(2x) = 8f(x). We prove the stability of 
(1) in norm and random normed linear space. 
 
2. STABILITY OF GENERALIZED CUBIC FUNCTIONAL EQUATION 
 
Throughout in this section, let X and Y be normed vector space and Banach space respectively.  
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Theorem 2.1: Let ),0[: ∞→× XXφ  be a function such that ( )
0

1 2 , 2
8

i
i i

i
x yϕ

∞

=

  < ∞ 
 

∑  for all x, y∈X. Suppose 

that f: X→Y satisfies the inequality  
||4f(x+my)+4f(x-my)+m2f(2x)-8f(x)-4m2f(x+y)-4m2f(x-y)|| ),( yxφ≤                                                                       (2.1) 
for all x, y∈X. Then there exists a unique cubic mapping g: X→Y such that  

||f(x)-g(x)|| ),(
8

1
2 xx

m
φ≤  for all x∈X and m≥ 1.                                                          (2.2) 

 
Proof: Putting y = 0 and f(0) = 0  in (2.1), we get 
||m2f(2x)-8m2f(x)|| )0,(xφ≤  

||f(x)-
8
1

f(2x)|| )0,(
8

1
2 x

m
φ≤                                                (2.3) 

 
Replacing x by 2x in (2.3), we get 

||f(2x)- 
8
1

f(22x)|| )0,2(
8

1
2 x

m
φ≤                                                (2.4) 

 
Combine (2.3) and (2.4), 

||f(x)- 
2

8
1






 f(22x)||≤  ||f(x)-

8
1

f(2x)||+ ||
8
1

f(2x)- 
2

8
1






 f(22x)|| )]0,2(

8
1)0,([

8
1

2 xx
m

φφ +≤   

Continue in this way, we have 

||f(x)- 
t









8
1

f(2tx)|| ∑
−

=






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1

0
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8
1

8
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i

i
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x
m

φ                                (2.5) 

 
Dividing by 8n and replacing x by 2nx, we get 

||
n









8
1

f(2nx)- 
tn+









8
1

f(2n+tx)|| ∑
−

=

+
+







≤

1

0
2 )0,2(

8
1

8
1 t

i

in
ni

x
m

φ                              (2.6) 

 
For all x∈X. This shows that {8-tf(2tx)} is a Cauchy sequence in Y by taking the limit  n ∞→ . Since Y is a Banach 
space, it follows that the sequence {8-tf(2tx)} converges. We define g: X→Y by g(x) =

∞→t
lim  8-tf(2tx) for all x∈X. 

Then 
||4g(x+my)+4g(x-my)+m2 g(2x)-8g(x)-4m2 g(x+y)-4m2 g(x-y)|| 

                          =
t

t








∞→ 8
1lim  ||4f( 2t (x+my))+4f(2t (x-my))+m2f(2t 2x)-8f(2t x)-4m2f(2t (x+y))-4m2f(2t (x-y))||                       

                         )2,2(
8
1lim yx tt

t

t
φ






≤

∞→
=0 

 
For all x, y∈X. Thus g: X →Y is cubic. Now, prove that the function g is unique. Let h: X →Y be another cubic 
function satisfying (2.2). Then  

||g(x)-h(x)||=
t









8
1

||g(2tx)-h(2tx)|| 

                 ≤
t









8
1

(|| g(2tx)-f(2tx)|| +||f(2tx)-h(2tx)||) 

                 ≤
t









8
1

8
1 )0,2( xtφ  

 
For all x∈X. As t ∞→ , we can conclude that g(x) = h(x) for all x∈X. Thus g is unique. 
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Now, we will investigate the stability of the given cubic functional equation (1) using the alternative fixed point. Before 
proceeding the proof, we will state the theorem, the alternative of fixed point. 
 
Theorem 2.2: (The alternative of fixed point [7], [2]). Suppose that we are given a complete generalized metric space    
(Ω , d) and a strictly contractive mapping T: Ω→Ω   with Lipschitz constant L. Then for each given x Ω∈ , either 
d(Tn x, Tn+1 x) = ∞  for all n ≥ 0, or there exists a natural number n0  such that 

1. d(Tnx, Tn+1x) <  ∞  for all n ≥  n0 
2. The sequence (Tn x) is convergent to a fixed point y* of T; 
3. y* is the unique fixed point of T in the set ∆  = {y Ω∈ , d(Tn

0 x, y) < ∞ }; 

4. d(y, y*) 
L−

≤
1

1
 d(y, Ty) for all y ∆∈ . 

Now, let φ  : X × X  →  [0, ∞ ) be a function such that  n
i

n
i

n
i

n

yx
3

),(lim
λ

λλφ
∞→

=0, 

for all x, y ∈X , where iλ  = 2 if i = 0 and iλ  = 1/2 if i = 1. 
 
Theorem 2.3: Suppose that a function f: X→Y satisfies the functional inequality 
||4f(x + my) + 4f(x - my) + m2f(2x) - 8f(x) - 4m2f(x + y) - 4m2f(x - y)|| ),( yxφ≤                                          (3.1) 
for all x, y ∈  X . If there exists L < 1 such that the function x )0,2()( xx φψ =→  has the property 

)2(8)( xLx ψψ ≤                                                 (3.2) 
for all x ∈X , then there exists a unique cubic function C: X →  Y such that the inequality 

|| f(x) − C(x)|| )(
1

x
L

L ψ
−

≤                                                (3.3) 

holds for all x ∈  X . 
 
Proof: Consider the set Ω  = {g|g: X→Y} and introduce the generalized metric on, 
d(g, h) =  inf{K ∈  (0,∞ ), || g(x)−h(x)|| ≤  K ψ (x) , x ∈X} . 
 
It is easy to show that (Ω , d) is complete. Now we define a function T: Ω  → Ω   by 
Tg(x) =8g(2x) for all x ∈ X. Note that for all g, h ∈Ω , 
 
d(g, h) < K  
⇒ || g(x) − h(x) || ≤  K ψ (x) , for all x∈X, 

⇒ ||
8
1

g(2x) - 
8
1

h(2x)||≤
8
1

 K ψ (2x), for all x∈X, 

⇒ ||
8
1

g(2x) - 
8
1

h(2x)||≤  Lψ (x), for all x∈X, 

 
⇒ d(Tg, Th) ≤  LK . 
 
Hence we have that 
d(Tg, Th) ≤  Ld(g, h), for all g, h∈Ω , that is, T is a strictly self-mapping of Ω  with the Lipschitz constant L. By 
setting y = 0, we have the equation (2.3) as in the proof of Theorem 2.1 and we use the equation (3.2), which is reduced 

to ||f(x)-
8
1

f(2x)|| )0,(
8

1
2 x

m
φ≤  

||f(x)-
8
1

f(2x)|| )
2

(
8

1
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x
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||f(x)-
8
1

f(2x)|| )(xLψ≤  
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for all x∈X, that is, d(f, Tf) ≤  L < 1. Now, we can apply the fixed point alternative and since 

∞→n
lim d(Tnf, C) = 0, there 

exists a fixed point C of T in  such that 

C(x) = n

n

n

xf
8

)2(lim
∞→

  

for all x ∈  X . Letting x = 2nx and y = 2ny in the equation (4.1) and dividing by 8n 

 
||4C(x+my)+4C(x-my)+m2 C(2x)-8C(x)-4m2 C(x+y)-4m2 C(x-y)|| 

                        =
n

n








∞→ 8
1lim  ||4f( 2n (x+my))+4f(2n (x-my))+m2f(2n 2x)-8f(2n x)-4m2f(2n (x+y))-4m2f(2n (x-y))||                           

                       )2,2(
8
1lim yx nn

n

n
φ






≤

∞→
=0 

for all x, y ∈  X ; that is it satisfies the equation ( ). Thus C is cubic. Also, the fixed point alternative guarantees that 
such a C is the unique function such that 
|| f(x) − C(x)|| )(xKψ≤  for all x ∈  X and some K > 0. Again using the fixed point alternative, we have 

d(f, C) )(
1

x
L

L ψ
−

≤  

 
3. STABILITY OF CUBIC FUNCTIONAL EQUATION IN RN-SPACES  
 
In this section, we will use the usual terminology, notations and conventions of the theory of random normed spaces. 
The space of all probability distribution functions is denoted by →+∞−∞∪=∆+ },{:{ RF [0,1]: F is Left-

continuous and non decreasing on R and F(0)=0, F( ∞+ )=1} and the subset D+ +∆⊆ is the set D+={F +∆∈ , )(∞−Fl
=1}, where  )(xFl − denotes the left limit of the function f at the point x. The space +∆ is partially ordered by the 
usual point wise ordering of functions, that is F≤G, if and only if F(t)≤G(t)  for all t in R. The maximal element for 

+∆  in this order is the distribution function given by  





>
≤

=
01
00

0 tif
tif

ε  

 
Definition 3.1: A mapping T:[0,1]x[0,1]→  [0,1] is a continuous triangular norm (briefly, a t-norm) if  satisfies the 
following conditions: 

(i) T is commutative and associative; 
(ii) T  is continuous; 
(iii) T(a,1)=a for all a ]1,0[∈ ; 
(iv) T(a, b)≤T(c, d) whenever a≤ c  and b≤ d for all a, b, c, d ]1,0[∈ . 

 
Three typical examples of continuous t-norm are T(a, b)=ab, T(a, b)=max{a+b-1, 0} and T(a, b)=min(a, b) 
 
Definition 3.2: A random normed space (briefly, RN-space) is a triple (X, µ , T), where X is a vector space, T is a 
continuous -norm, and µ  is a mapping from X into D+  such that, the following conditions hold: 

(RN1) )()( 0 ttx εµ =   for all t>0 if and only if x=0; 

(RN2)  |)|/()( att xax µµ = for all,; (RN3)  for all x in X, a ≠  0 and all t≥ 0 

(RN3) ))(),(()( ttTst yxyx µµµ ≥++  for all x ,y in X and all t, s≥ 0 
 
Definition 3.3[2]: Let (X, µ , T) be an RN-space. Consider the following. 

(1)  A sequence {xn} in X is said to be convergent to x in X if, for every t>0 andε >0, there exists a positive 
integer N such that  εµ −>− 1)(txxn

 whenever n≥  N. 
(2)  A sequence {xn} in X is called Cauchy if, for every t > 0 andε  > 0, there exists a positive integer  N such that 

εµ −>− 1)(t
mn xx  whenever  n, m ≥  N. 

(3)   An RN-space (X, µ , T)  is said to be complete if every Cauchy sequence in X is convergent to a point in X. 



Manoj Ahlawat*, Anil Kumar** /  
Stability of Generalized Cubic Functional Equation in Random Normed Space / IJMA- 6(12), Dec.-2015. 

© 2015, IJMA. All Rights Reserved                                                                                                                                                                      128   

 
Theorem 3.4 (see [2]): If (X,µ ,T)  is an RN-space and{xn}  is a sequence such that xn  →x, then )()(lim tt xxn n

µµ =
∞→

  

 
Theorem 3.5[2]: Let (X, µ , min) be an RN-space and define )(, xE µλ =inf{t>0; λµ −>1)(tx }, ∈∀λ [0,1], x∈X. 

Then )(......)()( 1,21,1, nnn xxExxExxE −++−≤− −µλµλµλ  for all x1,x2,……,xn∈X and the sequence {xn} is 

convergent to x with respect to random norm µ  if and only if ∞→→− nasxxE n 0)(,µλ . Also the sequence {xn} 

is a Cauchy sequence with respect to random norm µ if and only if it is a Cauchy sequence with µλ ,E  
 
Now prove the stability of cubic mappings in RN-Spaces 
 
Theorem 3.6: Let X be linear space, (Z, 'µ , min) an RN-space, and φ : X x X→Z a function such that for some 0<
α <8 

(2 ,0) ( ,0)' ( ) ' ( ) , 0x xt t x X tϕ αϕµ µ≥ ∀ ∈ >                                                                         (3.1) 

F(0)=0 and 1)8('lim )2,2( =
∞→

tn
yxn

nnφ
µ  for all x, y in X and all t>0. Let (Y, µ , min) be a complete RN-space. If           

f: X→Y is a mapping such that 
)(')( ),()(4)(4)(8)2()(4)(4 222 tt yxyxfmyxfmxfxfmmyxfmyxf φµµ ≥

−−+−−+−++
   Xyx ∈∀ , , t > 0                                      (3.2) 

 
Then there exists a unique cubic mapping C: X→Y such that 

tmt xxCxf )8((')( 2
)0,()()( αµµ φ −≥−                                 (3.3) 

 
Proof: From (3.2) it follows that 

µλ ,E (4f(x + my) + 4f(x-my) + m2f(2x) - 8f(x) - 4m2f(x + y) - 4m2f(x - y))  

                    = inf{t>0: λµ −>
−−+−−+−++

1)()(4)(4)(8)2()(4)(4 222 tyxfmyxfmxfxfmmyxfmyxf }              (3.4) 

                   
λµ φ −>>≤ 1)(',0inf{ ),( tt yx } 

                    = ',µλE (φ (x, y)),        Xyx ∈∀ , , ∈λ (0,1). 
 
Putting y = 0 in (4), we get 

µλ ,E (m2f(2x)-8m2f(x)) ))0,((', xE φµλ≤  

µλ ,E  (
8
1

f(2x)-f(x)|| ))0,((
8

1
',2 xE

m
φµλ≤

                               (3.5) 
 
Replacing x by 2n x in (3.5), we get 

µλ ,E  ( 18
1
+n f(2n+1x)- n8

1
f(2n x)|| ))0,2((

8
1

',21 xE
m

n
n φµλ+≤  

                                                     
))0,((

8 ',21 xE
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n

φα
µλ+≤                                                          (3.6) 
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



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


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
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( )( )∑

−

=
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1

0
',21 0,2(

8
1n

k

k
k xE
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0
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k

xE
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µλ                                                          (3.7) 
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Replacing x by 2m x in (3.7), we get 
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Thus {f(2nx)/8n} is a Cauchy sequence in (Y, µ ,min). Since (Y, µ , min) is complete RN-space, this sequence 
converges to some point C(x)in Y. From (3.7), we get 

, , ,
(2 ) (2 )( ( ) ( )) ( ) ( )
8 8

n n

n n

f x f xE C x f x E C x E f xλ µ λ µ λ µ
   

− ≤ − + −   
   

 

        
1

, '
, 2

0

( ( ,0))(2 )( )
8 8 8

kn n

n
k

E xf xE C x
m

λ µ
λ µ

ϕ α−

=

   ≤ − +   
  

∑                                           (3.9) 

 
Taking the limit as n ∞→ and using (3.9), we have 

)8(
1)).0,(())()(( 2',, α

φµλµλ −
≤−

m
xExfxCE  

i.e.,  
Inf {t>0; λµ −>− 1)()()( txfxC } }1))8((';0inf{ 2

)0,( λαµ φ −>−>≤ tmt x  (3.10) 
 
Thus we have, 

)()()( txfxC −µ ))8((' 2
)0,( tmx αµ φ −≥  

 
Replacing x, y by 2nx, 2ny in (3.2) respectively, we get 

2 1 2 24 (2 ( ))/8 4 (2 ( ))/8 (2 )/8 8 (2 )/8 4 (2 ( ))/8 4 (2 ( ))/8
( )n n n n n n n n n n n nf x my f x my m f x f x m f x y m f x y
tµ ++ + − + − − + − −  

                   
(2 ,2 )

' (8 )n n
n

x y
t

ϕ
µ≥  

 
Since, 1)8('lim )2,2( =

∞→
tn

yxn
nnφ

µ  we conclude that C satisfies the cubic equation. 

 
To, Prove the uniqueness of the cubic mapping C, assume that there exists a cubic mapping D: X→Y which satisfies 
(3). Since C(2nx) = 8nC(x) and D(2nx) = 8nD(x) . 

)(lim)( )8/)2()8/)2()()( tt nnnn xDxCnxDxC −∞→− = µµ  

(2 )/8 ) (2 )/8 ) (2 )/8 ) (2 )/8 ) (2 )/8 ) (2 )/8 )
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t ttµ µ µ
− − −
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    

 

                                        
)2/)8(8(' 2

),2( tmn
oxn αµ
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)2/)8(8(' 2
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Since ∞=−

∞→
)2/)8(8(lim 2 nn

n
tm αα , we get 1)2/)8(8('lim 2

),( =−
∞→

nn
oxn

tm ααµ φ .thus  

1)()()( =− txDxCµ  for all t > 0 and so C(x) = D(x). 
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