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ABSTRACT 
This paper gives the notion of orthogonality between the Jordan left derivation and Jordan left biderivation of a 
semiprime ring. We prove that if R is a 2-tiorsion free semiprime ring, d is a Jordan left derivation and B is a Jordan 
left biderivation on R, then  d and B are orthogonal if and only if any one of the following equivalent conditions holds 
for every Ryx ∈, :  
(i) 0),()()(),( =+ yzBxdzdyxB   

(ii) 0),()( =yxBxd or 0),()( =xyBxd    
(iii) 0=dB   (iv) dB is a left biderivation. 
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INTRODUCTION 
 
Bresar and Vukman [2], introduced the notion of orthogonality for a pair d and g of derivations on a semiprime ring 
and they have proved several necessary and sufficient conditions for d and g to be orthogonal.  Daif. et.al. [4], studied 
the orthogonality between the derivation and biderivation of a ring and also in terms of a nonzero ideal of a 2-torsion 
free semiprime ring. In this paper, we give four conditions equivalent to the notion of orthogonality between the Jordan 
left derivation and Jordan left biderivation of a semiprime ring. It is shown that if R is a 2-torsion free semiprime ring,  
d is a Jordan left derivation and B is a Jordan left biderivation on R, then d and B are orthogonal if  and only if one of 
the following equivalent conditions holds for every Ryx ∈, :  
(i) 0),()()(),( =+ yxBxdzdyxB   

(ii)  0),()( =yxBxd or 0),()( =xyBxd   

(iii)  0=dB   (iv) dB is a left biderivation. 
 
PRELIMINARIES 
 
Throughout this paper R will be an associative ring. A ring R is said to be 2-torsion-free if 2x = 0, x∈ R implies x = 0.   
R is called  prime if xRy = 0 implies x = 0 or y =0 , and R is semiprime if xRx = 0 implies x = 0 for all  x,y∈ R. 
 
We write the usual commutator [x, y] = xy− yx  for all x, y∈ R, and we use  the basic commutator identities                   
[x, yz] = [x, y]z+y[x, z] and [xz, y] = [x, y]z+x[z, y].  
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An additive mapping d: R → R is called a derivation if d(xy) = d(x)y + xd(y) for every x, y ∈ R. Let R be a semiprime 
ring, two derivations d and g of R are called orthogonal if d(x)Rg(y) = 0 = g(y)Rd(x) [2]. Following Daif.et.al. [4], a 
biadditive map B: R× R→ R is called a biderivation of R  if B(xy, z) = B(x, z)y + xB(y, z) for all x,y,z∈ R.  For a ring R, 
a biadditive mapping B: R×R→ R  is called a left biderivation if  B(xy, z) = xB(y, z) + yB(x, z) for all x, y, z∈ R. An 
additive mapping d: R → R is called a Jordan derivation if d(x2) = d(x)x + xd(x) for every x∈ R.  An additive mapping 
d: R → R is called a Jordan left derivation if d(x2) =2xd(x) for every x∈ R. In the same way, an additive mapping B: 
R×R→ R is called a Jordan left biderivation if  B(x2,y) = 2xB(x, y) for all  x, y∈ R. A Jordan left derivation d and Jordan 
left biderivation B of R are called orthogonal if ),()(0)(),( yxRBzdzRdyxB ==  for all Rzyx ∈,, . 
 
We now consider some well known results that will be needed in the subsequent results. 
 
Lemma 1: [[2], Lemma 1] Let R be a 2-torsion free semiprime ring and Rba ∈, .Then the following are equivalent : 

• 0=axb for all x R∈  
• 0=bxa for all x R∈  
• 0=+ bxaaxb for all x R∈  

 
If one of the above conditions is fulfilled, then ,0== baab too. 
 
Lemma 2: [[4], Lemma 2.2] Let R be a semiprime ring.  Suppose that an additive mapping h on R and a biadditve 
mapping RRRf →×: satisfy )0()(),( =xRhyxf , then )0()(),( =zRhyxf for all Rzyx ∈,, . 
 
Lemma 3: Let d be a Jordan left derivation and B a Jordan left biderivation of a semiprime ring R. The following 
identity holds, for all Rzyx ∈,, . 

)(),()(),(),()(),)((),)(( ydzxBxdzyBzyBdBxzxdByzxydB +++= . 
 
Proof: Let d and B such that  )),((),)(( zxyBdzxydB = , for all Rzyx ∈,, . 

)),((),((),)(( zyByzyxBdzxydB += , for all Rzyx ∈,, .we get 
)(),(),)((),)(()(),(),)(( ydzxByxdByzydBxxdzyBzxydB +++= , for all Rzyx ∈,, . Thus 

)(),()(),(),()(),)((),)(( ydzxBxdzyBzyBdBxzxdByzxydB +++= , for all Rzyx ∈,, . 
 
MAIN RESULTS 
 
In this section we prove the main results. The above lemmas are useful to prove the following theorem. 
 
Theorem 1: Let R be a 2-torsion free semiprime ring. A Jordan left derivation d and a Jordan left biderivation B are 
orthogonal if and only if 0),()()(),( =+ yzBxdzdyxB , for all Ryx ∈,, .  
 
Proof: Suppose d and B are such that 0),()()(),( =+ yzBxdzdyxB , for all Rzyx ∈,, .  By taking zxz =  in 
this equation, we get 

0),()()(),( =+ yzxBxdzxdyxB . Then 
0),()(),()()(),()(),( =+++ yzxBxdyxzBxdzxdyxBxzdyxB , for all Rzyx ∈,, . 

Then 0),()(),()( =+ yzxBxdyxzBxd , according to  lemma 2. 
In particular 0),()(),()( =−= yzxBxdyxzBxd , for all Rzyx ∈,, . 
 
By left multiplying this equation with ),()( yxzBxd , we have 

),()(),()(),()(),()( yzxBxRdyxzBxdyxzBxRdyxzBxd −= , then 
0),()(),()( =yxzBxRdyxzBxd . 

 
Since R is semiprime, we have 

0),()( =yxzBxd , for all Rzyx ∈,, . 
0),()( =yxRBxd , for all Rzyx ∈,, .  
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Hence by lemma 2, we get 

0),()( =yzRBxd , for all Rzyx ∈,, . Using again lemma 2 in the last equation, we get 
)(),()0(),()( xRdyzByzRBxd == . So d and B are orthogonal. If d and B are orthogonal then 

)(),(0),()( zdyxByzBxd == , by lemma 2.  
 
Thus 0)(),(),()( =+ zdyxByzBxd . 
 
Theorem 2: Let R be a 2-torsion free semiprime ring. A Jordan left derivation d and a Jordan left biderivation B are 
orthogonal if and only if 0),()( =yxBxd  or 0),()( =xyBxd  for all Ryx ∈,, . 
 
Proof:  We assume d and B, such that 

0),()( =yxBxd for all Ryx ∈,, .                                                                  (1) 
 
A linearization of x  , gives  

0),()( =++ yzxBzxd . for all Rzyx ∈,, .We have 

0),())()(( =++ yzxBzdxd .Then 

0),()(),()(),()(),()( =+++ yzBzdyzBxdyxBzdyxBxd . 
 
 By equation (1), we get  

0),()(),()( =+ yzBxdyxBzd , for all Rzyx ∈,, .                                                                                          (2) 
 
Taking zsz =  in equation (2), give 

0),()(),()( =+ yzsBxdyxBzsd   for all Rszyx ∈,,, . 

0),()(),()(),()(),()( =+++ yxBzsdyxBszdyzsBxdyszBxd , ∀ Rszyx ∈,,, .                                   (3) 
 
Let ),()(),()( yxsBzdyzsBxd −=  and ),()(),()( yxzBsdyszBxd −= . 
 
So equation (3) becomes 

0),()(),()(),()(),()( =+−− yxBzsdyxsBzdysBxzdyszBxd  ∀ Rszyx ∈,,, . (4) 
 
We replace z by d(x) in equation (4). Then 

0),()(),()(),()(),()( 2222 =+−− yxBxsdyxsBxdysBxdysBxd  for all Rszyx ∈,,,  (5)                                                                                
 

Then we have 0),()(2 =yxsBxd .                                                                   (6) 
 
By right multiplying (6) with w, we have 
 

0),()(2 =wyxsBxd , for all Rwsyx ∈,,, .                                                                     (7) 
 
By taking sws =  in (6) we get 

0),()(2 =yxswBxd , for all Rwsyx ∈,,,                                                  (8) 
 
From equations (7) and (8) we have  

0),()(),()( 22 =− yxswBxdwyxsBxd , for all Rwsyx ∈,,, . 
 

Then  0)],(,[)(2 =yxBwsxd , for all Rwsyx ∈,,, . 
 

So 0)],(,[)(2 =ymBwRxd , for all Rwmyx ∈,,, .                                               (9) 
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Put xux =  in equation (9), we get 

0)],(,[)(2 =ymBwRxud  for all Ruwmyx ∈,,,, . 

0)],(,[))()()(2)(( 22 =++ ymBwRuxdudxdxud , then 

0)],(,[)()(2 =ymBwRudxd  for all Ruwmyx ∈,,,, . 
 
Since R is 2-torsion free semiprime, we have 

0)],(,[)()( =ymBwRudxd  for all Ruwmyx ∈,,,, .                                                             (10) 
 
Let )()( uzdud =  in equation (10), we get 

0)],(,[)()( =ymBwRuzdxd  for all Ruwmyx ∈,,,, . 

0)],(,[)()( =ymBwRuRdxd  for all Ruwmyx ∈,,,, .  
 
In particular 0)],(,[)()],(,[)( =ymBwRxRdymBwRxd . 
 
Since R is semiprime ring, it implies that 0)],(,[)( =ymBwRxd , for all Rwmyx ∈,,,, .   
 
But 0),(),([)],(),([ =ymBxdRymBxd  for all Rmyx ∈,,, . 

0)],(),([ =ymBxd  for all Rmyx ∈,,, .  
 
Hence )(),(),()( xdymBymBxd =  for each Rmyx ∈,,, . 
 
Therefore equation (2) can be written as  

0),()()(),( =+ yxBmdxdymB for all Rmyx ∈,,, . Thus, using theorem 1, gives the required result. Similarly, 

we can prove that if 0),()( =xyBxd , then d and B are orthogonal. If d and B are orthogonal, then 

)0(),()( =yxRBxd  for all Ryx ∈,, , therefore )0(),()( =yxBxd . Similarly 0),()( =xyBxd . 
 
Theorem 3: Let R be a 2-torsion free semiprime ring. A Jordan left derivation d and a Jordan left biderivation B are 
orthogonal if and only if dB=0. 
 
Proof:   We assume  B and d, such that 0=dB .  By lemma 3, we have 

)(),()(),(),()(),)((),)(( ydzxBxdzyBzyBdBxzxdByzxydB +++= , we get 

0)(),()(),( =+ ydzxBxdzyB .  Now put  xy =  in the above equation. Then 0)(),(2 =xdzxB  . Since R is a 
2-torsion free semiprime ring, 

0)(),( =xdzxB for all   Rzx ∈,                                                                                                    (11) 
 
Let )()( xydxd =  in the equation (11) Then we get  

0)(),( =xydzxB  for all Rzyx ∈,, .                                                                                     (12) 
 
By multiplying left side with )(xd and right side with ),( zxB in the above relation, we have 

0),()(),()( =zxBxydzxBxd , for all Rzyx ∈,, . 

)0(),()(),()( =zxBxRdzxBxd , for all Rzx ∈,, .                                             (13) 
 
Since R is a semiprime ring, then 0),()( =zxBxd , for all Rzx ∈, .                                                                        (14) 
 
Hence by theorem 2, d and B are orthogonal. 
 
If d and B are orthogonal then 0),()( =zysBxd , for all Rzsyx ∈,,,, . Hence 

0),)(()(),()()(),())(()),()(( =++= zydBsxdzyBsdxdzysBxddzysBxdd . 
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The sum of the first two terms is zero. So we have  

0),)(()( =zydBsxd , for all Rzsyx ∈,,,, .                                              (15) 
 
Let ),( zyBx =  and we substitute in equation (15). Then we get 

)0(),)((),)(( =zydBRzydB , for all Rzy ∈, .                       
 
Since R is a semiprime ring, 0),)(( =zydB  for all Rzy ∈, , 

Hence 0=dB .        
 
Theorem 4:  Let R be a 2-torsion free semiprime ring. A Jordan left derivation d and a Jordan left biderivation B are 
orthogonal if and only if dB  is a left biderivation. 
 
Proof: Let B and d be such that dB  is a biderivation. 
Then ),)((),)((),)(( zydBxzxdByzxydB +=  for all Rzyx ∈,, .                                                                    (16) 
 
But by lemma 3, we have 

0)(),()(),(),()(),)((),)(( =+++= ydzxBxdzyBzyBdBxzxdByzxydB , 
for all Rzyx ∈,, .                                                              (17) 
 
From equation (16) and (17), we get 

0)(),()(),( =+ ydzxBxdzyB  for all Rzyx ∈,, .                                                          (18) 
So by the proof of the first part of theorem 3, we have that d and B are orthogonal. 
 
Conversely, let d and B are orthogonal. Theorem 2 implies that 

0),()( =zxBxd  for Rzyx ∈,, .                                                                           (19) 
 
Again, by lemma 3, we get 

0),()(),)((),)(( =+= zyBdBxzxdByzxydB  for each Rzyx ∈,, . 
 
It is clear now that dB  is a left biderivation. 
 
Theorem 5: Assume that R is a 2-torsion free semiprime ring. A Jordan left derivation d and a Jordan left biderivation 
B on R. Then d and B are orthogonal if and only if the following conditions are equivalent: 
(i)  0),()()(),( =+ yxBxdzdyxB . For all Rzyx ∈,, . 

(ii) 0),()( =yxBxd  or  0),()( =xyBxd , for all Ryx ∈,, . 
(iii)  dB = 0  
(iv)  dB is a left biderivation. 
 
Proof: It follows easily from, theorem 1, 2, 3 and 4. 
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