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ABSTRACT 
Modeling count data is one of the most important issues in statistical research. In this paper, a new probability mass 
function is introduced by discretizing the continuous failure model of the Quasi- Lindley distribution. The discrete 
Quasi Lindley (DQL) distribution has been derived and further certain properties of the distribution have been 
discussed. Properties such as the recurrence relations for probabilities, factorial moments and index of dispersion of 
this distribution are also investigated. Estimation of parameters of DQL distributions have been discussed. The size- 
biased, Zero- truncated and Zero- modified forms of DQL distribution have also been investigated. To test its goodness 
of fit, DQL distributions have been fitted to some of well known data sets where discrete Poisson- Lindley distribution 
and discrete gamma distributions have earlier been fitted by others. The results show that, the two parameter DQL 
distribution can provide a better fit than the other derived distributions. It is noted that DL is a particular case of DQL 
distribution. 
 
Key words: Discrete Quasi Lindley distribution, Zero-Modified distribution, Recurrence relations, Index of dispersion, 
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1. INTRODUCTION 
 
Discrete distributions obtained by discretizing a continuous failure time model have appeared in the statistical 
literature. Discrete geometric distribution can be obtained by discretizing the exponential continuous distribution. Some 
of those works are by Nakagawa and Osaki (1975), where the discrete Weibull distribution is obtained; Roy (2004) 
studied the discrete Rayleigh distribution; in Kemp (2008) the discrete half-normal distribution is examined, in Krishna 
and Pundir (2008) the Burr discrete distribution and the Pareto discrete distribution as a particular case of the former 
are analyzed and more recently, Gómez-Déniz et. al (2011) derived a new generalization of the geometric distribution 
obtained from the generalized exponential distribution of Marshall and Olkin (1997). If the underlying continuous 
failure time X has the survival function 𝑆𝑆(𝑥𝑥),  the probability mass function 𝑃𝑃𝑃𝑃(𝑋𝑋 > 𝑥𝑥) of the discrete random variable 
associated with that continuous distribution can be written as 

𝑃𝑃𝑃𝑃(𝑋𝑋 =  𝑥𝑥)  =  𝑆𝑆(𝑥𝑥)  −  𝑆𝑆(𝑥𝑥 +  1), 𝑥𝑥 =  0, 1, 2, . ..                 (1.1) 
 
A two-parameter Quasi Lindley distribution (QLD), of which the Lindley distribution (LD) is a particular case, has 
been introduced by Shanker and Mishra (2013). In this paper we deal with the derivation discrete Quasi- Lindley 
(DQL) distribution which takes values in {0, 1, . . .}. and the study of certain properties of distribution. This new 
distribution is generated by discretizing the continuous survival function of the QL distribution, with parameter 
𝛼𝛼 𝑎𝑎𝑎𝑎𝑎𝑎 𝜃𝜃 which is given by 

𝑓𝑓(𝑥𝑥:𝛼𝛼,𝜃𝜃) =  𝜃𝜃
𝛼𝛼+1

 (𝛼𝛼 + 𝜃𝜃𝜃𝜃) 𝑒𝑒−𝜃𝜃𝜃𝜃 .  𝑥𝑥 > 0. 𝜃𝜃 > 0,𝛼𝛼 > −1                                                (1.2) 
 
The corresponding cumulative distribution function (cdf) is given by 

𝐹𝐹(𝑥𝑥) = 1 −  1+ 𝛼𝛼+ 𝜃𝜃𝜃𝜃
𝛼𝛼+1

 𝑒𝑒−𝜃𝜃𝜃𝜃 ,    𝑥𝑥 > 0, 𝜃𝜃 > 0, 𝛼𝛼 > −1                (1.3) 
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Sankaran (1970) introduced the discrete Poisson-Lindley distribution by combining the Poisson and Lindley 
distributions. Ghitany et al. (2008, 2009) investigated most of the statistical properties of the Lindley distribution, 
showing that it may provide a better fitting than the exponential distribution. Mahmoudi and Zakerzadeh (2010) 
proposed an extended version of the compound Poisson distribution which was obtained by compounding the Poisson 
distribution with the generalized Lindley distribution which is obtained and analyzed by Zakerzadeh and Dolati (2009). 
A new extension of the Lindley distribution, called extended Lindley (EL) distribution, which offers a more flexible 
model for lifetime data was introduced by Bakouch et al. (2012).  
 
Recently, Gómez-Déniz and Calderín-Ojeda (2011) proposed a discretization of the continuous Lindley distribution. 
Zakerzadeh and Dolati (2009) obtained discrete Lindley distribution by discretizing continuous failure rate model. This 
discrete distribution has been proved to be useful in both modeling count data and the collective risk model as an 
alternative to compound Poisson and compound negative binomial models.  
 
Let us consider the survival function of Quasi Lindley distribution  

𝑆𝑆(𝑥𝑥) =  1+𝛼𝛼+𝜃𝜃𝜃𝜃
𝛼𝛼+1

 𝑒𝑒−𝜃𝜃𝜃𝜃 ,   𝑥𝑥 > 0. 𝜃𝜃 > 0, 𝛼𝛼 > −1                (1.4) 
where                  𝜆𝜆 =  𝑒𝑒−𝜃𝜃  and 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = −𝜃𝜃. 
 
The probability mass function (pmf) of two parameter discrete quasi Lindley (DQL) distribution may be obtained by 
discretizing the survival function of quasi Lindley distribution 

𝑝𝑝𝑥𝑥 = 𝑃𝑃𝑃𝑃(𝑋𝑋 = 𝑥𝑥) 
     = 𝜆𝜆𝑥𝑥

(𝛼𝛼+1)
  {(𝛼𝛼 + 1)(1 − 𝜆𝜆) + {(𝜆𝜆 − 1) 𝑥𝑥 + 𝜆𝜆} log 𝜆𝜆}  , for x = 0, 1,…, 

either  𝛼𝛼 > max �−1 + 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 − 𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆
1−𝜆𝜆

, −1� 𝑜𝑜𝑜𝑜  𝛼𝛼 < min �−1 + 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 − 𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆
1−𝜆𝜆

, −1�                                    
        𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 0 < 𝜆𝜆 < 1           (1.5) 

 
It is reduced to the pmf of discrete Lindley (DL) distribution as 

𝑝𝑝𝑥𝑥 = 𝜆𝜆𝑥𝑥

1−𝑙𝑙𝑙𝑙𝑙𝑙𝜆𝜆
[𝜆𝜆𝑙𝑙𝑙𝑙𝑙𝑙𝜆𝜆 + (1 − 𝜆𝜆)(1 − 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑥𝑥+1)] , x=0, 1,…               (1.6) 

 
putting 𝛼𝛼 =  −𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑖𝑖𝑖𝑖 (5), See Gómez-Déniz and Calderín-Ojeda (2011). 
 
One of the advantages of the DQL model is that it is over-dispersed (variance is greater than the mean) being, therefore, 
more flexible than the Poisson distribution to model actuarial data that commonly include the over-dispersion 
phenomenon. 
 
Proposition 1: The probability generating function (pgf) of a discrete random variable following the DQL distribution 
(1.5) is given by 

G(t)=[(1−𝜆𝜆)(𝛼𝛼+1)+𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆 ](1−𝜆𝜆𝜆𝜆 )−(1−𝜆𝜆)𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆
(𝛼𝛼+1)(1−𝜆𝜆𝜆𝜆 )2  .                  (1.7) 

 
Proposition 2: The cumulative distribution function (cdf) of a discrete random variable following the  pmf  (1.5) is 
given by 

𝐹𝐹(𝑥𝑥) = 1
𝛼𝛼+1

[1 − 𝜆𝜆𝑥𝑥+1 + 𝛼𝛼(1 − 𝜆𝜆𝑥𝑥+1) + (𝑥𝑥 + 1)𝜆𝜆𝑥𝑥+1𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙]                               (1.8) 
 
The survival function of DQL distribution can be obtained from the distribution function as 

𝑆𝑆𝐷𝐷𝐷𝐷𝐷𝐷(𝑥𝑥) = 1 − 𝐹𝐹(𝑥𝑥)   

                = 𝜆𝜆𝑥𝑥+1{1+𝛼𝛼−(𝑥𝑥+1)𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 }
𝛼𝛼+1

                                                                                                           (1.9)                   
 
The failure or hazard rate may be obtained as 

𝑟𝑟(𝑥𝑥) = 𝑃𝑃(𝑋𝑋 < 𝑥𝑥|𝑋𝑋 < 𝑥𝑥 − 1) = 𝑃𝑃(𝑋𝑋=𝑥𝑥)
𝑃𝑃(𝑋𝑋>𝑥𝑥−1)

                                        

          = (𝛼𝛼+1)(1−𝜆𝜆)+{(𝜆𝜆−1)𝑥𝑥+𝜆𝜆}𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
1+𝛼𝛼−𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥

,                                                                                                    (1.10) 
 
The reversed failure rate may be obtained as 

𝑟𝑟∗(𝑥𝑥) = 𝑃𝑃(𝑋𝑋=𝑥𝑥)
𝑃𝑃(𝑋𝑋≤𝑥𝑥)

              

          = 𝜆𝜆𝑥𝑥 [((𝛼𝛼+1)(1−𝜆𝜆)+{(𝜆𝜆−1)𝑥𝑥+𝜆𝜆}𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 ]
{1−𝜆𝜆𝑥𝑥+1+𝛼𝛼(1−𝜆𝜆𝑥𝑥+1)+(𝑥𝑥+1)𝜆𝜆𝑥𝑥+1𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 }

                                                                                        (1.11) 
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The second rate of failure is obtained as 

𝑟𝑟∗∗(𝑥𝑥) = 𝑙𝑙𝑙𝑙𝑙𝑙 � 𝑆𝑆(𝑥𝑥)
𝑆𝑆(𝑥𝑥+1)

�           

            = 𝑙𝑙𝑙𝑙𝑙𝑙 � {(𝑥𝑥+2)𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 −1}
𝜆𝜆{(𝑥𝑥+3)𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 −1}

� = 𝑙𝑙𝑙𝑙𝑙𝑙 �1
𝜆𝜆
�(𝑥𝑥+2)𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 −1

(𝑥𝑥+3)𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 −1
��.                                                                   (1.12) 

 
The survival function S(x), failure rate 𝑟𝑟(𝑥𝑥), reversed hazard rate 𝑟𝑟∗(𝑥𝑥) and second rate of failure 𝑟𝑟∗∗(𝑥𝑥) of one 
parameter discrete Lindley distribution may be obtained by putting 𝛼𝛼 = −𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 in the equation  (1.9), (1.10),(1.11), and 
(1.12) respectively. 
 
2.  RECURRENCE RELATIONS OF TWO- PARAMETER DQL DISTRIBUTION 
 
Proposition 3: The proportion of probabilities of DQL distribution may be given as 

𝑃𝑃𝑥𝑥+1
𝑃𝑃𝑥𝑥

=  𝜆𝜆 �1 + (2𝜆𝜆−1)𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
(𝛼𝛼+1)(1−𝜆𝜆)+{(𝜆𝜆−1)𝑥𝑥+𝜆𝜆}𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

�,      

either  𝛼𝛼 > max �−1 + 𝑛𝑛𝑛𝑛𝑜𝑜𝑜𝑜𝑜𝑜 − 𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆
1−𝜆𝜆

, −1� 𝑜𝑜𝑜𝑜  𝛼𝛼 < min �−1 + 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 − 𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆
1−𝜆𝜆

, −1� 
where  0 < 𝜆𝜆 < 1.                   (2.1) 
 

(A) Recurrence Relation for Probabilities 
 

The probability recurrence relation for two parameter DQL distribution can also be obtained as 
𝑝𝑝𝑟𝑟+2 = 𝜆𝜆(2𝑝𝑝𝑟𝑟+1 − 𝜆𝜆𝑝𝑝𝑟𝑟) , 𝑟𝑟  ≥ 0                                                          (2.2) 

 
where  𝑝𝑝0 = (𝛼𝛼+1)(1−𝜆𝜆)+𝜆𝜆  𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

𝛼𝛼+1
   and   𝑝𝑝1 = 𝜆𝜆 (𝛼𝛼+1)(1−𝜆𝜆)+(2𝜆𝜆−1)𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

𝛼𝛼+1
, 

 
The higher order probabilities may be computed using the recurrence relation (2.2). Similarly, the higher ordered 
probabilities of one parameter DL distribution can also be computed, putting 𝛼𝛼 = −𝑙𝑙𝑙𝑙𝑙𝑙𝜆𝜆  in recurrence relation (2.2).  
       
(B) Factorial Moment Recurrence Relation 

 
Proposition 4: The factorial moment generating function 𝑀𝑀𝑥𝑥(𝑡𝑡) 𝑎𝑎𝑎𝑎𝑎𝑎  𝑟𝑟𝑡𝑡ℎ  ordered factorial moment 𝜇𝜇[𝑟𝑟]for two 
parameter DQL distribution can be written as 

𝑀𝑀𝑥𝑥(𝑡𝑡) = [(𝛼𝛼+1)(1−𝜆𝜆)+𝜆𝜆𝑙𝑙𝑙𝑙𝑙𝑙𝜆𝜆](1−𝜆𝜆−𝜆𝜆𝜆𝜆 )−(1−𝜆𝜆)𝜆𝜆(1+𝑡𝑡) log 𝜆𝜆)
(1−𝜆𝜆−𝜆𝜆𝜆𝜆 )2 (𝛼𝛼+1 )

, and               (2.3) 

𝜇𝜇[𝑟𝑟] = 𝑟𝑟 !𝜆𝜆𝑟𝑟 [(𝛼𝛼+1)(1−𝜆𝜆)−𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ]
(1−𝜆𝜆)𝑟𝑟+1(𝛼𝛼+1)

  respectively. 
 

The recurrence relation for factorial moment can be obtained as 
𝜇𝜇[𝑟𝑟+2] = 𝜆𝜆(𝑟𝑟+2)

(1−𝜆𝜆)2 [2(1 − 𝜆𝜆)𝜇𝜇[𝑟𝑟+1] − 𝜆𝜆(𝑟𝑟 + 1)𝜇𝜇[𝑟𝑟]],                (2.4)  
where 

𝜇𝜇[1] = 𝜆𝜆[(𝛼𝛼+1)(1−𝜆𝜆)−𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 ]
(1−𝜆𝜆)2(𝛼𝛼+1)

 , 

 𝜇𝜇[2] = 2𝜆𝜆2[(𝛼𝛼+1)(1−𝜆𝜆)−2𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 ]
(1−𝜆𝜆)3(𝛼𝛼+1)

 ,   𝜇𝜇[3] = 6𝜆𝜆3[(𝛼𝛼+1)(1−𝜆𝜆)−3𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 ]
(1−𝜆𝜆)4(𝛼𝛼+1)

 ,  etc. 
 
From the above factorial moments, the mean 𝜇𝜇 and variance 𝜎𝜎2 can be derived as 

𝜇𝜇 = 𝜆𝜆[(𝛼𝛼+1)(1−𝜆𝜆)−𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 ]
(1−𝜆𝜆)2(𝛼𝛼+1)

                   (2.5) 

𝜎𝜎2 = 𝜆𝜆[(𝛼𝛼+1)2(1−𝜆𝜆)2−(𝛼𝛼+1)(1−𝜆𝜆)(1+𝜆𝜆)𝑙𝑙𝑙𝑙𝑙𝑙𝜆𝜆−𝜆𝜆(𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 )2]    
(1−𝜆𝜆)4(𝛼𝛼+1)2                               (2.6) 

 
Table-1: Mean of the DQL distribution for different values of the parameters 𝛼𝛼 and 𝜆𝜆. 

𝛼𝛼\𝜆𝜆 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
0.0 .395 .753 1.166 1.685 2.386 3.416 5.107 8.463 18.482 
0.2 .348 .669 1.043 1.515 2.155 3.096 4.645 7.719 16.902 
0.4 .314 .609 .955 1.394 1.990 2.868 4.315 7.188 15.773 
0.6 .289 .564 .889 1.303 1.866 2.697 4.067 6.789 14.927 
0.8 .269 .529 .838 1.232 1.770 2.564 3.875 6.479 14.268 
1.0 .253 .501 .797 1.176 1.693 2.458 3.720 6.231 13.741 
1.2 .240 .479 .764 1.129 1.630 2.371 3.594 6.029 13.310 
1.4 .230 .460 .736 1.091 1.578 2.298 3.489 5.860 12.951 
1.6 .220 .443 .712 1.058 1.533 2.237 3.400 5.716 12.647 
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Table-2: Variance of the DQL distribution for different values of the parameters 𝛼𝛼 and 𝜆𝜆. 

𝛼𝛼\𝜆𝜆 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
0.0 .39 .81 1.44 2.45 4.24 7.74 15.80 40.25 180.25 
0.2 .36 .77 1.38 2.37 4.13 7.59 15.53 39.64 177.70 
0.4 .33 .72 1.31 2.28 3.99 7.35 15.08 38.53 172.81 
0.6 .31 .69 1.26 2.19 3.85 7.11 14.60 37.32 167.48 
0.8 .29 .65 1.21 2.11 3.72 6.87 14.14 36.17 162.34 
1.0 .28 .63 1.16 2.04 3.60 6.66 13.71 35.10 157.60 
1.2 .26 .60 1.12 1.98 3.49 6.47 13.33 34.14 153.32 
1.4 .25 .58 1.09 1.92 3.40 6.31 12.99 33.28 149.46 
1.6 .25 .57 1.06 1.87 3.32 6.15 12.69 32.50 145.99 

 

        

      
 
It is noted that the mean and variance increases rapidly  as λ increased but it decreases slowly as 𝛼𝛼 increased. 
 
3. SIZE –BIASED DISCRETE QUASI LINDLEY (SBDQL) DISTRIBUTION 
 
Size biased distribution arises naturally in practice when observations from a sample are recorded with unequal 
probabilities, having probability proportional to size (PPS). It is a more general form known as weighted distributions. 
Fisher(1934) first introduced these distributions to model ascertainment bias which were formalized by Rao (1965) in a 
unifying theory. If the random variable X has pmf 𝑓𝑓(𝑥𝑥; 𝜃𝜃), with unknown parameter 𝜃𝜃, then the corresponding 
weighted distribution is of the form 𝑓𝑓𝑤𝑤(𝑥𝑥;𝜃𝜃) = 𝑤𝑤(𝑥𝑥)𝑓𝑓(𝑥𝑥 ;𝜃𝜃)

𝐸𝐸[𝑤𝑤(𝑥𝑥)]
, where 𝑤𝑤(𝑥𝑥) is a non-negative weight function such that 

𝐸𝐸[𝑤𝑤(𝑥𝑥)].  
𝑓𝑓𝑠𝑠(𝑥𝑥,𝛼𝛼) = 𝑥𝑥𝑝𝑝𝑥𝑥

𝜇𝜇
= 𝑥𝑥𝑥𝑥𝑥𝑥−1 [(𝛼𝛼+1)(1−𝜆𝜆)+{(𝜆𝜆−1) 𝑥𝑥+𝜆𝜆} log 𝜆𝜆](1−𝜆𝜆)2

(𝛼𝛼+1)(1−𝜆𝜆)−log 𝜆𝜆
    x=1, 2, ...             (3.1) 
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A special case of interest arise when the weight function 𝑤𝑤(𝑥𝑥) = 𝑥𝑥𝛼𝛼 . Such distributions are known as sized biased 
distributions of order 𝛼𝛼. The most common case of size-biased distribution occur when  𝛼𝛼 = 1 and 𝛼𝛼 = 2, these special 
cases may be termed as length (size) and area biased respectively. If a random variable 𝑋𝑋 has pmf 𝑓𝑓(𝑥𝑥; 𝜃𝜃), then the pmf 
of size-biased QL distribution may obtained as  
 

𝑓𝑓𝑠𝑠(𝑥𝑥,𝛼𝛼) = 𝑥𝑥𝑝𝑝𝑥𝑥
𝜇𝜇

, 𝜇𝜇  denotes the mean of the DQL distribution 

              = 𝑥𝑥𝑥𝑥𝑥𝑥−1 [(𝛼𝛼+1)(1−𝜆𝜆)+{(𝜆𝜆−1) 𝑥𝑥+𝜆𝜆} log 𝜆𝜆](1−𝜆𝜆)2

(𝛼𝛼+1)(1−𝜆𝜆)−log 𝜆𝜆
 .   x=1, 2, ...                           (3.2) 

 
A size- biased quasi Poisson-Lindley distribution, of which the size-biased Poisson-Lindley distribution of Ghitany and 
Al-Mutairi (2008) is a particular case. 
  
Proposition 3: The probability generating function of a discrete random variable following the DQL distribution (5) is 
given by 

𝐺𝐺𝑠𝑠(𝑡𝑡) = 𝑡𝑡[(1−𝜆𝜆)(𝛼𝛼+1)+𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆 ](1−𝜆𝜆)2(1−𝜆𝜆𝜆𝜆 )−𝑡𝑡(1−𝜆𝜆)3(1+𝜆𝜆𝜆𝜆 )𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
[(𝛼𝛼+1)(1−𝜆𝜆)−log 𝜆𝜆](1−𝜆𝜆𝑡𝑡)3   .              (3.3) 

 
Probability recurrence relation of the DQL distribution is obtained as 

𝑝𝑝𝑟𝑟 = 3𝜆𝜆𝑝𝑝𝑟𝑟−1 − 3𝜆𝜆2𝑝𝑝𝑟𝑟−2 + 𝜆𝜆3𝑝𝑝𝑟𝑟−3     for 𝑟𝑟 > 3, and                (3.4) 
 

𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒    𝑝𝑝1 = [(𝛼𝛼+1)(1−𝜆𝜆)+(2𝜆𝜆−1) log 𝜆𝜆](1−𝜆𝜆)2

(𝛼𝛼+1)(1−𝜆𝜆)−log 𝜆𝜆
 ,       𝑝𝑝2 = 2𝜆𝜆 [(𝛼𝛼+1)(1−𝜆𝜆)+(3𝜆𝜆−2) log 𝜆𝜆](1−𝜆𝜆)2

(𝛼𝛼+1)(1−𝜆𝜆)−log 𝜆𝜆
 

𝑝𝑝3 = 3𝜆𝜆2 [(𝛼𝛼+1)(1−𝜆𝜆)+(4𝜆𝜆−3) log 𝜆𝜆](1−𝜆𝜆)2

(𝛼𝛼+1)(1−𝜆𝜆)−log 𝜆𝜆
.       

    
The factorial moments of size biased discrete quasi Lindley (SBDQL) distribution may be obtained as 

𝜇𝜇[𝑟𝑟] = 𝑟𝑟! 𝜆𝜆𝑟𝑟−1 �(𝛼𝛼+1)(1−𝜆𝜆)(𝑟𝑟+𝜆𝜆)−�𝑟𝑟2+(2𝑟𝑟+1)𝜆𝜆� log 𝜆𝜆�
[(𝛼𝛼+1)(1−𝜆𝜆)−log 𝜆𝜆](1−𝜆𝜆)𝑟𝑟

                                      (3.5) 
   
from its factorial moment generating function (fmgf) 

𝑀𝑀𝑠𝑠(𝑡𝑡) =
(1 + 𝑡𝑡)[(1 − 𝜆𝜆)(𝛼𝛼 + 1) + 𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆](1 − 𝜆𝜆)2(1 − 𝜆𝜆 − 𝜆𝜆𝜆𝜆) − (1 − 𝜆𝜆)3(1 + 𝜆𝜆 + 𝜆𝜆𝜆𝜆)(1 + 𝑡𝑡)𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

[(𝛼𝛼 + 1)(1 − 𝜆𝜆) − log 𝜆𝜆](1 − 𝜆𝜆 − 𝜆𝜆𝑡𝑡)3  

 
Factorial recurrence relation may also be obtained as 

𝜇𝜇[𝑟𝑟] = 1
(1−𝜆𝜆)3 [3(1 − 𝜆𝜆)2𝜆𝜆𝑟𝑟𝑟𝑟[𝑟𝑟−1] − 3(1 − 𝜆𝜆)𝜆𝜆2𝑟𝑟(𝑟𝑟 − 1)𝜇𝜇[𝑟𝑟−2] + 𝜆𝜆3𝑟𝑟(r − 1)(r − 2)𝜇𝜇[𝑟𝑟−3]]          (3.6) 

            for   𝑟𝑟 > 3,  
where  

𝜇𝜇[1] = [(𝛼𝛼+1)(1−𝜆𝜆)(1+𝜆𝜆)−(7+3𝜆𝜆) log 𝜆𝜆]
[(𝛼𝛼+1)(1−𝜆𝜆)−log 𝜆𝜆](1−𝜆𝜆)

  

𝜇𝜇[2] = 2𝜆𝜆 [(𝛼𝛼+1)(1−𝜆𝜆)(2+𝜆𝜆)−(4+5𝜆𝜆) log 𝜆𝜆]
[(𝛼𝛼+1)(1−𝜆𝜆)−log 𝜆𝜆](1−𝜆𝜆)2    

𝜇𝜇[3] = 6𝜆𝜆2 [(𝛼𝛼+1)(1−𝜆𝜆)(3+𝜆𝜆)−(9+7𝜆𝜆) log 𝜆𝜆]
[(𝛼𝛼+1)(1−𝜆𝜆)−log 𝜆𝜆](1−𝜆𝜆)3   

 
4. ZERO- TRUNCATED DISCRETE QUASI LINDLEY (ZTDQL) DISTRIBUTION 
 
When the data to be modeled originate from a generating mechanism that structurally excludes zero counts, discrete 
quasi–Lindley distribution must be adjusted to count for the missing zeros. In this paper we consider the zero-truncated 
quasi–Lindley (ZTDQL) distribution with the pmf 

𝑃𝑃𝑍𝑍(𝑋𝑋 = 𝑥𝑥) = 𝜆𝜆𝑥𝑥−1 [(𝛼𝛼+1)(1−𝜆𝜆)+{(𝜆𝜆−1) 𝑥𝑥+𝜆𝜆} log 𝜆𝜆]
(𝛼𝛼+1)−log 𝜆𝜆

    𝑥𝑥 = 1, 2, … ….                (4.1) 

   where               𝑃𝑃𝑍𝑍(𝑋𝑋 = 0) = [(𝛼𝛼+1)(1−𝜆𝜆)+𝜆𝜆 log 𝜆𝜆]
(𝛼𝛼+1)

. 
 

Proposition 4: The probability generating function of a discrete random variable following the ZTDQL distribution (5) 
is given by 

𝐺𝐺𝑧𝑧(𝑡𝑡) = [{(1−𝜆𝜆)(𝛼𝛼+1)+𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆 }(1−𝜆𝜆𝜆𝜆 )−𝜆𝜆𝜆𝜆 (1−𝜆𝜆)𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 ]
[(𝛼𝛼+1)−log 𝜆𝜆](1−𝜆𝜆𝑡𝑡)2                   (4.2) 

 
5. ZERO- MODIFIED DISCRETE QUASI LINDLEY (ZMDQL) DISTRIBUTION 

 
In recent years there has been considerable and growing interest in modeling zero-modified count data. Zero-modified 
DQL model address the problem, that the data display a higher fraction of zeros, or non occurrences, than can be 
possibly explained through any fitted standard count model. The zero-modified distributions are appropriate  
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alternatives for modeling clustered samples when the population consists of two sub-populations, one containing only 
zeros, while in the other, counts from a discrete distribution are observed. 

𝑃𝑃𝑧𝑧[𝑋𝑋 = 0] = 𝜔𝜔 + (1 − 𝜔𝜔)𝑃𝑃0  
                 = 𝜔𝜔 + (1 − 𝜔𝜔) �(𝛼𝛼+1)(1−𝜆𝜆)+𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆

𝛼𝛼+1
�      

 
𝑃𝑃𝑧𝑧[𝑋𝑋 = 𝑥𝑥] = (1 − 𝜔𝜔)𝜆𝜆𝑥𝑥 [(𝛼𝛼+1)(1−𝜆𝜆)+{(𝜆𝜆−1) 𝑥𝑥+𝜆𝜆} log 𝜆𝜆]

(𝛼𝛼+1)
       x=1, 2, ...   

𝛼𝛼 ≥ 0, 0 < 𝜆𝜆 < 1, 𝜔𝜔 ≥
−𝑃𝑃0

1 − 𝑃𝑃0
 

 
𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑃𝑃𝑧𝑧[𝑋𝑋 = 𝑥𝑥] denotes the probability of ZMDQL distribution.  

 
6. ESTIMATION OF PARAMETER OF DQL DISTRIBUTION ESTIMATION OF 𝜆𝜆  IN TERMS OF MEAN 
AND VARIANCE OF DQL DISTRIBUTION 
 
Form 𝜇𝜇 = 𝜆𝜆[(𝛼𝛼+1)(1−𝜆𝜆)−𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 ]

(1−𝜆𝜆)2(𝛼𝛼+1)
  the mean  of DQL distribution, the value of 

 𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆 𝑚𝑚𝑚𝑚𝑚𝑚 𝑏𝑏𝑏𝑏 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑎𝑎𝑎𝑎 (1 − 𝜆𝜆)(𝛼𝛼 + 1) − (𝜆𝜆 − (1 − 𝜆𝜆)𝜇𝜇) . Now putting the value of  𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆 in  
  

𝜎𝜎2 = 𝜆𝜆[(𝛼𝛼+1)2(1−𝜆𝜆)2−(𝛼𝛼+1)(1−𝜆𝜆)(1+𝜆𝜆)𝑙𝑙𝑙𝑙𝑙𝑙𝜆𝜆−𝜆𝜆(𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 )2]    
(1−𝜆𝜆)4(𝛼𝛼+1)2   the variance  of DQL distribution, the quadratic equation in 𝜆𝜆 may 

be obtained as  
𝜆𝜆2𝐴𝐴 − 2𝜆𝜆𝜆𝜆 + 𝐶𝐶 = 0                                              (6.1) 

 
Given a random sample 𝑥𝑥1, 𝑥𝑥2,  … 𝑥𝑥𝑛𝑛of size n from the DQL distribution with the pmf (1), the moment estimate 𝜆̂𝜆 of 
DQL distribution may be obtained from the quadratic equation (6.1) as 

𝜆̂𝜆 = 𝐵𝐵±�𝐵𝐵2−𝐴𝐴𝐴𝐴
𝐴𝐴

 ,                      (6.2) 
where                   𝐴𝐴 = 𝜎𝜎2 + 𝜇𝜇2 + 3𝜇𝜇 + 2,   𝐵𝐵 = 𝜎𝜎2 + 𝜇𝜇2 + 𝜇𝜇   and    𝐶𝐶 = 𝜎𝜎2 + 𝜇𝜇2 − 𝜇𝜇 .     
 
7. AN APPLICATION 
 
In the last two decades, standard discrete distributions such as geometric and negative binomials have been used to 
model lifetime data. However, there is a need to find more plausible discrete lifetime distributions to fit different types 
of lifetime data. In this article, discrete Quasi-Lindley distribution has been investigated by discretizing the continuous 
Quasi- Lindley distribution. Two sets of real data from Sankaran (1970) and one set of data on distribution of number 
of European red mites on apple leaves have been considered for the fitting of QPL distribution. The first set of data 
represents the mistakes in copying groups of random digits and the second set are the number of accidents to 647 
women working on high explosive shells in 5 weeks. ### 
 
8. GOODNESS OF FIT 

 
The fittings of the two-parameter DQL distribution based on three data-sets have been presented in the following 
tables. The expected frequencies according to the one parameter Poisson- Lindley with parameter 𝜃𝜃 in Table 3 
presented by Sankaran (1970), two parameter Poisson- Lindley distributions with parameter 𝜃𝜃 and 𝛼𝛼  in Table 4 
presented by Shanker et al. (2012) and two parameter discrete gamma with parameter k and 𝜃𝜃 in Table 5 presented by 
Chakraborty an Chakravarty (2012) have also been given for ready comparison with DQL distribution. The estimates of 
the parameters have been obtained by the method of moments. 
 

Table-3: Observed and expected frequencies for mistakes in copying groups of random digits. 
No. of errors 

per group Observed   frequencies Expected frequencies 
Poisson- Lindley (𝜃𝜃) Poisson- Lindley (𝜃𝜃,𝛼𝛼) DQL (𝛼𝛼, 𝜆𝜆) 

0 
1 
2 
3 
4 

35 
11 
8 
4 
2 

33.1 
15.3 
6.8 
2.9 
1.2 

32.4 
15.8 
7.0 
2.9 
1.9 

31.34 
15.77 
7.72 
3.63 
1.54 

60 
 
 
𝜒𝜒2 

𝑃𝑃 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 

60 
𝜃𝜃� =1.743 

 
2.20 

0.1380 

60 
𝛼𝛼� = 2.61204 
𝜃𝜃� = 5.22337 

2.11 
.3482 

60 
𝛼𝛼� = −3.89024 
𝜆𝜆 = 0.586021 

2.01 
0.366 
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Table-4: Observed and expected frequencies for distribution of Pyrausta nublilalis in 1937. 

No. of 
accidents 

 
Observed   frequencies 

Expected frequencies 

Poisson-Lindley (𝜃𝜃) Poisson- Lindley (𝜃𝜃,𝛼𝛼) DQL (𝛼𝛼, 𝜆𝜆) 
0 
1 
2 
3 
4 
5 

33 
12 
6 
3 
1 
1 

31.49 
14.16 
6.09 
2.54 
1.04 
0.42 

31.9 
13.8 
5.9 
2.5 
1.1 
0.8 

30.74 
13.98 
6.37 
2.93 
1.37 
0.61 

56 
 

𝜒𝜒2 
𝑃𝑃 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 

56 
𝜃𝜃� = 1.8082 

 
4.82  0.1855 

56 
𝛼𝛼� = 0.2573 
𝜃𝜃� = 0.39249 

0.36 
0.8353 

56 
𝛼𝛼� = −24.3726 
𝜆̂𝜆 = 0.466893 

0.46 
0.7945 

 
Table-5: Distribution of number of European red mites on apple leaves 

European red mites 
 Observed   frequencies 

Expected frequencies 

𝑑𝑑𝑑𝑑(𝑘𝑘,𝜃𝜃) NBD(r,p) DQL (𝛼𝛼, 𝜆𝜆) 
0 
1 
2 
3 
4 
5 
6 
7 
8 

70 
38 
17 
10 
9 
3 
2 
1 
0 

69.67 
37.49 
20.02 
10.67 
5.69 
3.03 
1.61 
.86 
.96 

69.49 
37.6 
20.1 
10.7 
5.69 
3.02 
1.6 

0.85 
0.95 

66.63 
37.96 
21.25 
11.81 
6.39 
3.26 
1.69 
0.79 
0.23 

150 
 

 
𝜒𝜒2 

𝑃𝑃 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 

150 
𝑘𝑘� = 1.0078 
𝜃𝜃� = 1.5830 

2.89 
0.7169 

150 
𝑟̂𝑟 = 1.0245 
𝑝̂𝑝 = 0.5281 

2.91 
0.7139 

150 
𝛼𝛼� = −4.6625 
𝜆̂𝜆 = 0.63461 

2.36 
0.7974 

 
The fitting of two parameter DQL distribution along with  𝜒𝜒2 and p- values has been presented to three data-sets.  From 
the above tables it is observed that DQL distribution provides closer fits.  
 
9. CONCLUSION 
 
Two-parameter DQL distribution has been introduced, of which the one-parameter DL is a particular case, for 
modeling waiting and survival time’s data. Several properties of the two-parameter DQL, such as moments, failure rate 
function, mean residual life function, estimation of parameters by the method of maximum likelihood and the method 
of moments have been discussed. The properties of size- biased and Zero- truncated version of DQL distribution have 
also been investigated. Finally, the proposed distribution has been fitted to a number of data sets relating to waiting and 
survival times to test its goodness of fit to which earlier the one-parameter DL has been fitted. It is observed that two-
parameter DQL provides better fits than those by the DL and hence it should be preferred to the DQL while modeling 
count data-sets. 
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