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ABSTRACT

Modeling count data is one of the most important issues in statistical research. In this paper, a new probability mass
function is introduced by discretizing the continuous failure model of the Quasi- Lindley distribution. The discrete
Quasi Lindley (DQL) distribution has been derived and further certain properties of the distribution have been
discussed. Properties such as the recurrence relations for probabilities, factorial moments and index of dispersion of
this distribution are also investigated. Estimation of parameters of DQL distributions have been discussed. The size-
biased, Zero- truncated and Zero- modified forms of DQL distribution have also been investigated. To test its goodness
of fit, DQL distributions have been fitted to some of well known data sets where discrete Poisson- Lindley distribution
and discrete gamma distributions have earlier been fitted by others. The results show that, the two parameter DQL
distribution can provide a better fit than the other derived distributions. It is noted that DL is a particular case of DQL
distribution.

Key words: Discrete Quasi Lindley distribution, Zero-Modified distribution, Recurrence relations, Index of dispersion,
Parameter Estimation and Goodness of fit.

1. INTRODUCTION

Discrete distributions obtained by discretizing a continuous failure time model have appeared in the statistical
literature. Discrete geometric distribution can be obtained by discretizing the exponential continuous distribution. Some
of those works are by Nakagawa and Osaki (1975), where the discrete Weibull distribution is obtained; Roy (2004)
studied the discrete Rayleigh distribution; in Kemp (2008) the discrete half-normal distribution is examined, in Krishna
and Pundir (2008) the Burr discrete distribution and the Pareto discrete distribution as a particular case of the former
are analyzed and more recently, Gomez-Déniz et. al (2011) derived a new generalization of the geometric distribution
obtained from the generalized exponential distribution of Marshall and Olkin (1997). If the underlying continuous
failure time X has the survival function S(x), the probability mass function Pr(X > x) of the discrete random variable
associated with that continuous distribution can be written as

Pr(X =x) =S(x) —S(x+ 1),x =0,1,2,.. (1.1)

A two-parameter Quasi Lindley distribution (QLD), of which the Lindley distribution (LD) is a particular case, has
been introduced by Shanker and Mishra (2013). In this paper we deal with the derivation discrete Quasi- Lindley
(DQL) distribution which takes values in {0, 1, . . .}. and the study of certain properties of distribution. This new
distribution is generated by discretizing the continuous survival function of the QL distribution, with parameter
a and 6 which is given by

flx:a,0) = a%(a+6x)e_9".x>0.9>0,a>—1 (1.2)
The corresponding cumulative distribution function (cdf) is given by
F(x)=1—we_9x, x>0,0>0 a>-1 (1.3)
a+1 .
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Sankaran (1970) introduced the discrete Poisson-Lindley distribution by combining the Poisson and Lindley
distributions. Ghitany et al. (2008, 2009) investigated most of the statistical properties of the Lindley distribution,
showing that it may provide a better fitting than the exponential distribution. Mahmoudi and Zakerzadeh (2010)
proposed an extended version of the compound Poisson distribution which was obtained by compounding the Poisson
distribution with the generalized Lindley distribution which is obtained and analyzed by Zakerzadeh and Dolati (2009).
A new extension of the Lindley distribution, called extended Lindley (EL) distribution, which offers a more flexible
model for lifetime data was introduced by Bakouch et al. (2012).

Recently, Gémez-Déniz and Calderin-Ojeda (2011) proposed a discretization of the continuous Lindley distribution.
Zakerzadeh and Dolati (2009) obtained discrete Lindley distribution by discretizing continuous failure rate model. This
discrete distribution has been proved to be useful in both modeling count data and the collective risk model as an
alternative to compound Poisson and compound negative binomial models.

Let us consider the survival function of Quasi Lindley distribution

ﬂmzl%fi—“,x>ae>aa>—1 (1.4)

where A= e %andlog = —6.

The probability mass function (pmf) of two parameter discrete quasi Lindley (DQL) distribution may be obtained by
discretizing the survival function of quasi Lindley distribution
m=ﬁw—@

{la+1DA -1 +{(A—1)x+ A}logA} ,forx=0,1,.

(a+1)
either a > max( 1 + nlogA — 'uog'l 1) or a< min( 1 + nlogd — Mogj —1)
where 0 <1< 1 (1.5)
It is reduced to the pmf of dlscrete Lindley (DL) distribution as
Pr = [/Uogl + (1= —log2*™h)], x=0, 1,... (1.6)

putting « = —log4 in (5), See Gomez-Déniz and Calderin-Ojeda (2011).

One of the advantages of the DQL model is that it is over-dispersed (variance is greater than the mean) being, therefore,
more flexible than the Poisson distribution to model actuarial data that commonly include the over-dispersion
phenomenon.

Proposition 1: The probability generating function (pgf) of a discrete random variable following the DQL distribution
(1.5) is given by

[(1-1) (@+1)+AlogA 1(1—A¢)—(1—A)AtlogA
(a+1)(1-1t)2 '

G()= (1.7)

Proposition 2: The cumulative distribution function (cdf) of a discrete random variable following the pmf (1.5) is
given by
Fx) = —[1 = A+ 4 a(1 — 2541 + (x + 1A+ oga] (1.8)

The survival function of DQL distribution can be obtained from the distribution function as

SpoL x)=1-F(x)
_ lx+1{1+a—(x+1)logl}

a+1 (19)
The failure or hazard rate may be obtained as
_ _ _ PX=x)
rx) =PX <x|X<x-1)= =
_ (@+1)(A-D)+H((A-1)x+A}ogh
- 1+a—xlogA ! (1.10)
The reversed failure rate may be obtained as
r*(x) — P(X=x)
P(X<x)
A [((a+1)(A-D)+{(A—1)x+2}logA] (1 11)

T A-2* a2 D)+ (x+1)A¥ TLloga )
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The second rate of failure is obtained as

. _ S(x)
" (x) = log [S(x+1)
_ {(x+2)logr -1} ] _ l (x+2)logr —1
= log A{x+3)logr—13] log [/1 {(x+3)log/1 —1}]' (1.12)

The survival function S(x), failure rate r(x), reversed hazard rate r*(x) and second rate of failure r**(x) of one
parameter discrete Lindley distribution may be obtained by putting @ = —logA in the equation (1.9), (1.10),(1.11), and
(1.12) respectively.

2. RECURRENCE RELATIONS OF TWO- PARAMETER DQL DISTRIBUTION
Proposition 3: The proportion of probabilities of DQL distribution may be given as

Pri1 _ (22-1)logA
Py ’1[1 +(a+1)(1 -D+{(A- 1)x+l}log/1]'

either @ > max (—1 + nlogA — Mo_gj , —1) or a < min( 1+ nlogA —Mo_gj ) —1)

where 0 <1< 1. (2.1)
(A) Recurrence Relation for Probabilities

The probability recurrence relation for two parameter DQL distribution can also be obtained as
Pri2 = l(zpr+1 - Apr) v 20 (22)

(a+1)(1-21)+21 logA
a+1

1 (a+1)(1-1)+(22-1)logr

where
pO a+1

and p;, =

The higher order probabilities may be computed using the recurrence relation (2.2). Similarly, the higher ordered
probabilities of one parameter DL distribution can also be computed, putting « = —logA in recurrence relation (2.2).

(B) Factorial Moment Recurrence Relation

Proposition 4: The factorial moment generating function M, (t) and r'" ordered factorial moment uprfor two
parameter DQL distribution can be written as

[(@+1)(1=2)+2Alog A](1=A=At)—(1=2)A(1+t) log ,1)
M, () = (A-A=2t)2 (@+1) and 23)
_ A [(a+1)(1-A)—rlogh ]
Uy = = aiD respectively.
The recurrence relation for factorial moment can be obtained as
A(r+2)
Hir42) = (lrl)z [2(1 = Dpprr1y — A0 + Dy, (2.4)
where
Al(a+1)(1-2)—log]
= = ao2@y
_ 22%[(a+1)(1—-1)—2logA ] _ 623[(a+1)(1—1)—3logA ] etc
Hiz1 = (1-)3(a+1) v FBIT (1=-D)*(a+1) s
From the above factorial moments, the mean u and variance ¢ can be derived as
_ Al(a+1)(1-21)—log] (2 5)
(1-1)2(a+1) .
o2 = A(a+1)2(1-2)2=(a+1)A-2)(1+1)log A—A(logA )?] (2.6)

1-D)*(a+1)?

Table-1: Mean of the DQL distribution for different values of the parameters a and A.
a\A| 01| 02 | 03 0.4 0.5 0.6 0.7 0.8 0.9

0.0 | .395 | .753 | 1.166 | 1.685 | 2.386 | 3.416 | 5.107 | 8.463 | 18.482
0.2 | .348 | .669 | 1.043 | 1.515 | 2.155 | 3.096 | 4.645 | 7.719 | 16.902
0.4 | .314 | .609 | .955 | 1.394 | 1.990 | 2.868 | 4.315 | 7.188 | 15.773
0.6 | .289 | .564 | .889 | 1.303 | 1.866 | 2.697 | 4.067 | 6.789 | 14.927
0.8 | .269 | .529 | .838 | 1.232 | 1.770 | 2.564 | 3.875 | 6.479 | 14.268
1.0 | .253 | .501 | .797 | 1.176 | 1.693 | 2.458 | 3.720 | 6.231 | 13.741
1.2 | .240 | 479 | .764 | 1.129 | 1.630 | 2.371 | 3.594 | 6.029 | 13.310
1.4 | .230 | .460 | .736 | 1.091 | 1.578 | 2.298 | 3.489 | 5.860 | 12.951
1.6 | .220 | .443 | .712 | 1.058 | 1.533 | 2.237 | 3.400 | 5.716 | 12.647
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Table-2: Variance of the DQL distribution for different values of the parameters « and 4.
a\1[01]02] 03|04 ]05|06] 07 0.8 0.9

00 | .39|.81|144 245|424 |7.74|15.80 | 40.25 | 180.25
0.2 | .36 | .77 138|237 | 413|759 | 1553 | 39.64 | 177.70
04 |.33]|.72 131|228 ]399 |735]|1508 | 3853 | 172.81
06 |.31].69|1.26|219 385|711 | 1460 | 37.32 | 167.48
0.8 | .29 | .65|1.21|211|3.72|6.87 | 14.14 | 36.17 | 162.34
1.0 | .28 | .63 | 1.16 | 2.04 | 3.60 | 6.66 | 13.71 | 35.10 | 157.60
12 | .26 | .60 112 198|349 |6.47 |13.33 | 34.14 | 153.32
14 | .25|.58 109192 ]340 |6.31|12.99 | 33.28 | 149.46
16 | .25| .57 | 1.06 | 1.87 | 3.32 | 6.15 | 12.69 | 32.50 | 145.99
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It is noted that the mean and variance increases rapidly as A increased but it decreases slowly as a increased.
3. SIZE -BIASED DISCRETE QUASI LINDLEY (SBDQL) DISTRIBUTION

Size biased distribution arises naturally in practice when observations from a sample are recorded with unequal
probabilities, having probability proportional to size (PPS). It is a more general form known as weighted distributions.
Fisher(1934) first introduced these distributions to model ascertainment bias which were formalized by Rao (1965) in a
unifying theory. If the random variable X has pmf f(x;8), with unknown parameter 6, then the corresponding

weighted distribution is of the form f¥(x;0) = % where w(x) is a non-negative weight function such that
E[w(x)].
_xpx o ax—1 L@+ A=D)+{A-1) x+4} log 1](1-1)> _
fi(x,a) = = xA (1A log A x=1, 2, ... (3.1)
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A special case of interest arise when the weight function w(x) = x%. Such distributions are known as sized biased
distributions of order a. The most common case of size-biased distribution occur when a = 1 and @ = 2, these special
cases may be termed as length (size) and area biased respectively. If a random variable X has pmf f(x; 8), then the pmf
of size-biased QL distribution may obtained as

filx,a) = x#ﬁ, u denotes the mean of the DQL distribution

(a+1)A-D)+{(A1—1) x+1} log 2](1-2)?

— x—1 [
= xA (a+1)(1—-1)—log A

x=1,2, ... (3.2)

A size- biased quasi Poisson-Lindley distribution, of which the size-biased Poisson-Lindley distribution of Ghitany and
Al-Mutairi (2008) is a particular case.

Proposition 3: The probability generating function of a discrete random variable following the DQL distribution (5) is
given by

_ t[A=-D(a+1)+AlogA 1(1-2)?(1-At)—t (1-2)3 (1+1t)logA
Gs(6) = [(a+1)(1-21)—log A](1-At)3 ) (33)
Probability recurrence relation of the DQL distribution is obtained as

pr = 3Ap,_1 — 3A*p,_, + A3p,_; forr > 3, and (3.4)

_ [la+1)@-D+(21-1) log 2](1-1)2 _ [(@+1)(1-2)+(321-2) log A](1—-1)?2
where p; = (a+1)(1—2)—log 1 ’ P2 =24 (@+1)(1-A)~log 2
(a+1)(1-2)+(41—3)log 1](1-2)2

_ a2l
p3 =34 (a+1)(1—21)—log 1

The factorial moments of size biased discrete quasi Lindley (SBDQL) distribution may be obtained as
[(a+D -V +1)—{r?2+@2r+1)1}log 1]
[(a+1)(1-21)—log 2](1-1)"

Ui = ria—1 (3.5)

from its factorial moment generating function (fmgf)
M(6) = A+)[A=D(a+1)+AUogA](1 —D?(A—21—2t) — (1 =31 + 1+ 1) (1 + t)logA
s(6) = [(@+1)(1—2) —logA](1— 21— At)3

Factorial recurrence relation may also be obtained as

1
i) = o 3G = D2 Arpp_q) = 31 = DAr(r — Dpgpy—gy + P = D = 2) 3] (3.6)

for r> 3,
where
_ [(@+1)A-)(A+1)—(7+32) log 2]
M = " @ a-a-tog A10-1)
_ oy a+1)(A-2)(2+2)—(4+52) log 4]
Fzr = (@t D(A—1)—log A|(1-1)2
e = 612 [(@+1)(1-2)(3+2)—(9+72) log 1]

[(a+1)(1-21)—log A](1—2)3
4. ZERO- TRUNCATED DISCRETE QUASI LINDLEY (ZTDQL) DISTRIBUTION

When the data to be modeled originate from a generating mechanism that structurally excludes zero counts, discrete
quasi-Lindley distribution must be adjusted to count for the missing zeros. In this paper we consider the zero-truncated
quasi-Lindley (ZTDQL) distribution with the pmf
_ _ax—1 [@+1D)A-)+{(1-1) x+2}log 1]
PZ(X - X) =1 (a+1)—log 4

_ _ [(@+1)(1-2)+Alog A]
where P,(X=0)= BT

=12, ... (4.1)

Proposition 4: The probability generating function of a discrete random variable following the ZTDQL distribution (5)
is given by
_ [{@-D)(a+1)+Aloga }(A—-At)—At (1—1)logA |

G,(6) = [(@+1)—log A](1-At)? (4.2)

5. ZERO- MODIFIED DISCRETE QUASI LINDLEY (ZMDQL) DISTRIBUTION

In recent years there has been considerable and growing interest in modeling zero-modified count data. Zero-modified
DQL model address the problem, that the data display a higher fraction of zeros, or non occurrences, than can be
possibly explained through any fitted standard count model. The zero-modified distributions are appropriate

© 2015, IIMA. All Rights Reserved 153



Munindra Borah*, Krishna Ram Saikia and Junali Hazarika / A Study on Two Parameter Discrete Quasi Lindley Distribution
and Its Derived Distributions / IJMA- 6(12), Dec.-2015.

alternatives for modeling clustered samples when the population consists of two sub-populations, one containing only
zeros, while in the other, counts from a discrete distribution are observed.
BX=0=w+(1-w)P,

_ _ (a+1)(1-1)+Alogr
=0+ (1-o) [
PZ[X _ x] _ (1 _ w)Ax [(@+1)(1-2)+{(1—1) x+21} log 1] x=1,2, .
(a+1)
_PU
a=>0, 0<A<1], w =
1-P,

where P,[X = x] denotes the probability of ZMDQL distribution.

6. ESTIMATION OF PARAMETER OF DQL DISTRIBUTION ESTIMATION OF 2 IN TERMS OF MEAN
AND VARIANCE OF DQL DISTRIBUTION

w the mean of DQL distribution, the value of
1-2)2(a+1)

AlogA may be expressed as (1 — )(a + 1) — (A — (1 — A)p) . Now putting the value of AlogA in

Formu =

2 _ AMla+1)?(1-D)%—(a+1)(A-)(1+)log A—A(logd )?]

o (1-D)*(a+1)2

the variance of DQL distribution, the quadratic equation in A may

be obtained as
NPA-21B+C=0 (6.1)

Given a random sample x;, x,, ... x,0f size n from the DQL distribution with the pmf (1), the moment estimate 1 of
DQL distribution may be obtained from the quadratic equation (6.1) as

j = B/B7-AC VBZ‘“, (6.2)
A

A
where =0’ +pu?+3u+2, B=c*+u*+u and C=0?+pu> —u.
7. AN APPLICATION

In the last two decades, standard discrete distributions such as geometric and negative binomials have been used to
model lifetime data. However, there is a need to find more plausible discrete lifetime distributions to fit different types
of lifetime data. In this article, discrete Quasi-Lindley distribution has been investigated by discretizing the continuous
Quasi- Lindley distribution. Two sets of real data from Sankaran (1970) and one set of data on distribution of number
of European red mites on apple leaves have been considered for the fitting of QPL distribution. The first set of data
represents the mistakes in copying groups of random digits and the second set are the number of accidents to 647
women working on high explosive shells in 5 weeks. ###

8. GOODNESS OF FIT

The fittings of the two-parameter DQL distribution based on three data-sets have been presented in the following
tables. The expected frequencies according to the one parameter Poisson- Lindley with parameter 6 in Table 3
presented by Sankaran (1970), two parameter Poisson- Lindley distributions with parameter 8 and a« in Table 4
presented by Shanker et al. (2012) and two parameter discrete gamma with parameter k and 8 in Table 5 presented by
Chakraborty an Chakravarty (2012) have also been given for ready comparison with DQL distribution. The estimates of
the parameters have been obtained by the method of moments.

Table-3: Observed and expected frequencies for mistakes in copying groups of random digits.

No. of errors Observed frequencies Expected frequencies
per group Poisson- Lindley (8) | Poisson- Lindley (8,a) | DQL (a,1)
0 35 33.1 324 31.34
1 11 15.3 15.8 15.77
2 8 6.8 7.0 7.72
3 4 2.9 2.9 3.63
4 2 1.2 1.9 1.54
60 60 60 60
6 =1.743 @ = 2.61204 @ = —3.89024
6 = 5.22337 A =0.586021
x? 2.20 2.11 2.01
P value 0.1380 .3482 0.366
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Table-4: Observed and expected frequencies for distribution of Pyrausta nublilalis in 1937.

No. of . Expected frequencies
accidents | Observed frequencies
Poisson-Lindley (8) | Poisson- Lindley (8, @) DQL (a, 1)
0 33 31.49 31.9 30.74
1 12 14.16 13.8 13.98
2 6 6.09 5.9 6.37
3 3 2.54 25 2.93
4 1 1.04 1.1 1.37
=5 1 0.42 0.8 0.61
56 56
56 5= ?23082 a =0.2573 a =—-24.3726
e - 6 = 0.39249 1 =0.466893
0.36 0.46
P value 4.82 0.1855 08353 0.7945
Table-5: Distribution of number of European red mites on apple leaves
European red mites Observed frequencies Expected frequencies
dy(k,9) NBD(r,p) DQL (a, 1)
0 70 69.67 69.49 66.63
1 38 37.49 37.6 37.96
2 17 20.02 20.1 21.25
3 10 10.67 10.7 11.81
4 9 5.69 5.69 6.39
5 3 3.03 3.02 3.26
6 2 1.61 1.6 1.69
7 1 .86 0.85 0.79
8 0 .96 0.95 0.23
150 150 150 150
k=1.0078 | # = 1.0245 | @ = —4.6625
6 =1.5830 | p=0.5281 | 1=0.63461
x* 2.89 2.91 2.36
P value 0.7169 0.7139 0.7974

The fitting of two parameter DQL distribution along with x? and p- values has been presented to three data-sets. From
the above tables it is observed that DQL distribution provides closer fits.

9. CONCLUSION

Two-parameter DQL distribution has been introduced, of which the one-parameter DL is a particular case, for
modeling waiting and survival time’s data. Several properties of the two-parameter DQL, such as moments, failure rate
function, mean residual life function, estimation of parameters by the method of maximum likelihood and the method
of moments have been discussed. The properties of size- biased and Zero- truncated version of DQL distribution have
also been investigated. Finally, the proposed distribution has been fitted to a number of data sets relating to waiting and
survival times to test its goodness of fit to which earlier the one-parameter DL has been fitted. It is observed that two-
parameter DQL provides better fits than those by the DL and hence it should be preferred to the DQL while modeling
count data-sets.
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