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ABSTRACT 
In this paper we show that if R is a nonassociative simple ring satisfying (a, b, a) and (R, R) are in the right nucleus Nr, 
then (a, b, a) and (R, R) are in the left and middle nuclei of R. Using these properties we prove that (a, b, a) and (R, R) 
are in the center C of R. Also it is shown that R is commutative. 
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INTRODUCTION  
 
Thedy [2] studied rings with commutators in the nuclei. In [1] Kleinfeld obtained Thedy’s hypothesis in nonassociative 
semiprime rings with (x, y, x) and commutators in the left nucleus. In this paper we consider a nonassociative ring R 
with (a, b, a) and (R, R) are in the right nucleus Nr. We prove that if R is a simple ring, then (a, b, a) and (R, R) are in 
the left and middle nuclei of R. Using these properties we show that (a, b, a) and (R,R) are in the center C of R. Also it 
is shown that R is commutative.  

 
PRELIMINARIES  
 
The associator is defined by (x, y, z) = (xy) z – x(yz) and the commutator  (x,y) = xy - yx for all x, y, z in  R.  We 
define the left nucleus Nl = {n∈R / (n, R, R) = 0}, the  right  nucleus, Nr = {n∈R / (R, R, n) = 0}  and  the  middle  
nucleus, Nm = {n∈R / (R, n, R) = 0}.  
 
The nucleus N of R is defined as   
N ={n∈R / (n, R, R) = (R, n, R) = (R, R, n) =0},  that is,  N = Nl ∩ Nm ∩ Nr and the center C={c∈N / (c, R)=0}. 
 
Throughout this paper we consider a ring R with  
(i) (a, b, a) ⊂ Nr   and  (ii)  (R, R) ⊂ Nr

. 
 
In every ring the following identity holds: 
(wx, y, z) - (w, xy, z) + (w, x, yz) = w (x, y, z) + (w, x, y)z.                                                                           (1) 
 
If  S(x, y, z) = (x, y, z) + (y, z, x) + (z, x, y), then (xy, z) + (yz, x) + (zx, y) = S(x, y, z). 
 
Consequently, using (ii) we have 
S(x, y, z) ⊂ Nr

.                                                                 (2) 
 
Moreover, in every ring we have the identity  
(xy, z) = x(y, z) + (x, z)y + S(x, y, z) - (x, z, y) - (y, z, x). 
 
A linearization of (i) implies 
(x, z, y) + (y, z, x) ⊂ Nr 

. 
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Then combining this with the above equation (2) and (ii), we obtain 
x(y, z) + (x, z)y ⊂ Nr 

.                                                                 (3) 
 
Suppose that n∈Nr

. Then with z = n in (1), we obtain 
(w, x, yn) = (w, x, y)n. 
 
Combining this with (ii), yields 
(w, x, yn) = (w, x, y)n = (w, x, ny) .                                                               (4) 
 
A combination of (3) and (4) yields 
(r, s, x(y, z) + (x, z)y) = 0, that is  
(r, s, x(y, z)) = - (r, s,(x, z)y). Thus  
(r, s, x) (y, z) = - (r, s, y) (x, z)                                                             (5) 
 
MAIN RESULTS  
 
We assume that R is a simple ring. Then we know that the ideal of R is equal to zero or the ideal is equal to R. To prove 
the main results we consider R as a simple ring satisfying (i) and (ii). First we prove that following lemmas:  
 
Lemma 1: If T = {t ∈Nr / (R, R, R) t=0}, then T is an ideal of R and (R, R, R)T=0. 
 
Proof: By substituting t for n in (4), we obtain  
(w, x, ty) = (w, x, yt) = (w, x, y)t = 0.  
 
Thus Rt ⊂ Nr and tR ⊂ Nr. Suppose that t∈T and Z∈R 
 
But (1) multiplied on the right by t gives  
w(x, y, z).t + (w, x, y)z.t = 0. 
 
So (w, x, y)z.t = - w(x, y, z).t = - w.(x, y, z)t = 0. 
 
We have (w, x, y)z.t = (w, x, y).zt. 
∴ (w, x, y).zt = 0. 
 
From (5) we get  
(w, x, y) (t, z) = - (w, x, t) (y, z) = 0 
 
This implies (w, x, y).tz = (w, x, y).zt 
 
Using (w, x, y).zt = 0, we obtain (w, x, y).tz = 0 
 
Thus T is an ideal of R and (R, R, R)T = 0. This completes the proof of the lemma.    
 
Lemma 2: If R is a simple ring, then T = 0. 
 
Proof: From lemma1 we know that T is an ideal of R. 
 
Since R is simple, either T = 0 or T=R. 
 
If T=R, then (R, R, R)R=0. Since R is nonassociative, this is not possible. 
 
So, T ≠ R. Thus T=0.         
 
Lemma 3: If R is a simple ring, then 
((a, b, a), R) = 0,                                                                                (6) 
 
((a, b),y, z) = 0,                                                                   (7) 
 
and ((a, b, a),y, z) = 0.                                                                (8) 
 
Proof: Using (5) we see that 
(x, y, z) ((a, b, a), c) = - (x, y,(a, b, a)) (z, c) = 0, because of  (i).  
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This implies ((a, b, a), c) ⊂ T. 
 
Then using Lemma 2, we have ((a, b, a), c) = 0, 
i.e. ((a, b, a), R) = 0. 
 
This proves (6). 
 
By the linearization of (i), we obtain 
(r, s,((a, b), y, x)) = (r, s,(x, y, (a, b)) = 0. 
 
Thus ((a, b), y, x) is an element of Nr. Also (1) implies 
((a, b)x, y, z) – ((a, b), xy, z) + ((a, b), x, yz) = (a, b) (x, y, z) + ((a, b), x, y)z 
 
By forming the associators both sides, we get 
(r, s,((a, b)x, y, z)) – (r, s, ((a, b), xy, z)) + (r, s, ((a, b), x, yz)) = (r, s, (a, b) (x, y, z)) + (r, s, ((a, b), x, y)z) 
 
Hence  (r, s, ((a, b) x, y, z)) = (r, s, (a, b) (x, y, z)) + (r, s, ((a, b), x, y)z) 
 
Since (a, b) ⊂ Nr because of (ii) and using (4), we get 
(r, s, (a, b) (x, y, z)) = (r, s, (x, y, z)) (a, b) also 
(r, s, ((a, b) x, y, z)) = - (r, s, (z, y, (a, b)x)) = - (r, s, (z, y, x) (a, b) = - (r, s, (z, y, x)) (a, b) 
 
Thus (r, s, ((a, b), x, y)z) = - [r, s, ((x, y, z) + (z, y, x))] (a, b)=0, using a linearization of (i). 
 
But then (4) implies (r, s, z) ((a, b), x, y) = 0.    
 
So that ((a, b), x, y) ⊂ T. Hence using Lemma 2 we obtain ((a, b), x, y) = 0. 
 
This proves (7). 
 
Using the linearization of (i), we obtain 
(r, s, ((a, b, a), x, y) = - (r, s, (y, x, (a, b, a)) = 0. 
 
Thus ((a, b, a), x, y) ⊂ Nr.  Also (1) implies 
((a, b, a) x, y, z) – ((a, b, a), xy, z) + ((a, b, a), x, yz) = (a, b, a) (x, y, z) + ((a, b, a), x, y)z. 
 
By forming the associators both sides we get 
(r, s, (a, b, a), x, y)z) = (r, s, ((a, b, a) x, y, z)) – (r, s, (a, b, a) (x, y, z)). 
 
Since (a, b, a) ⊂ Nr and using (4) we get 
- (r, s, (a, b, a) (x, y, z)) = - (r, s, (x, y, z)) (a, b, a) also 
  (r, s, (a, b, a) x, y, z)    = - (r, s, (z, y, (a, b, a)x)) 
            = - (r, s, (z, y, x) (a, b, a)) 
                                       = - (r, s, (z, y, x)) (a, b, a) 
 
Hence (r, s, ((a, b, a), x, y) z) =  - (r, s, (x, y, z) + (z, y, x)) (a, b, a) = 0,  using (i). 
 
Then using (4) implies (r, s, z) ((a, b, a), x, y) = 0 
 
So that ((a, b, a), x, y) ⊂ T. Thus using Lemma 2 
 
We obtain ((a, b, a), x, y) = 0 
 
This proves (8).        
 
Theorem 1: If R is a simple ring satisfying (i) and (ii), then (a, b, a) and all commutators are in the center. 
 
Proof: Using (5), we see that 
(x, y, z)  ((a, b), c) = - (x, y, (a, b)) (z, c) = 0, because of (ii) 
 
This implies that ((a, b), c) ⊂ T. Then by using Lemma 2 we have ((a, b), c) = 0. 
i.e. ((a, b), R) = 0                                                                (9) 
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We know that the following identity is valid in any ring: 
(xy, z) = x(y, z) + (x, z)y + (x, y, z) + (z, x, y) - (x, z, y).                                                            (10) 
 
By putting z equal to a commutator (a, b), we get 
(xy, (a, b)) =  x(y, (a, b) +  (x, (a, b))y + (x, y, (a, b)) +  ((a, b), x, y) – (x, (a, b), y) 
 
Using (9), (ii) and Lemma3, we get 
(x, (a, b), y) = 0.                                                             (11) 
 
Similarly by substituting z = (a, b, a) in (10), we obtain 
(x, (a, b, a), y) = 0.                                                                          (12) 
 
From (i), (8), (12) and (6), it follows that (a, b, a) is in the center of R. 
 
Hence from (ii), (7), (11) and (9), it follows that all commutators are in the center.   
 
Theorem 2: If R is a simple ring satisfying (i) and (ii), then R is commutative. 
 
Proof: We write  
((R, R)R, R) = (R, R)R.R - R.(R, R)R 
                    = (R, R)R.R - R(R, R).R, using (11) 
                    = (R, R)R.R - (R, R)R.R, using (9) 
                    = (0). 
 
Thus ((R, R)R, R) = (0).                                                            (13) 
 
Now  
(R, R, R(R, R)) = (R R).R(R, R) – R. (R.R(R, R)) 
                          = (RR).R(R, R) – R.((R R).(R, R)), using (ii) 
                          = (RR).R(R, R) – R.((R, R).(R R)), using (9) 
                          = (RR).R(R, R) – R(R, R).(R R), using (11) 
                          = (RR).R(R, R) – (RR).R(R, R), by (13) 
                          = (0). 
 
So (R, R, R(R, R)) = 0. 
 
Since (R, R) ⊂ Nr and using (4), we get 
(R, R, R) (R, R) = 0 
 
Thus (R, R) ⊂ T. Then using lemma2 we get (R, R) = (0). 
 
Hence R is commutative.        
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