RELATIONS INVOLVING STIRLING NUMBERS OF THE FIRST KIND WITH FINITE SUMS

JEEVAN MALOTH*1, ANGOTHU SRIKANTH2

Student of the Electrical department1, Faculty of the Electrical department2
St. Martin’s Engineering College, Dhulapally, Secunderabad, Telangana, 500 014, India.

(Received On: 17-10-15; Revised & Accepted On: 29-01-16)

ABSTRACT.

The stirling numbers were conjectured in the end of 18th century by stirling. In mathematics Stirling numbers of the first kind arise in the study of permutations. In particular, the Stirling numbers of the first kind count permutations according to their number of cycles (counting fixed points as cycles of length one).

In this paper I am proving some finite sums which are involving stirling numbers of first kind.

Keywords: Stirling 1st kind numbers, finite sums

1. INTRODUCTION

The stirling numbers were conjectured in the end of 18th century by stirling. In mathematics Stirling numbers of the first kind arise in the study of permutations. In particular, the Stirling numbers of the first kind count permutations according to their number of cycles (counting fixed points as cycles of length one). [1]

The original definition of Stirling numbers of the first kind was algebraic. These numbers, usually written s(n, k), are signed integers whose sign, positive or negative, depends on the parity of n − k. Afterwards, the absolute values of these numbers, |s(n, k)|, which are known as unsigned Stirling numbers of the first kind, were found to count permutations, so in combinatorics the (signed) Stirling numbers of the first kind, s(n, k), are often defined as counting numbers multiplied by a sign factor [2][4].

The unsigned Stirling numbers of the first kind are denoted in various ways by different authors. Common notations are c(n, k), |s(n, k)| and \[\frac{n!}{k!}\]

The unsigned Stirling numbers also arise as coefficients of the rising factorial, i.e., \((x)^{(n)} = x(x + 1)(x + 2) \ldots (x + n - 1) = \sum_{k=0}^{n} \frac{n!}{k!} x^k \]

In this paper Binomial function is denoted with \(\binom{x}{r}\). This stirling numbers had relation with finite sums of integers. From That relations three are proving in this paper.

Table of values for small k and r of stirling 1st kind numbers s(k, r)

Below is a triangular array of unsigned values for the Stirling numbers of the first kind, similar in form to Pascal's triangle. These values are easy to generate using the recurrence relation in the given below.

<table>
<thead>
<tr>
<th>k \ r</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>6</td>
<td>11</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>10</td>
<td>35</td>
<td>50</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Corresponding Author: Jeevan Maloth*1
The Recurrence Relation:

\[S(k+1,r+1) = S(k,r) + [k \times S(k,r+1)] \]

Where \(1 \leq r \leq K\)

Theorem 1.1: Prove that

\[
\frac{\sum_{n=1}^{N} n^k \cdot s(k,2) \cdot \sum_{n=1}^{N} n^{k-1} \cdot s(k3,3) \cdot \sum_{n=1}^{N} n^{k-2} \cdot \ldots \cdot s(k,k) \cdot \sum_{n=1}^{N} n!}{k!} = \frac{(N+1)^k}{(k+1)!}
\]

Proof:

Given is

\[
\frac{\sum_{n=1}^{N} n^k \cdot s(k,2) \cdot \sum_{n=1}^{N} n^{k-1} \cdot s(k3,3) \cdot \sum_{n=1}^{N} n^{k-2} \cdot \ldots \cdot s(k,k) \cdot \sum_{n=1}^{N} n!}{k!}
\]

We know that the corresponding Bernoulli numbers \(B_m\). Written explicitly in terms of a sum of powers,

\[
\sum_{n=1}^{N} n^k = \sum_{n=1}^{N} b_k \cdot N^n \quad [5]
\]

Where \(b_{k,n} = \frac{(-1)^{k-n+1} \cdot b_{k-n+1} \cdot k!}{n!(k-n+1)!}\)

\[
\Rightarrow \frac{1}{k!} \left[(s(k,1) \cdot \sum_{n=1}^{N} b_k \cdot N^n + s(k,2) \cdot \sum_{n=1}^{N} b_k \cdot N^n + \ldots + s(k,k) \cdot \sum_{n=1}^{N} b_k \cdot N^n) \right] = \frac{1}{k!} \left[N^k \sum_{r=1}^{k} \sum_{n=1}^{N} b_{k,r}(N^{r+1}) \left(\frac{(N+1)^k}{(k+1)!} \right) \right]
\]

But \(s^{r+k}(k,r) \cdot b_{(k+1-r)p} = \frac{s(k+1,r+2-p)}{k+1}\)

\[
\Rightarrow \frac{1}{k!} \left[N^k \cdot s(k+1,1) \cdot \sum_{n=1}^{N} n^{k-1} \cdot s(k,2) \cdot \sum_{n=1}^{N} n^{k-2} \cdot \ldots \cdot s(k,k) \cdot \sum_{n=1}^{N} n! \right] = \frac{(N+1)^k}{(k+1)!}
\]

Theorem 1.2: Prove that

\[
\frac{\sum_{n=1}^{N} n^k \cdot s(k,2) \cdot \sum_{n=1}^{N} n^{k-1} \cdot s(k3,3) \cdot \sum_{n=1}^{N} n^{k-2} \cdot \ldots \cdot s(k,k) \cdot \sum_{n=1}^{N} n!}{k!} = \frac{C_{N+1}^{k+1}}{k+1}
\]

Proof:

\[
\sum_{n=1}^{N} n^k = \sum_{n=1}^{N} b_k \cdot N^n - s(k,2) \cdot \sum_{n=1}^{N} b_k \cdot N^n - \ldots - s(k,k) \cdot \sum_{n=1}^{N} b_k \cdot N^n
\]

Where \(\frac{1}{k!} \left[\sum_{r=1}^{k} \sum_{n=1}^{N} b_{k,r}(N^{r+1}) \cdot \frac{(N+1)^k}{(k+1)!} \right] = \frac{(N+1)^k}{(k+1)!} \cdot \frac{1}{(N-K)(k+1)} \cdot \frac{1}{(N-K)(k+1)}
\]

Theorem 1.3: Prove that \(g(x) = f(y)\) if \(y = x + k - 1\)

\[
g(x) = s(k,1) \cdot x^k + s(k,2) \cdot x^{k-1} + s(k,3) \cdot x^{k-2} + \ldots + s(k,k) x^1
\]

\[
f(y) = s(k,1) \cdot y^k - s(k,2) \cdot y^{k-1} + s(k,3) \cdot y^{k-2} - \ldots - s(k,k) \cdot y^1
\]

Proof:

Let us take

\[
f(y) = s(k,1) \cdot y^k - s(k,2) \cdot y^{k-1} + s(k,3) \cdot y^{k-2} - \ldots - s(k,k) \cdot y^1
\]

Substitute \(y = x + k - 1\) on above eq

\[
f(x) = s(k,1) \cdot (x + k - 1)^k - s(k,2) \cdot (x + k - 1)^{k-1} + s(k,3) \cdot (x + k - 1)^{k-2} - \ldots - s(k,k) \cdot (x + k - 1)
\]

© 2016, IJMA. All Rights Reserved
Let us take $n=k-1$

$$f(x + n) = s(k, 1)(x + n)^k - s(k, 2)(x + n)^{k-1} + s(k, 3)(x + n)^{k-2} - \cdots - s(k, k)(x + n)^1$$

Using binomial formula we can write above eqn as

$$f(x + n) = s(k, 1) \sum_{r=0}^{k} c_r^k x^{k-r} n^r - s(k, 2) \sum_{r=1}^{k-1} c_r^{k-1} x^{k-r} n^r + \cdots + s(k, k) \sum_{r=k}^{1} c_r^1 x^{k-r} n^r$$

$$= (s(k, 1) x^k + s(k, 3) x^{k-2} + s(k, 5) x^{k-4} + \cdots) - (s(k, 2) x^{k-1} + s(k, 4) x^{k-3} + \cdots)$$

We know that

$$s(k, 1) \sum_{r=1}^{k} c_r^k x^{k-r} n^r - s(k, 1) \sum_{r=1}^{k-1} c_r^{k-1} x^{k-r} n^r - \cdots - s(k, k) \sum_{r=1}^{1} c_r^1 x^{k-r} n^r$$

$$= 2(s(k, 2) x^{k-1} + s(k, 4) x^{k-3} + \cdots)$$

$$= (s(k, 1) x^k + s(k, 2) x^{k-1}) + s(k, 3) x^{k-2} + \cdots + s(k, k) x^1$$

Hence $g(x) = f(y)$ if $y = x + k - 1$

ACKNOWLEDGEMENT

I express my deep gratitude to management of st.martin’s engineering college, Dhillupally, Secunderbad for helping the project successful. And I would like to thank to prof. Dr. sashidhar reddy, prof. Ratty hally, and prof.s. archana morey for giving fruitful suggestions.

REFERENCES

Source of support: Nil, Conflict of interest: None Declared

[Copy right © 2016. This is an Open Access article distributed under the terms of the International Journal of Mathematical Archive (IJMA), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.]