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ABSTRACT 
The concept of range quaternion k-EP (q-k-EP) matrices is introduced as a special case of quaternion hermitian and 
generalization of EP matrices. Necessary and sufficient conditions are determined for a matrix to be q-k-EPr (q-k-EP 
and rank r). As an application, it is shown that the class of all q-k-EP matrices having the same range space form a 
group under multiplication. 
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1. INTRODUCTION 
 
The algebra  H of real quaternion, which is a four- dimensional non-commutative algebra over real number field R with 
canonical basis 1, i, j, k satisfying the conditions, i2 = j2 = k2 = ijk = −1 that implies ij = −ji = k, jk = −kj = i  and 
ki = −ik = j. 
 
The elements in H can be written in a unique way as, α = a + bi + cj + dk, where a, b, c  and d are real numbers,  
i.e.,  H ={ � α = a + bi + cj + dk | a, b, c , d ∈ R}. 
 
The conjugate of α is defined as α� =  a − bi − cj − dk, and the norm |α| = √αα� for 0 ≠ α ∈ H, α−1 = α�

|α|2 . 
 
We consider K is a permutation matrix associated with the permutation k(x) = (Sn), where S = {1, 2,…,n}.  
 
Also K2 = I, K� = KT = K∗ = K−1 = K. 
 
2. q-k-EP MATRICES 
 
Definition: 2.1 Let H[x]mxn   denote the set of all mxn matrices with entries fromH[x].  For A ∈  H[x]mxn , the 

conjugate A� = A�ij . If A = P + Qj with P, Q ∈ H[x]mxn , then 𝛘𝛘A = �
P Q
−Q� P� � ∈ C[x]2mx 2n  denotes the complex adjoint 

of A. 
 
Moreover, AT, A∗ ∈  H[x]mxn  denotes the transpose and the conjugate transpose of  A, respectively. 
 
Definition: 2.2 A† ∈  H[x]nxm  is called a Moore Penrose inverse of A ∈  H[x]mxn , if it is a solution of the following 
system of equations, AXA = A, XAX = X, (AX)∗ = AX, (XA)∗ = XA. Note that we require that A†  must be in H[x]nxm .' 
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Definition: 2.3 A matrix A ∈  H[x]mxn  is said to be q-k-EP if it satisfies the condition Ax = 0 ⇔  A∗k(x) = 0 or 
equivalentlyN(A) = N(A∗K). Moreover, A is said to be k-EPr, if it is k-EP and of rank r. 
 
Definition: 2.4 A k-hermitian matrix A is q-k-EP, for if A is k -hermitian, then by [3, Result 2.1], A = KA∗K. Hence 
N(A) = N(KA∗K) = N(A∗K), which implies A is q-k-EP. However, the converse need not be true. 
 
Theorem: 2.5 For the following are equivalent: 

(1) A is q-k-EP 
(2) KA is EP 
(3) AK is EP 
(4) A† is q-k-EP 
(5) N(A)  = N(A†K) 
(6) N(A∗) = N(AK) 
(7) R(A)  = R(KA∗) 
(8) R(A∗) = R(KA) 
(9) KA† K = AA†K 
(10) A†AK = KAA†  
(11) A = KA∗KH for a non singular nxn matrix H. 
(12) A = HKA∗K for a non singular nxn matrix H. 
(13) A∗ = HKAK for a non singular nxn matrix H. 
(14) A∗ = KAKH for a non singular nxn matrix H. 
(15) Cn = R(A)⊕N(AK). 
(16) Cn = R(KA)⊕N(A). 

 
Proof: The proof for the equivalence of (1), (2) and (3) runs as follows:  
A is q-k-EP ⇔ N(A) = N(A∗K)       (by Definition 2.3) 
                   ⇔ N(KA) = N(KA)∗    [by (P.1)] 
                   ⇔ KA is EP                (by Definition of EP matrix) 
                   ⇔ K(KA)K∗ is EP         (by [1, Lemma3]) 
                   ⇔ AK is EP                [by (P.1)] 
 
Thus (1)⇒ (2) ⇒(3) hold. 
 
(2)⇔(4): KA is EP ⇔ (KA)†  is EP     (by [2, P.163]) 
                               ⇔   A† K is EP      [by (P.2)] 
                               ⇔ A† is q-k-EP    [by equivalence of (1) and (3) applied to A† ] 
 
Thus equivalence of (1) and (5) is proved. 
 
Now we shall prove the equivalence of (1), (6) and (7) using ρ(A) = ρ(A∗) = ρ(A∗K) = ρ(AK) in the following way: 
 
A is q-k-EP  ⇔ N(A) = N(A∗K) 
                    ⇔ N(A)⊆N(A∗K) 

             ⇔ A∗K =  A∗KA−A             (by [2, P.21]) 
             ⇔ A∗ =  A∗KA−AK             (by [P.1]) 
             ⇔ A∗ =  A∗K−1A−AK 
             ⇔ A∗ =  A∗(AK)−AK         (by [P.2]) 
             ⇔ N(AK) ⊆ N(A∗)             (by [2, P.21]) 
             ⇔ N(A∗) = N(AK) 
             ⇔ R(A) = R(AK)∗ 
             ⇔ R(A) = R(KA)∗             (by [P.1]) 
 

Thus (1)⇒ (6) ⇒(7) holds. 
 
(1)⇔(8): 
A is q-k-EP   ⇔ N(A) = N(A∗K) 
                     ⇔ N(A) = N(KA)∗ 

              ⇔ R(A∗) = R(KA) 
 
Thus equivalence of (1) and (8) is proved. 
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(3) ⇔ (9): 
AK is EP ⇔ (AK)(AK)†  =  (AK)†(AK)        (by [2, P.166]) 

        ⇔ (AK)(KA†) = (KA† )(AK)           (by [P.2]) 
        ⇔ AA† = KA† AK                             (by [P.1]) 
        ⇔ AA†K = KA†A  

 
Thus equivalence of (3) and (9) is proved. 
 
(9) ⇔ (10): Since by the property (P.1), K2 = I, this equivalence follows by pre and post multiplying KA†A = AA†K by 
K.  
 
(2) ⇔ (11): 
KA is EP ⇔ (KA)∗ = (KA)H1, for a non-singular nxn matrix H1 ( by [2, P.166]) 
               ⇔  A∗K = KAH1 
               ⇔  KA∗K = AH1 
               ⇔  A = KA∗KH where H = H1

−1 is a non- singular nxn matrix.  
 
Thus equivalence of (2) and (11) is proved. 
 
(3) ⇔ (12): 
AK is EP ⇔ (AK)∗ = H1(AK), for a non-singular nxn matrix H1(by [2, P.166]) 
               ⇔ KA∗ = H1AK 
               ⇔ KA∗K = H1A 
               ⇔ A = H1

−1KA∗K 
               ⇔  A = HKA∗K where H = H1

−1 is a non- singular nxn matrix.  
 
Thus equivalence of (3) and (12) is proved. 
 
The equivalences (11) ⇔(13) and (12) ⇔(14) follow immediately by taking conjugate transpose and using K = K∗. 
 
(13) ⇔ (16): A∗ = HKAK for a non singular nxn matrix H. 
              ⇔   A∗A = H(KA)(KA) 
              ⇔ A∗A = H(KA)2 
              ⇔  ρ(A∗A) = ρ(H(KA)2) 
              ⇔  ρ(A∗A) = ρ((KA)2)  
 
Over the complex field, A∗A and A have the same rank.  
 
Therefore, ρ((KA)2)= ρ(A∗A) = ρ(A) = ρ(KA)⇔ R(KA) ∩ N(KA) = {0} 
                                                                              ⇔ R(KA) ∩ N(A) = {0} 
                                                                            ⇔ Hn = R(KA) ⊕ N(A). 
 
Thus (13) ⇔ (16) holds. 
 
(14) ⇔ (15): This can be proved along the lines and using ρ(AA∗) = ρ(A). Hence the proof is omitted. 
 
(16) ⇔ (1): If Hn = R(KA) ⊕ N(A), then R(KA) ∩ N(A) = {0}.  
 
For x ∈ N(A), x∉R(KA) ⇔ x ∈ R(KA)⊥ = N(KA)∗ = N(A∗K).  
 
Hence N(A) ⊆ N(A∗K) and ρ(A) = ρ(A∗K) ⇒ N(A) = N(A∗K) ⇒ A is q-k-EP.  
 
Thus (1) holds. Similarly, we can prove (15) ⇒(1). 
 
Remark: 2.6 [8] Let A ∈  H[x]mxn  and B ∈  H[x]nxl . Then  

(i) (AB)∗ = B∗A∗ and AA∗ = (AA∗)∗ 
(ii) If  A has a Moore- Penrose Inverse A† , then  
        (A∗)† = (A† )∗, A† (A†)∗A∗ = A† = A∗(A† )∗A†and A†AA∗ = A∗ = A∗AA†  
(iii) If A has a Moore- Penrose Inverse A† , then A†  is unique. 
(iv) Let A have the Moore- Penrose Inverse A† . If U ∈  H[x]mxm  is a unitary matrix, then (UA)†=A† U∗. 
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For x = (x1, x2, … , xn)T ∈ H[x]nxl
,. Let us define the function k(x) = (xk(1), xk(2), … , xk(n))T ∈ Hn . Since k is 

involutory, it can be verified that the associated permutation matrix k satisfy the following properties: 
 
K = KT = K−1 and  k(x) = Kx,                                                             (P.1) 
(KA)† = A†K and (AK)†=KA†  for A ∈ H[x]nxn  (by [2, P.182])                                                                      (P.2) 
 
Theorem: 2.7 Let A ∈  H[x]nxn . Then any two of the following conditions imply the other one:   

(1) A is EP 
(2) A is q-k-EP    
(3)  R(A) = R(KA) 

 
Proof: First we prove that whenever (1) holds, then (2) and (3) are equivalent. Suppose (1) holds, then by [1, 
Theorem.1], A is EP implies R(A) = R(A∗). Now by Theorem 2.5, A is q-k-EP ⇔ R(A∗) = R(KA). Therefore, A is      
q-k-EP  ⇔ R(A) = R(KA).  
 
This completes the proof of [(1) and (2)] ⇒(3) and [(1) and (3)] ⇒(2). 
 
Now let us prove [(2) and (3)] ⇒(1): Since A is q-k-EP, by Theorem 2.5, KA is EP. Hence, R(KA) = R(KA)∗. By using 
(3), we have R(A) = R(KA) = R(KA)∗ = R(A∗K) = R(A∗).  
 
Again by [1, Theorem 1], A is EP. Thus (1) holds. 
 
Note: 2.8 [8] Let A ∈  H[x]mxn  have the Moore- Penrose Inverse A† . Consider A has a homomorphism from H[x]nxl  to 
H[x]mxl . Then Image (A) = Image (AA∗) = Image (AA† ) and  Image (A∗) =  Image (A∗A) =  Image (A† A).   
 
Lemma: 2.9 [8] If E ∈  H[x]mxm  is a symmetric projection, that is , E = E2 − E∗, then E ∈  H[x]mxm . 
 
Proof: Let f1, f2, … fm  be the entries on the first row of E. From, E − E∗, we may assume that f1 = f1� ≠ 0. Then E = E2  
we have 

 f1 = f1f1̅ + ∑ fi fi̅
m
i=2 = f1

2 + ∑ fi fi̅
m
i=2  

 
Since f1 = f1�  the leading co-efficient of  f1

2 is a positive real number. Note that the leading co-efficient of  ∑ fi fi̅
m
i=2  is 

also a positive real number. Thus,  

deg�f1
2� ≥ deg(f1) = deg�f1

2 + � fi fi̅

m

i=2

� 

                = max⁡�deg�f1
2� , deg�∑ fifi̅

m
i=2 �� ≥ deg�f1

2� 
 
This shows that f1 ∈ H. Further more, 0=deg(f1) = deg�∑ fi fi̅

m
i=2 � and the leading co-efficient of {fi fi̅}{fi̅ ≠ 0} are 

positive reals imply that fi ∈ H for all 1≤i≤m. The same discussions can be done for the other rows of E. Therefore, 
E ∈  H[x]mxm . 
 
Lemma: 2.10 If  A ∈ H[x]nxn  is normal and AA∗ is q-k-EP, Then A is q-k-EP. 
 
Proof: Since A is normal, A is EP and AA∗ is q-k-EP ⇔ R (AA∗) = R(KAA∗) implies R(A) = R(KA).  That A is q-k- EP 
Then follows from Theorem 2.7. 
 
Lemma: 2.11 Let E = E∗ = E2 ∈  H[x]nxn  be a hermitian idempotent that commutes with k, the permutation matrix 
associated with a fixed product of disjoint transpositions k is Sn . Then, Hk(E) = { A: A  is q-k-EP and R (A) =
R(E) } and forms a maximal subgroup of  Hnxn  containing E as identity. 
 
Proof: Since E K=K E, by (P.1) and (P.2) we have E=KEK and EE†  = E2 = E = (KE)(EK) = (KE)(KE)† ;  
 
Hence R(E)=R(KE). 
 
Since E is hermitian it is automatically EP. And by Theorem 2.7, E is K-EP and R(A) =R(E) =R(KE) ⇒ [AA†= EE†=E] 
also A†= E = (KE)(KE)† =  KEE†K†= KAA† K† =(KA)(KA)† .  
 
Therefore R(A)=R(K A). Hence by Theorem 2.7, A is EP and Hk(E) = H(E) = {A: A is EP and R(A) = R(E)}.  
 
By [5, Theorem 2.1], Hk(E) forms a maximal subgroup H[x]nxn  containing E as identity. 

 
3. EIGEN VALUES 
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Definition: 3.1 A ∈ H[x]nxn  is hermitian, that is A = AA∗ , if and only if there exists a unitary matrix U ∈ H[x]nxn   such 
that U∗AU = diag(d1, d2, … dn), where di  are the eigen values of  A. 
 
Lemma: 3.2 For   A ∈ H[x]nxn ,  A is k-EP ⇔  N(A) ⊂ N(P), where P is k-hermitian part of  A. 
 
Proof: If A is k-EP, then by Theorem2.5, KA is EP. 
 
Since K is non-singular, N(A) = N(KA) = N(KA)*= N(A∗K) = N(KA∗K).  
 
Then for x ∈ N(A), both Ax = 0 and KA∗Kx = 0 , which implies that  Px= 1

2
(A + KA∗K)x = 0. Thus N(A) ⊆ N(P). 

Conversely, N(A) ⊆ N(P); Then Ax=0 implies Px=0 and hence Qx=0. Therefore, N(A) ⊆ N(Q).  
 
Thus N(A ) ⊆ N(P) ∩ N(Q).   
 
Since both P and Q are k-hermitian, and by [3, Result 2.1],  
 
We have, P=KP∗K and Q=KQ∗K.  
 
Hence N(P) = N(KP∗K)= N(P∗K) and N(Q)=N(KQ∗K) = N(Q∗K).  
 
Now N(A) ⊆ N(P) ∩ N(Q) = N(P∗K)  ∩ N(Q∗K) ⊆ N(P∗ − iQ∗)K.  
 
Therefore, N(A) ⊆N(A∗K) and ρ (A)= ρ(A∗K). 
 
Hence, N(A)=N(A∗K). Therefore, A is q-k-EP. Hence the theorem. 
 
Lemma: 3.3 [8] Let A ∈  H[x]mxn .Then A has the Moore-Penrose inverse A† if and only if A =U �A1 A2

0 0 � with 
U ∈ Hmxm  unitary and A1 A1

∗ + A2 A2
∗, a unit in H[x]rxr  with r ≤ min{m, n}.  

 

Moreover, A† = � A1
∗(A1 A1

∗  +  A2 A2
∗)−1 0

 A2
∗(A1 A1

∗  +  A2 A2
∗)−1 0

�U∗ 

 
Proof: If A has  the Moore- Penrose Inverse A† , then  AA† = AA†AA† = (AA†)2 = (AA†)∗ . 
 
By Lemma 2.9,  AA† ∈  Hmxm . AA†  is hermitian and hence, by Lemma 3.2, there exists a unitary matrix U∈ Hmxm  
such that U∗AA†U = D, where D is diagonal. Since, D2 = (U∗ AA†U)( U∗ AA†U) = U∗ AA† AA† U=U∗ AA†  U = D, the 
diagonal entries of D are either 1 or 0. Therefore, we can re arrange the rows of U so that D=�Ir 0

0 0� with                        
r ≤ min{m, n}. 
 

Set A′=U∗A. By Lemma 2.6, A′ has its own generalized inverse A′†  and A′A′† = �Ir 0
0 0�. Set A′=�A1 A2

A3 A4
�, for arbitrary 

quaternion polynomial matrices A1 ∈  H[x]rxr , A2 ∈  H[x]rx (n−r), A3 ∈  H[x](m−r)xr  and  A4 ∈  H[x](m−r)x(n−r). Since 

A′= A′ A′†A′=�Ir 0
0 0� �

A1 A2
A3 A4

� =�A1 A2
0 0 �, we must have A′= �A1 A2

0 0 � and therefore A′ A′∗=�A1 A1
∗  +  A2 A2

∗ 0
0 0

� 

 

Similarly, A′† = �B1 0
B2 0�, for some B1 and  B2. 

 
By Lemma 2.8, Image (A′ A′∗) = Image (A′) = Image(A′A′ A’†)= Image�Ir 0

0 0�. 
 
This implies the surjectivity of  A1 A1

∗  +  A2 A2
∗ on H[x]rxl.  

 
Therefore A1 A1

∗  +  A2 A2
∗ is a unit in H[x]rxr and A= UA’= U �A1 A2

0 0 � 
 
 
 
 
 
Next we have that, 



K. Gunasekaran, K. Gnanabala* / On q-k-EP Matrices / IJMA- 7(1), Jan.-2016. 

© 2016, IJMA. All Rights Reserved                                                                                                                                                                         42   

A′† = A′†(A′† )∗A′∗ = A′† (A′∗)†A′∗ = A′∗ �A′A′∗�
†
 

                                 = � A1
∗ 0

 A2
∗ 0

� �(A1 A1
∗  +  A2 A2

∗)−1 0
0 0

� 

                                 =  �
 A1

∗ (A1 A1
∗  +  A2 A2

∗)−1 0
 A2

∗ (A1 A1
∗  +  A2 A2

∗)−1 0
�, 

 

which gives A† = �
 A1

∗ (A1 A1
∗  +  A2 A2

∗)−1 0
 A2

∗ (A1 A1
∗  +  A2 A2

∗)−1 0
�U∗. The converse can be proved by direct computation. 

 
Lemma: 3.4 Let B = �D 0

0 0�, 𝐷𝐷 is an rxr non-singular matrix. Then the following are equivalent. 
1.  B is k-EPr 
2.  R(KB) = R(B). 
3.  BB∗ is k-EPr 

4.  K = �K1 0
0 K2

�, where K1, K2 are permutation matrices of order r and n − r respectively. 

5.  K = K1K2 ,where K1 is the product of disjoint transpositions on  Sn = {1,2, … , n} leaving (r+1, r+2, …, n) 
fixed, and K2 is the product of the disjoint transpositions leaving (1,2,…, r) fixed. 

 
Proof: Since B is EPr , the equivalence of (1) and (2) follows from Theorem 2.7.  
 
(2) ⇔ (3): follows from Theorem 2.5. 
 

(2) ⇔ (4): Let us partition, K = �
K1 K3

K3
T K2

�,  Where K1 is rxr.  

  
Then R(KB)=R(B) ⇔ (KB)(KB)† = BB†  
                               ⇔ KBB†K = BB†  
                               ⇔ KBB† = BB†K 
                               ⇔ K�Ir 0

0 0� = �Ir 0
0 0�K 

                               ⇔ �
K1 0
K3

T 0
� = �K1 K3

0 0 � 

                               ⇔ �K1 0
0 K2

� = K 

 
Thus equivalence of (2) and (4) holds. The equivalence of (4) and (5) is clear from the definition of K. 
 
Lemma: 3.5 A matrix A ∈  H[x]nxn if q-k-EPr  if and only if there exists a unitary matrix U and an rxr nonsingular 
matrix F such that A =KU �F 0

0 0�U∗. 
 
Proof: Let us assume that A is q-k-EPr .Then by Theorem 2.5, Hn= R(KA) ⊕ N(A).  Choose an orthonormal basis 
{x1, x2, … , xn} of R(KA)=  R(A∗) , and extend it to a basis{ x1, x2, … xr, xr+1 … , xn} of  Hn where {xr+1, … , xn} is an 
orthonormal basis of  N(A). 
 
If (u, v) denotes the usual inner product on Hn and 1≤ i≤ r <  j ≤  n it follows that x1 ∈ R(KA) = R(A∗) ⇒ x1A∗y.  
 
Therefore, (xi, xj) = (A∗y, xj) = (y, Axj) = 0 [Since xj ∈ N(A)]. Hence {x1, x2, … , xn} is an ortho normal basis of Hn. If 
we consider KA as the matrix of a linear transformation relative to any ortho normal basis of Hn, then U∗KAU = 
�F 0
0 0�, Where F is rxr nonsingular matrix, whence A = KU �F 0

0 0�U∗. 
 
Conversely, if  A = KU �F 0

0 0�U∗, U∗KAU = �F 0
0 0�. 

 
But N(KA)=  N(KA)∗,which implies KA  is EPr, and by Theorem 2.5, A is q-k-EPr. 
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Lemma: 3.6  Let A ∈  Hnxn, Then A is q-k-EPr with K = K1K2 (where K1 and K2 are as in Lemma 3.4) if and only if  
A is Unitarily q-k-similar to a diagonal block  q-k-EPr  matrix  B = �D 0

0 0� where D is an rxr non-singular matrix.  
 
Proof: Since A is q-k-EPr by Lemma 3.5, there exists a unitary matrix U and an rxr non singular matrix F such that 
A = (KUK)K �F 0

0 0�U∗. 
 

Since K = K1K2 , the associated permutation matrix is K = �K1 0
0 K2

�. 

 
Hence, A = (KUK)K �K1F 0

0 0�U∗ = (KUK) �D 0
0 0�U∗, where D=K1F. 

 
Thus, A is Unitarily q-k-similar to a diagonal block q-k-EPr matrix B = �D 0

0 0� where D is an rxr non-singular matrix. 
 

Now, That B is q-k-EPr follows from Theorem 3.4, K = K1K2  and K = �K1 0
0 K2

� 
 
Since, A is Unitarily q-k-similar to B = �D 0

0 0�, there exists a unitary matrix U such that A = KUK �D 0
0 0�U∗. Since B 

is q-k-EPr , 
 
By Theorem 2.5, KB=K�D 0

0 0� = U∗KAU is EPr.  
 
By [1, Lemma 2], KA is EPr. Now, A is q-k-EP follows from Theorem 2.5 and ρ(A) = r. Hence A is q-k-EPr. The 
proof is complete. 
 
Lemma: 3.7 Let A ∈  H[x]𝑛𝑛xn. Then eigen values of  AA∗ are real. 
 
Proof: Let B=AA∗ and λ ∈ H be an eigen value of B with corresponding eigen vector X= (x1, x2, … , xm)T ≠ 0 such that 
BX=Xλ. Then X*BX= X*Xλ.  
 
Note that B=𝐵𝐵∗. We have that X*BX=λ∗ X*X.  
 
Thus, X*Xλ = λ∗ X*X= (X∗Xλ)∗. 
 

(x�1, x�2, … , x�m)�
x1
⋮

xm

� λ = (∑ x�i xi)λ  

                                         = ((∑ x�i xi)λ)∗  
                                         = λ∗ (∑ x�i xi)∗  
                                    = λ∗(∑ x�i xi). 
 
By a known lemma, 0≠ ∑ x�i xi ∈ R[x]. 
 
The above equation gives λ = λ∗ which implies λ ∈ R. 
 
Lemma: 3.8 If a is k-EP, then (λ, x) is a (k-eigen value, k-eigen vector) pair for A if and only if (1 λ⁄ , k(x)) is a         
(k-eigen value, k-eigen vector) pair for A†. 
 
Proof: (λ, x) is a (k-eigen value, k-eigen vector) pair for A 

⇔ Ax=λkx          (by [3, P.22]) 
⇔ KAx=λx          (by P.1) 
⇔ (KA)†x= 1

λ
x            (by [2, P.161]) 

⇔ A†Kx= 1
λ

x               (by P.2) 

⇔ A†k(x)= 1
λ

K(k(x)) 
⇔ (1 λ⁄ , k(x)) is a (k-eigen value, k-eigen vector) pair for A†. 

 
Definition: 3.9 For A ∈  H[x]mxn, let B=AA∗ and  χB be its complex adjoint. Then fB(λ) = det(λI2m − χB)  is called 
the characteristic polynomial of A. 
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Lemma: 3.10 Let A ∈  H[x]mxn and B=AA∗ . Then Then fB(λ) = g(λ)2 where g(λ) ∈ ( R[x])[λ] 
 
Proof: We first show that fB(λ) ∈ ( R[x])[λ]. Note that B=AA∗, we have  
det((λI2m − χB)T) =  det  (λI2m − χB) = det((λI2m − χB)∗),    
 
Thus det(λI2m − χB) =  det⁡( λI2m − χB

������������ ). 
 
Therefore, det(λI2m − χB) =  fB(λ) ∈ ( R[x])[λ]. 
 
Next we show that fB(λ) = g(λ)2 where g(λ) ∈ ( C[x])[λ].  
 
Let B = P + Q j. For any fixed 1≤ i, j ≤ m, 
 
We have  Bij = a + bi + cj + dk, where a, b, c and d ∈ R[x]. 
 
Since B is hermitian, Bji = a − bi− cj − dk and therefore  Pij = a + bi, Pji = a − bi and Qij = c + di, Qji = c − di.  
 
So PT = P� and Q = −QT.  
 

Therefore, χB =�
P Q
−Q� P� �=� P P

−Q� PT�  ⇒ λI2m − χB=�
λIm − P Q
−Q� λIm − PT�. 

 

Next, we have �Im −Im
0 Im

� �Im 0
Im Im

� �Im −Im
0 Im

� �
λIm − P Q
−Q� λIm − PT� = � Q� PT − λIm

λIm − P Q
�. 

 

Therefore,  fB(λ) = det �
λIm − P Q
−Q� λIm − PT�  = det � Q� PT − λIm

λIm − P Q
� 

Note that, � Q� PT − λIm
λIm − P Q

�
T

    = −� Q� PT − λIm
λIm − P Q

� which implies that � Q� PT − λIm
λIm − P Q

� is skew 

symmetric.  
 

By [9], the determinant of � Q� PT − λIm
λIm − P Q

�   also called its P fattian, can be written as the square of a polynomial 

in its entries.  
 
Therefore, fB(λ) = g(λ)2, where g(λ) ∈ ( C[x])[λ]. 
 
Finally, we show that g(λ) ∈ (R[x])[λ]. 
 
Suppose, otherwise, then g(λ) = a(λ) + b(λ)i, where a(λ) and b(λ) ∈ ( R[x])[λ] with b(λ) ≠ 0. 
 
By (1), g(λ)2 = a(λ)2 − b(λ)2 +2 a(λ)b(λ)i ∈ ( R[x])[λ]. 
 
Thus a(λ) = 0 and fB(λ) = (b(λ)i)2 = b(λ)2,where b(λ) ∈ ( R[x])[λ].  
 
For a fixed x∈ R, Let λ′ I2m − χB ∈  H2mx2m is diagonally dominant with non-negative diagonal entries and that 
(b(x))(λ′)  ≠ 0. 
 
Since, λ′ I2m − χB is also hermitian, λ′ I2m − χB is positive definite [10]. But det(λ′ I2m − χB) =  −(b(x))(λ′)2 < 0, a 
contradiction. Therefore, b=0 and thus fB(λ) = g(λ)2 where g(λ) ∈ ( R[x])[λ]. 
 
Lemma: 3.11 Let A ∈  H[x]mxn , B=AA∗ and fB(λ) = g(λ)2. Then g(B)=0. We will call g(λ) the generalized 
characteristic polynomial of A. 
 
Proof: Note that g(λ) ∈ ( R[x])[λ],  by Theorem 3.10. 
 
Then χg(B) = g(χB). Next fB(χB) = 0 by the Cayley Hamilton theorem for complex polynomial matrices [9].  
 
Therefore, g(χB)=0, and 0 = g�χB� = χg(B), that is g(B)=0. 
 
Lemma: 3.12 Let A ∈  H[x]mxn has the Moore Penrose inverse A† . Set B=AA∗. Then  
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(i) B†  =(A∗)†A†  and B†B = AA†  
(ii) B†B = BB†  and (B†B)2 = B†B 
(iii) (B†)k = (Bk)†  and (Bn−k)† (Bn−k) = B†B for any k ∈ N 

 
Lemma: 3.13 Let A ∈  H[x]mxn, B ∈  H[x]pxq and A ∈  H[x]mxq. If A†, B† both exists, then the quaternion polynomial 
matrix equation AXB = C has a solution in  H[x]nxp if and only if AA†⊂ B†B = C, in which case the general solution 
is X = A†⊂B

†
+ Y− A†AYB B† , where Y ∈  H[x]nxp is arbitrary. 

 
Lemma: 3.14 Let A ∈  H[x]mxn has the Moore Penrose inverse A†and  B=AA∗. Suppose the generalized characteristic 
polynomial of A is: g(λ) = λm + a1λ

m−1 + ⋯+ akλ
m−k + … + am−1λ + am, where ai ∈ R[x]. If k is the largest number 

such that ak ≠ 0, then the generalized inverse of A is given by A† = − 1
ak

A∗[Bk−1 + a1Bk−2 + ⋯+ ak−1I]. If ai = 0, for 

all 1≤ i ≤ m, then A† = 0. 
 
Lemma: 3.15 Let A ∈  H[x]mxn has the Moore Penrose inverse A†   and Set B=AA∗. Then for 1≤ k ≤ m,              
tr[Bk + a1Bk−1 + ⋯+ ak−1B = −kak, where the ai arise from the generalized characteristic polynomial of A:  
g(λ) = λm + a1λ

m−1 + ⋯+ akλ
m−k +  … + am−1λ + am  

 
Proof: Let Y=yI where y∈ R. We can write,  
g (Y) = g (Y) - g (B) 
         = (Y-B)[Ym−1 + (B + a1I)Ym−2 + ⋯+ (Bm−1 + a1Bm−2 + ⋯+ amI)]. 
 
As long as y is not an eigen value of B, (yI-B) =Y-B is non-singular, so we can write: 
(Y− B)−1g (Y)= [Ym−1 + (B + a1I)Ym−2 + �B2 + a1B + a2I�Ym−3 … + Bm−1 + a1Bm−2 + ⋯+ amI)]. 
 
Taking the traces gives: 
tr[(Y − B)−1g (Y)]  =mYm−1 + tr(B + a1I)Ym−2 + tr�B2 + a1B +a2I�Ym−3 + ⋯  + tr(Bm−1 + a1Bm−2 + ⋯+ amI)].   
 
Let C=(Y − B)−1g (Y). Since g(Y)=g(yI)=g(y)I, C= g(y) (Y − B)−1.  
Therefore, tr C= g(y) tr[(Y − B)−1]. 
 
Let λ1, … , λm

′ where m′ ≤ m, be all the non zero eigen values of B. tr[(Y − B)−1] is the sum of the eigen value of 
[(Y − B)]−1. 
 
We will show that these eigen values are the fractions 1

y−λ1
, … , 1

y−λm
′ 

 
Let ς be an eigen value of (Y− B)−1 with corresponding eigen vector z such that:(Y − B)−1Z = Zς, ς is real (by 
Lemma 3.7)  and hence (Y − B)Z = Z 1

ς
⇒ BZ = Z �Y − 1

ς
�. 

 
Therefore, Y = 1

ς
= λi⇒ ς = 1

y−λi
 for some 1≤ i ≤ m′. 

 

Since g(y) = (y-λ1)(y − λ2) … (y − λm′). We have that g′(y) = g(y) � 1
y−λ1

+ ⋯+ 1
y−λm′

� and tr C= g′(y). The derivative 

of g is also equal to g′(y) =mYm−1 + a1(m − 1)Ym−2 + ⋯+ am−1. 
 
Therefore,                                  
mYm−1 + a1(m − 1)Ym−2 + ⋯+ am−1 = mYm−1 + tr(B + a1I)Ym−2 + ⋯+ tr(Bm−1 + a1Bm−2 + ⋯+ amI). 
 
Comparing the co-efficient of Ym−k−1 on both sides, we obtain  
ak(m − k) = tr �Bk + a1B

k−1
+ a2Bk−2 + ⋯+ ak−1B + akI� 

                  = tr �Bk + a1B
k−1

+ a2Bk−2 + ⋯+ ak−1B) + tr(akI� 

And then – kak = tr �Bk + a1B
k−1

+ a2Bk−2 + ⋯+ ak−1B�. 
 
 
 
 
Lemma: 3.16 Let A ∈  H[x]mxn has the Moore Penrose inverse A†   and B=AA∗. Suppose the generalized characteristic 
polynomial of A:  
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g(λ) = λm + a1λ
m−1 + ⋯+ akλ

m−k +  … + am−1λ + am, where am ∈ R[x]. 
 
Define,  a0 = 1. If P is the largest integer such that 𝑎𝑎P≠0 and we construct the sequence 𝐴𝐴0, … ,𝐴𝐴P  as follows: 
A0 = 0    -1= q0                                  B0 = I 
A1 = AA∗B                        tr A1

1
=  q 1                            B 1 = A1 − q 1 I 

 ⋮                                      ⋮                                                  ⋮ 
Ap−1 = AA∗Bp−2              tr Ap−1

p−1
=  q p−1                       B p−1 = Ap−1 − q p−1I 

Ap = AA∗Bp−1                  tr Ap

p
=  q p                             B p = Ap − q p I 

 
Then q i(x) =  − a i(x), i = 0, … , P. 
 
Proof: We will show q i(x) =  − a i(x), i = 0, … , P by mathematical induction. By the definition clearly, q0 = −a0  
holds. 
 
Now we assume that   q i(x) =  − a i(x) holds for all   1≤ i ≤ k − 1. Then  
𝐴𝐴𝑘𝑘  = AA∗Bk−1 
     = BBk−1 
     = B(Ak−1 − q k−1I) 
     = B((B(Ak−2 − q k−2I) −q k−1I) 
            ⋮ 
     = Bk + q1B

k−1
+ q2Bk−2 + ⋯+ qk−1B 

     = Bk + a1B
k−1

+ a2Bk−2 + ⋯+ ak−1B       . 
 

And thus tr(Ak) = tr(Bk + a1B
k−1

+ a2Bk−2 + ⋯+ ak−1B),         
 
Which by Lemma 3.15 is equal to  – kak. So,   qk = Tr(Ak)

k
= −ak.  

 
Therefore, q i(x) = − a i(x) for all p≥ i≥ 0. 
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