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ABSTRACT

In this paper new concepts namely ac-Neighbourhood, ac-Interior, ac-Limit point, and ac-Closure of sets are
introduced and their properties are analyzed. Also ac-continuous mappings are defined and their properties are
characterized.
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1. INTRODUCTION

The notion of alpha open sets(brieflya-open) was introduced by Njastad [9] in 1965. As an extension of this class, J.S.1
Mary and Sindhu[10] developed a new class open sets namely ac-open sets and its topological properties are
initialized. Followed by the class of a-open sets, several other related classes such as ag-open sets and ga-open sets
were defined by Maki, et.al [7].

The class of b-open sets is defined and studied by Andrijevic [2] in 1984. As an extension of this class, Hariwan
Ibrahim [3] introduced Bc-open sets, and concepts such as Bc-interior, Bc-limit points, and Bc-closure of sets. In this
paper we define topological properties namely ac-neighbourhood, ac-interior, ac-closure, and ac-compact of a set.
Levine [6] introduced the concept of a semi-open sets and semi-continuous functions. As the extension of this function
Alias Khalaf, et.al [1] initialized sc-open sets and sc-continuous function and further properties are analyzed. In this
paper we introduce and investigate the concept of ac-continuous functions.

2. PRELIMINARIES

Throughout this paper, (X, ) denote a topological space with topology 7. For a subset A of X the interior of A and
closure of A are denoted by int(A) and cl(A) respectively.

Definition 2.1: A subset A of a topological space (X, 7) is called
1. a-openset if A c Int(Cl(int(A)) and a-closed set if Int(Cl(int(A)) c A [9].
2. Semi-open set if A c Cl(int(A)) and Semi-closed set if Cl(int(A)) c A[6].
3. b-openset if A c (Int Cl(A)) U (CLint(A)) and b-closed set if (Int CL(A)) U (Clint(A)) c A[2].
4. 0-open set if for each x € A, there exists an open set G such that x € G c cl(G) c A [11].

Definition 2.2:
1. The intersection of all semi-closed sets containing A is called the semi-closure of A denoted by sCI(A) [6].
2. The intersection of all « -closed sets containing A is called a-closure of A denoted by aCl(A) [9].
3. The intersection of all b-closed sets containing A is called the b-closure of A denoted by bCl(4) [2].

Definition 2.3: The family of all open sets, semi-open sets, a-open sets, 8-open sets are denoted by
0(X),S0(X),a0(X), 60(X) respectively.
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Definition 2.4: [10] A subset A of a topological space X is called ac-open set if for each x € A € aO(X), there
exists a closed set F, such that x € F < A. The family of all ac-open subsets of a topological space (X, ) is denoted
by acO(X).

Definition 2.5: [9] Let A be a subset of a topological space (X, 7).
1. Apoint x € X is said to be a-interior point of A, if there exists an a-open set U such that x € U c A. The
set of all a-interior points of A is called a-interior of A and is denoted by alnt(A).
2. Asubset A of X is said to be a-neighbourhood of x, if there exists a a-open set U in X such that
x € U c A.
3. Apoint x € X is said to be a-limit point of A if for each a-open set U containing x, U N (A\{x}) # @. The
set of all a-limit points of A is called a-Derived set of A denoted by (aD(A)).

Definition 2.6: [9] A topological space (X,7) is a-compact if for every a-open cover {V,: @ € A} of X, there exist a
finite subset Ay of A such that X=U {V,: a € Ay}

Definition 2.7: [5] The space X is Hausdorff if for each pair u,v of distinct points of X, there exists disjoint
neighbourhoods Uand V containing u and v respectively [15].

Definition 2.8: A topological space X is said to be:
1. Locally indiscrete, if every open subset of X is closed
2. Regular if for each x € X and for each open set A containing x, there exists an open set G containing X such
that x € G c cl(G) c A.
3. T;-space if to each pair of distinct points x, y of X there exist a pair of open sets, one containing x but not y
and other containing y but not x, as well as is T; if and only if for any point x € X, the singleton set {x} is
closed.

Definition 2.9: A mapping f: X — Y is said to be

1. always a-open if the image of every a-open set of X is an a-open setinY.
a-open if the image of every open set of X is an a-open setin Y.
a-continuous if the inverse image of every open subset in Y is an a-open set in X[8] .
clopen-continuous if the inverse image of every open subset in Y is an clopen set in X [1].
0-continuous if the inverse image of every open subset in Y is an 6-open set in X [11].

ko

Theorem 2.10: [10] Let (X,7) be a topological space and {4; : j € A} be a collection of ac-open sets in X. Then
U {4 : j € A} is ac-open.

Theorem 2.11: [10] The set A is ac-open in the space (X,t) if and only if for each x € A4, there exists a ac-open set B
suchthatx € B c A.

Theorem 2.12: [10] Let {B; : j € A} be a collection of ac-closed sets in a topological space X. Then N {B; : j € A} is
ac-closed set.

Theorem 2.13: [10] Every open set is ac-open set in X, if one of the following holds.
(i) (X,7) is Locally indiscrete.
(ii) X is Regular.

Theorem 2.14: [10] Every 8-open set of a space X is ac-open.

Theorem 2.15: [10] Let X and Y be two topological spaces and X x Y be the product topology. If A € acO(X) and
B € acO(Y). Then A X B € acO(X xY).

3. ON ac-INTERIOR AND ac-CLOSURE OF SETS

In this section, we define and study topological properties of ac-Neighborhood, ac-Interior, ac-Closure and ac-derived
of a set using the concept of ac-open sets.

3.1 ac-Neighborhood:

Definition 3.1: Let (X, 7) be a topological space and x € X, then a subset N of X is said to be a¢c-neighborhood of
x, if there exists a ac-open set U in X suchthatx € U c N.
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The following Theorem gives a characterization of ac-open set with respect to the ac-neighbourhood of each of its
points.

Theorem 3.1.1: In a topological space (X, t), a subset A of X is ac-open set if and only if it is aac-neighbourhood of
each of its points.

Proof: Let A be a ac-open set. By Definition (2.4), forevery x € A, x € A c A.
Hence A is ac-neighbourhood of each of its points.

Conversely, Let A be a ac-neighbourhood of each of its points. Then for each x € A, there exists an B, € acO(X) such
that x € B, € A. Then A=U {B, : x € A} where B,- is acO(X). By Theorem (2.10), Since the union of ac-open set is
ac-open set. We have A is ac-open set.

Remark 3.1:
1. For any two subsets A and B of a topological space (X,7)and A c B, if A is ac-neighborhood of the point
x € X, then B is also a ac-neighbourhood of the same point x.
2. Every ac-neighbourhood of a point is a-neighbourhood. It follows from the fact that every ac-open set is
a-open.

3.2 ac - Interior points:
In this section we introduce the definition of ac-interior point of a set A as further study of ac - open sets.

Definition 3.2.1: Let A be a subset of a topological space (X, 7). A point x € X is said to be ac-interior point of A,
if there exists an ac-open set U such that x € U c A. The set of all ac-interior points of A is called ac-interior of 4 is
denoted by acInt(4).

The following Theorem gives the properties of ac-interior of a set.

Theorem 3.2.1: For subsets A, B of a space X, the following statements hold:
(i) acInt(A) is the union of all ac-open sets contained in A.
(ii) acInt(A) is an ac-open setin X.

(iii) A'is ac-open set if and only if A = acInt(A).
(iv) acInt(acintA)) = acint(A).

() acint(®) = @ and acint(X) = X

(wi) acInt(4) c A.

(vii) If A c B, then acInt(A) c acInt(B).
(viii) acInt(A) U acInt(B) c acint(A U B)

(ix) acInt(A N B) c acint(A) N aclnt(B).
(x) acInt(A) c alnt(A4).

Proof:
(i) Let U B; be the union of all ac-open sets B; contained in A. Let x € acIint(A), then there exists an ac-open set V
such that x € V c A. Then for some i, B; =V implies x € U B;. Thus acInt(A) c U B,.

Conversely, Let x € U B; where B;'s are ac-open set contained in A. Then there exists some i such that x € B; c A,
implies x € acInt(A). Hence acint(A)=U B; .

(ii) By(i), acInt(A)=U B; where B; is ac-open sets contained in A. Hence by Theorem(2.10), we have acint(A) is
an ac-open set in X.

(iii) Let A be ac-open set. Then By(i), A € acint(A). Conversely, Let A=acInt(A). By(ii), A is ac- open set.
(iv) By(ii), acInt(A) is ac-open setin X and By(iii), acInt(A)= acint(acInt(A)).
(v) Since @ and X are ac-open sets, from(iii), acInt(®)=0 and acInt(X)=X.

(vi) From(i), acInt(A)=uU B; where B; is ac-open set contained in A. Hence U B; c A and by(iii), acInt(A) is an
ac - open set implies acInt(4) c A.

(vii) Let x € acint(A). Then there exists an ac-open set U such that x € U € A.A c B implies x € U c B. Thus
x € acInt(B). Hence acInt(A) c acint(B).
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(viii) Since Ac AUB and B c AU B, by(vii), acint(A) c acint(A U B) and acInt(B) c acInt(A U B).
Hence acInt(A) U acint(B) c aclnt(A U B).

(ix) Since (AnB) € Aand (AN B) € B, by (vii) acint(A n B) c acint(4) N aclnt(B).

(x) Let x € acInt(A) , then there exists an ac-open set U such that x € U c A. Since every ac-open set is a- open set,
we have U is a-open set. It follows that x € aInt(A4). Hence acint(A) c aint(A).

3.3 ac-Limit Points:

The concept of limit points is essential to explore more properties of a given set. In this section we introduce ac-limit
point of a set induced by ac-open set.

Definition 3.3.1: Let A be a subset of a topological space (X, 7). A point x € X is said to be ac-limitpoint of A if
for each ac-open set U containing x, U N (A\{x}) # @. The set of all ac-limit points of A is called ac-Derived set of
A denoted by (acD(A)).

Theorem 3.3.1: Let A be a subset of X. If for each closed set F of X containing x such that F n (A\{x}) # @, then the
point x € X is an ac-limit point of A.

Proof: Let U be any ac-open set containing x. By the definition (2.4), for each x € U, there exists a closed set F such
that x € F c U. By hypothesis F n (A\{x}) # @.

Hence U n (A\{x}) # @. Therefore x is an ac-limit point of 4.
The following Theorem gives the properties of ac-Derived sets in the space X.

Theorem 3.3.2: Let A and B be subsets of a topological space X. Then the following properties hold:
()  acD(9)=0.
(i) Ifx € acD(A), then x € acD(A\{x}).
(iii) I1fA c B, then acD(A) c acD(B).
(iv) acD(A) U acD(B) c acD(A U B).
(v) acD(ANB) c acD(A) N acD(B).
(vi) acD(acD(A))\A c acD(4).
(vii) acD(AU acD(A)) c AU acD(A).
(viii) acD(A) < aD(A).

Proof:

(i) Suppose not, let x € acD(®), then for each ac-open set U containing x, we have U N (@\{x})# @. Then
U n @ + @, which is a contradiction.

(ii) Let x € acD(A), then for each ac-open set U containing x,we have U N (A\{x})# @.

Since A\{x}= (A\{xPH\{x}, U n ((A\{x})\{x}) # @. Hence x € acD(A\{x}).

(iii) Let x € acD(A), then for each ac-open set U containing x, we have U N (A\{x})# @.

If AcB,then Un (A\{x}) € Un (B\{x}). Therefore U n (B\{x})# @, which implies x € acD(B). Hence
acD(A) € acD(B).

(iv) As Ac AuUB, from (iii), acD(A) c acD(AUB). As B c AUB, from(iii), acD(B) c acD(A U B).
Hence acD(A) U acD(B) c acD(A U B).

(w) SinceAnB c Aand AN B c B, by(iii), Hence acD(A N B) c acD(A) N acD(B).
(vi) Let x € acD(acD(A))\A .Thenx € acD(acD(A)) and x ¢ A.
Then for each ac-open set U containing x, we have U N (acD(A)\{x})# @. Thereexistsy € X such that

y €U N (acD(A)\{x}) impliesy € U and y € (acD(A)\{x}).

So y is a ac-limit point of A and y € U. Hence there exists z € X such that z € U n (A\{y}) then z # x since x ¢ A
and z € A. Hence U n (A\{x}) # @ implies x € acD(A). Thus acD(acD(A))\A c acD(A).
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(vii) Let x € acD(A U acD(A)). If x € A then the result is obvious. If x & A, then x € acD(AU acD (A))\A. Then
for each ac-open set U containing x, we have U N (AU acD(A)\{x}) # @. Hence (U n A\{x}) U (U N acD(A)\
{x}) # @ implies U N A\{x} # @ or U n (acD(A)\{x}) # @.Thus x € acD(A) (or) x € acD(acD(A)). Since x & A,
latter implies x € acD (acD (A))\A.
From(vi), since acD (acD (A))\Ac acD(A), we have x € acD(A). Hence in both cases we have x € acD(A).

Thus acD(A U acD(A)) € AU acD(A).

(viii)Let x € acD(A), then for each ac-open set U containing x, we have U n (A\{x}) # @. Since every ac-open
set is a-open, U is a-open set. Thus x € aD(A). Hence acD(A) c aD(A) .

3.4 ac-Closure:
In this section we define, ac-closure of a set with respect to ac- limit points.

Definition 3.4.1: For any subset A of a topological space X, the ac-closure of A denoted by(acCl(A)) is defined as
the intersection of all ac-closed sets containing A.

Definition 3.4.2: A point x € X is said to be in ac-closure of A if for each ac-open set U containing x such that
UNA=#0Q.

The following Theorem gives the characterization of ac-closed sets.

Theorem 3.4.1: A subset A of a topological space X is ac-closed set if and only if it contains all of its ac- limit points.
Proof: Let A be an ac-closed set. Suppose A does not contain all of its ac- limit points.

Let x be the ac- limit point of A such that x & A. Then x € X\4, X\A is ac-open.

This implies (X\A) N (A\{x}) # @. i.e, X\A) N A # @ as x & A, which is a contradiction.

Conversely, Let A contains all of its ac- limit points. Therefore for each x € X\ A4, x is not an ac- limit point of A.

This implies that there exists an ac-open set U containing x such that U n (A\{x}) = 0. x € AimpliesU N A = Q.
This implies x € U c X\A. By Theorem (2.11), we have X\A is ac-open set. Hence A is ac-closed.

Theorem 3.4.2: Let A be a subset of a topological space X. Then acCI(A) = A U acD(A).

Proof: First let us show that A U acD (A) < acCl(A).

We know that A c acCI(A). By the definition of the ac-closure of A, A c n B;, where B;- is ac-closed set containing
A. Since A c n B;, by Theorem 3.3.2(iii), acD(A) < acD(Nn B;). From Theorem3.3.2(v), acD(4A) c N acD(B;) =N
B;, since each B; is ac-closed containing A. Thus acD(A) c acCl(A). Hence AU acD(A) < acCl(A)

On the other hand Suppose x € acCl(A). Since acCl(A) is the smallest ac-closed set containing x, it is sufficient to
show that A U acD(A) is ac-closed set.

Let x € X\(A U acD(A)), then x € AU acD(A). Thisimpliesthat x € Aand x € acD(A). G, N (A\{x}) =¢. x ¢ A
implies that G, N A = ¢. Then
G, c X\A (34.1)

Again, since G, is an ac-open set of each of its points and G, < X\A4, no points of G, is an ac-limit point of A implies
G, € acD(A). Hence

G, € X\acD(4) (3.4.2)
From (3.4.1) and (3.4.2), we have G, € (X\A4) N (X\acD(4)).
For all x € X\ ( A U acD(A)), there exists an ac-open set G, containing x such that x € G, € X\ (4 U acD(4)).
This implies that X\(4 U acD(A)) is ac-open. Hence A U acD(A) is ac-closed. Since A € AU acD(A), we have

acCl(A) € AU acD(A). Hence acCIl(A) = AU acD(A).
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Corollary 3.4.2: Let A be a subset of a topological space X. A point x € X is in the ac-closure of A if and only if
AN U =+ @ for every ac-open set U containing x.

Proof: By definition (3.4.2), implies A n U # @ for every ac-open set U containing x.

Conversely, Suppose x € acCL(A). Then by Theorem (3.4.2), x € AU acD(A) implies x € A and x ¢ acD(A). Thus
there exists an ac-open set U containing x such that U n (A\{x}) = U n A = @, which is a contradiction.

Theorem 3.4.3: Let A be any subset of a space X. If AnF # @ for every closed set F of X containing x, then the
point x is in the ac-closure of A.

Proof: Assume that U be any ac-open set containing x, by Definition (2.4), there exists a closed set F such that
x € F c A.By hypothesis AN F + @ implies A n U # @ for every ac-open setU containing x.

By Corollary (3.4.2), x € acCl(A).
The following Theorem gives the properties of ac-Closure of sets.

Theorem 3.4.4: For subsets A, B of a space X, the following statements are true.
(i) ac-closure of A is the intersection of all ac-closed sets containing A.
(ii) A c acCl(A).

(iii) acCl(A) is an ac-closed set in X.

(iv) Ais ac-closed ifand only if A = acCI(A).
) acCl(acCl(A)) = acCl(A).

(i) acCl(®) = @ and acCl(X) = X.

(vii) If A c B, then acCl(4) c acCIl(B).

(viii) If acCl(A) N acCl(B) = @,then AN B = Q.
(ix) acCl(A) U acCl(B) c acCl(A U B).

(x) acCl(AnB) c acCl(A) N acCl(B).

Proof:
(i) and (ii) are obvious.

(iii) By the definition of acCIl(A), acCl(A)= N B; where B; is the ac-closed set containing A. By Theorem (2.12),
N B; is ac- closed. Hence acCl(A) is ac-closed in X.

(iv) Let A be ac-closed set. Since A c A and A is ac-closed set, we have from acCI(A) =N F with A c Fand F is
ac-closed set that acCI(A) = A.

Conversely, Let A = acCIl(A), By(iii) we have A is ac-closed set in X.
(v) From(iii), acCl(A) is ac-closed set in X. From(iv), we have, acCl(acCl(A)) = acCl(A).
(vi) Since @ and X are ac-closed sets, from(iv), we have acCl(®) = @ and acCl(X) = X.

(vii) Let x € acCl(A). By Corollary (3.4.2), AnU # @ for each ac-open set U containing x. If A c B, then
BNnU # @.Hence x € acCl(B). Thus acCl(4) c acCl(B).

(viii) Supppose AN B # @, then x € An B implies x € acCI(A N B) .Then for all ac- opensets U containing x,
(ANB)NU # @ implies (AnU)n(BNU)# @. Consequently AnU # @ and BnU # @. By Corollary(3.4.2),
x € acCl(A) and x € acCl(B). Thus x € acCIl(A) N acCLl(B), which is a contradiction.

(ix) Since Ac AUBand B c AU B, by(vii), acCl(A) U acCl(B) c acCIl(A U B).

(x) Since (AnB) < Aand (AN B) € B, by(vii), acCl(An B) c acCIl(A) and acCl(A N B) c acCl(B).
Thus acCl(A N B) c acCl(A) N acClL(B).

Proposition 3.4.5: For any subset A of a topological space X, the following statements are true:
(@) X\acCl(A) = acint(X\A).
(i) X\acInt(A) = acCl(X\A).
(iii) acCl(A) = X\acInt(X\A).
(iv) acint(A) = X\acCl(X\A).
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Proof:
(i) Letx € X\acCl(A).Then by Corollary(3.4.2) x ¢ acCl(A) < There exists an ac-open set U containing x such
that ANU =0 x €U cX\A< x € acInt(X\A).

(ii) From(i), acInt(A) = X\acCl(X\A). This implies that X\ acInt (A)= acCl(X\A).

(iii) and (iv) follows from (i) and (ii).

3.5. Filter Space:

In this chapter we introduce several definitions on convergent and accumulation of a filter base.

Definition 3.5.1: [4] A filter is a non-empty collection § of subsets of a topological space X such that
i. 0¢ g
ii. IfAe® and B2 A, thenB € §.
iii. IfAeF andB e thenANBE .

The following definitions are introduced.

Definition 3.5.2: A subset A of a topological space X is called Oc-open set (denoted by 8cO(X)) if for each
x € A € 00O(X) , there exists a closed set F, such that x € F c A.

Definition 3.5.3: Let & be a filter base in a topological space (X, 7). We say &,
(D)ac-converges to a point x € X if for every ac-open set V containing x, there existsan F € & suchthat F c V.
(i) Oc-converges to a point x € X if for every 6c-open set V containing x, there existsan F € § suchthat F c V.
(iii) ac-accumulates toapoint x € X if F NV # @ for every ac-open set V containing x and every F € .
(iv) Oc-accumulates to a point x € X if F NV + @, for every 6c-open set V containing x and every F € .

The following Theorem gives the properties of ac-convergent and ac-accumalation of filter base in (X, 7).

Theorem 3.5.1: Let § be a filter base in a topological space (X, 7). The following assertion hold.
(i) If & ac-convergesto a point x, then § 6c-converges to the point x.
(ii) If§ ac-accumulates to a point x, then & 6c-accumulates to the point x.

Proof:

(i) Let & ac-converge to a pointx € X, and V be any 6c-open set containing x. By definition (3.5.2) and Theorem
(2.14), V is ac-open set. Since § ac-converges to x, there exist an F € & such that F c V. This shows that & 6c-
converges to x.

(ii) Let & ac-accumulate to a pointx € X, and V be any 6c-open set containing x. By definition (3.5.2) and
Theorem(2.14), implies V is ac-open set. Since & ac-accumulatesto x, F NV # @ for every F € & . This shows that
& Oc-accumulates to a point x.

Theorem 3.5.2: Let § be a filter base in a topological space (X,7) and E be any closed set containing x. Then the
following statements hold.

(DIf there existan F € &, such that F c E, then § ac-convergesto x € X.

(ii) If foreach F € &, suchthat F N E # @, then§ 6Hc-accumulates to x € X.
Proof:
(i) Let V be any ac-open set V containing x. Then for each x € V, there exist a closed set E such that x € E c V. By
hypothesis, there exists an F € §, suchthat F ¢ E c V. Hence § ac-converges to x.

(i) Let V be any Oc-open set containing x. Then for each x € V, there exist a closed set E such that x € E c V. By
hypothesis, forevery F € &, FNE # @. Then FNV # @. Hence § Oc-accumulates to x € X.

3.6 ac-Compactness:
We introduce two types of compactness namely ac-compactness and 6c-compactness.

Definition 3.6.1: A topological space (X,7) is ac-compact if for every ac-open cover {V,: a € A} of X, there exist a
finite subset Ay of A such that X=U {V,:a@ € Ay}.
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Definition 3.6.2: A topological space (X,7) is @c-compact if for every 6c-open cover {V,: a € A} of X, there exist a
finite subset Ay of A suchthat X = U {V,:a € Ap}.

The following Theorem gives the properties of ac-compactness.
Theorem 3.6.1: If every closed cover of a space X has finite subcover, then X is ac-compact.
Proof: Let {V,: « € A} be any ac-open cover of X and x € X, then for each x € V,(x), @ € A there exist a closed set
F,(x) such that x € F,(x) c V,(x). So the family { F,(x) : x € X } is a cover of X by closed sets. By hypothesis, this
family has a finite sub-cover suchthat X = U { F,(x;) : (i=1,2,....n) } c U {V, (x;) : (i=1,2,....n) }.
Therefore X =uU {V,(x;) : (i=1,2,....n) }. Hence X is ac-compact.
Theorem 3.6.2: Let (X, 1) be ac-compact. The following properties hold:

()If the space X is Locally indiscrete, then X is compact.

(ii) If the space X is Regular, then X is compact.
Proof:
(i) Let {V,: a € A} Dbe any open cover of X. Since every open set is ¢-open, this implies that { V,: « € A} is a a-open
cover of X. Since the space X be locally indiscrete, Every open subset of X is closed. This impliesthat { V,: @ € A} isa
ac-open cover of X. By hypothesis, X is ac-compact. So there exists a finite subset A, of A such that
X=U{V,:a € Ay}. Hence X is compact.
(ii) Let {V,:« € A} be any open cover of X. Since the space X is Regular, by Theorem (2.13), Every open set is ac-
open. This implies that every { V,: @ € A} is a ac-open cover of X. By hypothesis, X is ac-compact.So there exists a
finite subset A, of A such that X=U { V,: @ € A,}. Hence X is compact.
Theorem 3.6.3: If a topological space (X, t) be ac-compact, then it is is 8c-compact.

Proof: Let {V,: a € A} be any 6c¢ open cover of X. By definition(3.5.2) and Theorem(2.14) {V,: « € A} isa ac-open
cover of X. Since X is ac-compact, there exists a finite subset A, of A in X suchthat X =uU {V,: a € Ay}.

Hence X is 6c- compact.

Theorem 3.6.4: Let (X, 7) be a topological space, then a-compactness implies ac-compactness.

Proof: Let {V,: @ € A} be any ac- open cover of X. Since every ac-open set is a-open set, {V,: « € A}is aa- open
cover of X. Since X is a-compact, there exists a finite subset A, of A inX such that X = U {V,:a € Ay}. Hence X is ac-
compact.

Theorem 3.6.5: Every ac-compact space that is T} -space must be a-compact.

Proof: Let X be ac-compact and T;-space. Let {V,: @ € A } be any a- open cover of X. Then for every x € X, there
exists a(x) € A such that x € V,(x). Since X is T;-space every singleton set is closed. Then{V,(x)} is closed.
Therefore for eachx € V,(x) c V,(x).Thus V,(x) is ac-open cover of X.

Since X is ac-compact, there exists a finite subset A, of A in X such that X =u {V,: a € A,}. Hence X is a- compact.
3.7 ac- CONTINUOUS FUNCTIONS

In this chapter we introduce the ac-Continuous functions.

Definition 3.7.1: A function f: X — Y is called ac-continuous at a point x € X if for each open set VV of Y containing
f(x), there exists an ac-open set U of X contaning x such that f(U) € V. If f is ac-continuos at every point x of X,

then it is called ac-continuous.

Theorem 3.7.1: A function f : X - Y is ac-continuous if and only if the inverse image of every open set in Y is ac-
openin X.

Proof: Let f be ac-continuous and V be open set in Y. Letx € f~1(V). This implies f(x) € V. Hence by definition,

there exists an ac-open set U, in X containing x such that f(U,) € V. Therefore f~1(V) = u (U,). Since by Theorem
(2.10), we have f~1(V) is ac-open in X.
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Conversely, let us assume that £~ (V) is ac-open in X for every openset V inY.

Let V be open in Y. By assumption, f~1(V) is ac-open in X. Let U = f~Y(V), then f(U) = f(f"*(V)) € V. Hence f
is ac-continuous.

The following Theorem gives the characterization of ac-continuois function.

Theorem 3.7.2: A function f : X = Y is ac-continuous if and only if f is a-continuous and for each x € X and each
open set IV of Y containing f(x), there exists a closed set F of X containig x such that f(F) € V.

Proof: Let f : X = Y is ac-continuous, then it is a-continuous. Let x € X and V be any open set of Y containning
f(x). By hypothesis, there exists an ac-open set U of X containing x such that f(U) < V. Since U is ac-open set, then
for each x € U, there exists a closed set F of X such that x € F € U. Therefore, we have f(F) € V.

Conversely, let V be any open set of Y. We have to show that £~ (V) is ac-open set in X. Since f is a-continuous, then
f1(V) is a-open setin X. Let x € f~1(V). Then f(x) € V. By hypothesis, there exists a closed set F of X containig x
such that f(F) €V, which implies that x € F € f~1(V). Therefore, f~1(V) is ac-open set in X. Thus, fis ac-
continuous.

Theorem 3.7.3: Let f: X = Y be an ac-continuous and Y < Z. If Y is an open subset of a topological space Z,
then f : X = Z is ac-continuous.

Proof: Let V be an open setin Z. Then V N Y is open in Y. Since f is ac-continuous, by Theorem (3.7.1), f1(V N Y) is
ac-open set in X. But f(x) € Y for each x € X, and thus f~1(V) = f~1(V nY) is an ac-open subset of X. Therefore,
by Theorem (3.7.1), f : X = Z is ac-continuous.

Theorem 3.7.4: Let f,g : X = Y be functions and Y is Hausdorff. If f is ac-continuous, and g is clopen continuous,
thenthesetE = {x € X : f(x) = g(x)}is ac-closed in X.

Proof: Let x ¢ E. Then f(x) # g(x). Since Y is Hausdorff, there exist open sets V;and V, of Y such that f(x) <V,
gx) cV,, andV; nV, =@. Since f is ac-continuous, there exists an ac-open set U; of X containing x such
that f(U;) < V;. Since g is clopen continuous, there exists a clopen set U, of X containing x such that f(U,) < V5.
Put U = U; N U, is an ac-open set of X containing X, By definition (3.4.2), U N E = @. Therefore, we obtain x ¢
acCIL(E). This shows that E is ac-closed in X.

Theorem 3.7.5: Let f: X - Y and g : Y — Z be two functions in which f is ac-continuous and g is continuous. Then
the composition function g o f: X — Z is ac-continuous.

Proof: Let W be any open subset of Z. Since g is continuous g~!(W) is open subset of Y. Since f is ac-continuous,
then by Theorem(3.7.1), (g H)1(W) = f~1(g~1(W)) is ac-open subset set in X. Therefore, by Theorem(3.7.1), g o f
is ac-continuous.

Theorem 3.7.6: Let f : X; - Y and g : X, — Y be two ac-continuous. If Y is Hausdroff, then the set E = {(xy, x;) €
Xy X X5 :f(x1) = g(x,)} is ac-closed in the product space X; X X;.

Proof: Let (x;,x;) € E. Then f(x;) # g(x;). Since Y is Hausdorff, there exist open sets V;and V, of Y such that
fl) eV, glx) €V, and V; NV, = @. Since f and g are ac-continuous, there exists an ac-open set U; and U, of
X; and X, containing x; and x, such that f(U;) <V; and g(U,) € V,, respectively. Put U = U; x U,, then
(x4, x,) € U and by Theorem(2.15 ), U is ac-open set in X; X X, withU N E = Q.

Therefore, we obtain (x4, x,) € acCLl(E). Hence E is ac-closed in the product space X; X X;.
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