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ABSTRACT 
Using the idea of generalised iterations of functions we prove fix point theorems for certain class of complex functions. 
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1. INTRODUCTION AND DEFINITIONS 

 
A single valued complex function )(zf  is said to belong to class I if )(zf  is entire transcendental and class II if it is 
regular in the complex plane punctured at a , b )( ba ≠  and has an essential singularity at b and a singularity at a  
and if )(zf omits the values a  and b except possible at a . 
 
For arbitrary complex function )(zf , the iterations are defined inductively by 

zzf =)(0  and ))(()(1 zffzf nn =+ ; ,...2,1,0=n  . 
 
A point α  is called a fix point of )(zf  of order n  if α  is a solution of zzf n =)(  and a fix point of exact order n  

if α  is a solution of zzf n =)(  but not a solution of zzf k =)( , 1,...,3,2,1 −= nk . With this definition of 
iteration, for functions of class I, Baker [1] proved the following theorem. 
 
Theorem: A [1] If )(zf  belongs to class I, then )(zf  has fix points of exact order n  except for at most one value of 
n . 
 
In [4], Bhattacharyya extended Theorem A to functions in class II as follows. 
 
Theorem: B [4] If )(zf  belongs to class II, then )(zf  has an infinity of fix points of exact order n , for every 
positive integer n . 
 
In 1997, Lahiri and Banerjee [7] introduced a new concept of iteration called relative iterations (defined below) and 
using this, proved the result of Bhattacharyya [4]. 
 
Let )(zf  and )(zϕ  be functions of the complex variable z . Let 
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and so 
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If )(zf  and )(zϕ  are functions in class II, then so are )(zf n and )(znϕ . 
 
A point α  is called a fix point of )(zf  of order n  with respect to )(zϕ  if αα =)(nf  and a fix point of exact 

order n  if αα =)(nf  but 1,...,2,1,)( −=≠ nkf k αα . Such point α  is also called relative fix point. 
 
Theorem: C [7] If )(zf  and )(zϕ  belong to class II, then )(zf  has an infinity of relative fix points of exact order 

n  for every positive integer n , provided 
),(
),(

n

n

frT
rT ϕ

 is bounded. 

 
Recently, Banerjee and Mandal [2] introduced the concept of relative fix point of exact factor order and using this 
concept proved analogous theorem of Lahiri and Banerjee [7]. 
 
A point α  is called a relative fix point of )(zf  with respect to )(zϕ  of exact factor order n  if αα =)(nf  but 

αα ≠)(kf  and ααϕ ≠)(k  for all divisors )( nkk < of n . 
 
Theorem: D [2] If )(zf  and )(zϕ  belong to class II, then )(zf  has an infinity of relative fix points of exact factor 

order n  for every positive integer n  provided 
),(
),( 1

n

n

frT
frT −   is bounded. 

 
In [3], Banerjee and Mondal introduced another type of iteration called generalised iteration which runs as follows. 
 
Let )(zf  and )(zϕ  be two entire functions and ]1,0(∈α  be any number. Then the generalised iteration of )(zf  
with respect to )(zϕ  is defined as follows. 
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Note-1: When 1=α , generalised iteration reduces to relative iteration.           
      
Clearly if )(zf  and )(zϕ  are functions in class II, then so also are )(zf n  and )(znϕ . 
 
Now we introduce the following definition. 
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Definition: 1 A point β  is called a generalised fix point of )(zf  of order n  if ββ =)(nf  and a generalised fix 

point of exact order n  if ββ =)(nf  but ββ ≠)(kf , 1,...,3,2,1 −= nk . β  is called a generalised fix point of 

)(zf  of exact factor order n  if ββ =)(nf  but ββ ≠)(kf  and ββϕ ≠)(k  for all divisors )( nkk <  of n . 
 

Example: 1 Let 12)( += zzf , 12)( −= zzϕ  and ]1,0(∈α . Then 
α

α
+

=
2

z  is generalised fix point of exact 

order 2 of )(zf  and 
33
1

2

2

++
++

−=
αα
ααz  is generalised fix point of exact factor order 3 of )(zf . 

 
We normalise the functions in class II by taking 0=a , ∞=b  and throughout this paper we consider such type of 
functions and their generalised iteration unless otherwise stated. 
 
Let )(zf  be meromorphic in ∞<≤ zr0 , 00 >r . Following notations given in {[5], pp.88}, the first fundamental 
theorem takes the form 

)(log),(),,(),,( rOfrTfarNfarm +=+                                                                             (1) 

where the region is always ∞<≤ zr0 , 00 >r . 
 
Further if )(zf  is non-constant and ,2;,...,, 21 ≥qaaa q  be distinct finite complex numbers, 0>δ  with 

δνµ ≥− aa  for q≤≤≤ νµ1 , then 

)()(),(2),,(),( 1
1

rSrNfrTfarmfrm
q

+−≤+∑
=ν

ν                                                                (2) 

where 1
1( ) , 2 ( , ) ( , )N r N r N r f N r f
f

  ′= + − ′ 
 

and 
1

( ) , , (log )
qf fS r m r m r O r

f f aν ν=

 ′ ′ 
= + +   −   

∑ . 

 

Adding ∑
=

+
q

farNfrN
1

),,(),(
ν

ν  to both sides of (2) and using (1), we obtain 

∑
=

−−−≥
q

rSfrNfrTqfarN
1

1 )(),(),()1(),,(
ν

ν                                                                   (3) 

where )),((log)(1 frTOrS =  and N  corresponds to distinct roots. 
 

Also since nf  has an essential singularity at ∞ , we have {[5], pp.90}, 0
),(

log
→

nfrT
r

 as ∞→r . 

 
The object of this paper is to extend Theorem C and Theorem D to functions in class II, with generalised iteration. 
 
2. LEMMAS 
 
The following lemmas will be needed in the sequel. 
     

Lemma: 1 If f  and ϕ  are functions in class II, then for any 00 >r  and M , a positive constant M
frT
frT

>
),(
))(,( ϕ

, 

for all large r , except a set of r  intervals of total finite length.     
 
This follows from the Lemma of Lahiri and Banerjee [7] simply by taking 1=n  and 1=p . 
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Lemma: 2 If n  is any positive integer and )(zf  and )(zϕ  are functions in class II, then for any 00 >r  and 1M , a 
positive constant 

1),(
),(

M
frT

frT

n

pn >+  or 1),(
),(

M
frT

rT

n

pn >+ϕ
 

according as p  is even or odd, for all large r  except a set of r  intervals of total finite length. 
 
Proof: For nj ,...,2,1=  and for all large r , by using Lemma 1 we get 

)1())(,())1(,(),( 1 OfrTrTfrT jjj ++−≤+ ϕαϕα  

                   )1())(,(),( OfrTrT jj ++≤ ϕϕ  
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                   )).(,())1(1( jfrTO ϕ+=                                                                                               (4) 
 

Again,                  )()(1))(( 1
1 zzfzf jjj ϕ

α
ϕ α

α−
+ −=  and so for large r , 

)1(),(),())(,( 1 OrTfrTfrT jjj ++≤ + ϕϕ . 
 
Therefore 

)1(),())(,(),( 1 OrTfrTfrT jjj +−≥+ ϕϕ  
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                   )).(,())1(1( jfrTO ϕ+=                                                                                               (5) 
 
From (4) and (5), for all large r  

)).(,())1(1(),( 1 jj frTOfrT ϕ+=+                                                                                               (6) 
 
Similarly for all large r , we have 

)).(,())1(1(),( 1 jj frTOrT ϕϕ +=+                                                                                               (7) 
In particular, 

),())1(1(),( 1 frTofrT +=  and ),())1(1(),( 1 ϕϕ rTorT += ). 
 
Now we consider the following two cases. 
 
Case-(i): When p  is even. 
 
For all large r  except a set of r  intervals of total finite length, we have from (6) and (7), by using Lemma 1 
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where pMOM ))1(1(1 += , a positive constant. 
 

i.e., 1),(
),(

M
frT

frT

n

pn >+  for all large r  except a set of r intervals of total finite length. 

 
Case-(ii): When p  is odd. 
 
For all large r  except a set of r  intervals of total finite length, we have from (6) and (7), by using Lemma 1 
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Lemma: 3 If n  is any positive integer and )(zf  and )(zϕ  are functions in class II, then for any 00 >r  and 1M , a 
positive constant 

1),(
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M
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M
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ϕ
 

according as p  is even or odd, for all large r  except a set of r  intervals of total finite length. 
 
3. THEOREMS  
  
As soon as the lemmas are obtained, the proof of the following two theorems are analogous of the proof of Theorem C 
and Theorem D. However, for the sake of completeness and for convenience of readers, we outline the proof. 
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Theorem: 1 If )(zf  and )(zϕ  belong to class II, then )(zf  has an infinity of generalised fix points of exact order 

n  for every positive integer n , provided 
),(
),(

n

n

frT
rT ϕ

 is bounded. 

 
Proof: We may assume that 1≠α , because if 1=α , the theorem coincides with Theorem C. We consider the 
function 

,
)(

)(
z

zf
zg n=  ∞<< zr0  

then                       ).(log),(),( rOfrTgrT n +=                                                                                                      (8) 
 
Assume that )(zf  has only a finite number of generalised fix points of exact order n . Now from (3) by taking 2=q , 

01 =a , 12 =a , we obtain for g , 

( )grSgrNgrNgrNgrT ,),1,(),0,(),,(),( 1+++∞≤                                                          (9) 

where )),((log),(1 grTOgrS =  outside a set of r  intervals of finite length {[6], pp.47}.     
 
Since )(zf n  belongs to class II, it has a singularity at 0=z  and an essential singularity at ∞=z  and  

∞≠ ,0)(zf n  in ∞<< zr0 . 
 
Also the distinct roots of 0)( =zg  in tzr ≤<0  are the roots of 0)( =zf n  in tzr ≤<0 . So 0),0,( =gtn . 

Consequently 0),0,( =grN . By similar argument 0),,( =∞ grN .     
 
Further if 1)( =zg , then zzf n =)( . 
 
So, ),0,(),1,( zfrNgrN n −=  

                        ,)(log),0,(
1

1
∑
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+−≤
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j
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the term )(log rO  arises due to the assumption that )(zf  has only a finite number of generalised fix points of exact 
order n . 
 
Now from (9), we have 
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where 1 2, ,..., pi i i  and 1 2, ,..., qj j j  are ( )1−n  distinct index belong to the set { }1,2,3,..., 1n −  such that 

( )pin − 's are even and ( )qjn − 's are odd 

                    ]
4

1
4

1)[,(
n

n
n

nfrT n
+

+
−

< , for all large r , by Lemma 2 and since 
),(
),(

n

n

frT
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  is bounded 

                    ),(
2
1

nfrT= . 

 

Therefore, ),(
2
1),( nfrTgrT <  for all large r . This contradicts (8). Hence )(zf  has infinitely many generalised 

fix points of exact order n . 
 
This proves the theorem. 
 
Theorem: 2 If )(zf  and )(zϕ  belong to class II, then )(zf  has an infinity of generalised fix points of exact factor 

order n  for every positive integer n , provided 
),(
),(

n

n

frT
rT ϕ

 is bounded. 

 
Proof: As in Theorem 1, we assume that )(zf  has only a finite number of generalised fix points of exact factor 

order n . Considering the function ,
)(

)(
z
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zh n=  ∞<< zr0  we have 

).(log),(),( rOfrThrT n +=                                                                                                      (10) 
 
Here also 0),0,( =hrN  and 0),,( =∞ hrN . 
 
To calculate ),1,( hrN  we consider two cases separately. 
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where 1 3 2 1, ,..., pj j j −  are distinct odd divisors of n  and 2 4 2, ,..., qj j j  are distinct even divisors of n and strictly 
less than n  
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for all large r , by Lemma 2 and Lemma 3. 
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Case-(ii): When n  is odd. 
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2 ( , ) ( , )

n
n

n
n n

O rO T r f
T r fO rT r f

T r f T r f

    
+         = + + 

 
 
 

 

),(
2
1

nfrT= , for all large r . 

 

Therefore, ),(
2
1),( nfrThrT <  for all large r . This contradicts (10). Hence )(zf  has infinitely many generalised 

fix points of exact factor order n . 
 
This proves the theorem. 
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