FINITE DIMENSIONAL FUZZY ANTI 2- NORMED LINEAR SPACE

PARIJAT SINHA¹, DIVYA MISHRA*² AND GHANSHYAM LAL²

¹Department of Mathematics, V. S. S. D. College, Kanpur, India.
²Department of Mathematics, M. G. C. G. University, Satna, India.

(Received On: 17-01-16; Revised & Accepted On: 31-01-16)

ABSTRACT

In this paper we have generalized fuzzy anti 2-norm by introducing t-conorm in the earlier definition. The Riesz lemma and a few properties of finite dimensional fuzzy anti 2-normed linear space has been established with respect to t-conorm }.

Keywords: Fuzzy anti 2-norm, α -2-norm, Riesz lemma.

INTRODUCTION

In the present paper we have modified the definition of fuzzy anti 2-normed linear space. The Riesz lemma and important properties of finite dimensional fuzzy anti 2-normed linear space has been established with respect to t-conorm }.

PRELIMINARIES

Definition 2.1[10]: A binary operation } : [0,1] × [0,1] → [0,1] is a t-conorm if } satisfies the following condition:

(i) } is commutative and associative,
(ii) a } 0 = a, ∀a ∈ [0,1],
(iii) a } b ≤ c } d, whenever a ≤ c, b ≤ d and a, b, c, d ∈ [0,1].

Example: (i) a } b = a+b-ab (ii) a } b = max {a, b} (iii) a } b = {a+b, 1}

Definition 2.2[1]: Let X be a linear space over a real field F. A fuzzy subset } of X × X × R is called a fuzzy anti 2-norm on X if and only if it satisfies,

(Fa2-N1) for all t ∈ R with t ≤ 0, } (x₁, x₂, t) = 1

(Fa2-N2) for all t ∈ R with t > 0, } (x₁, x₂, t) = 0 if and only if x₁ and x₂ are linearly dependent.

(Fa2-N3) } (x₁, x₂, t) is invariant under any permutation.

(Fa2-N4) for all t ∈ R with t > 0, } (x₁, cx₂, t) = } (x₁, x₂, t/c) if c ≠ 0, c ∈ F

(Fa2-N5) for s,t ∈ R with t > 0 all } (x₁, x₂ + x₂', s + t) ≤ max } (x₁, x₂, s), } (x₁, x₂', t)

(Fa2-N6) } (x₁, x₂, t) is non-increasing function of t ∈ R and \(\lim_{t \to \infty} } (x₁, x₂, t) = 0. \)
Then \((X, N^*)\) is called a fuzzy anti 2-normed linear space. The following condition of fuzzy anti 2-norm \(N^*\) will be required later on,

\((\text{Fa2-N7})\) for \(t \in R\) with \(t > 0\), \(N^*(x_1, x_2, t) < 1\), \(\forall t > 0 \Rightarrow x_1 \) and \(x_2 \) are linearly dependent.

Definition 2.3[1]: Let \((X, N^*)\) be a fuzzy anti 2-normed linear space. A sequence \(\{x_n\} \) in \(X\) is said to be convergent to \(x \in X\) if \(\exists \) an integer \(n_0 \in N\) such that \(N^*(x_n - x, x, t) < r\), \(\forall n \geq n_0\).

Definition 2.4[1]: Let \((X, N^*)\) be a fuzzy anti 2-normed linear space. A sequence \(\{x_n\} \) in \(X\) is said to be cauchy sequence if \(\exists \) an integer \(n_0 \in N\) such that \(N^*(x_n - x_n, x, t) < r\), for all \(n \geq n_0\), \(p = 1, 2, 3, \ldots\)

Definition 2.5[3]: A subset \(A\) of a fuzzy anti 2-normed linear space \((X, N^*)\) is said to be bounded iff \(\exists t > 0\), \(N^*(Ax, x, t) < r\), \(\forall x, y \in A\).

Definition 2.6[3]: Let \((X, N^*)\) be a fuzzy anti 2-normed linear space. A subset \(B\) of \(X\) is said to be closed if any sequence \(\{x_n\} \) in \(B\) converges to \(x \in X\) that is \(\lim_{n \to \infty} N^*(x_n - x) = 0\), \(\forall t > 0 \Rightarrow x, y \in B\).

Definition 2.7[1]: A subset \(A\) of a fuzzy anti 2-normed linear space \((X, N^*)\) is said to be compact if any sequence \(\{x_n\} \) in \(A\) has a subsequence converging to an element of \(A\).

3. FUZZY ANTI 2-NORMED LINEAR SPACE

In this section we have modified the definition of fuzzy anti 2-norm with respect to a t-conorm \(\diamond\) and deduced some important results.

Definition 3.1: Let \(X\) be a linear space over a real field \(F\). A fuzzy subset \(N^*\) of \(X \times X \times R\) is called a fuzzy anti 2-norm on \(X\) if and only if it satisfies,

\((\text{Fa2-N1})\) for all \(t \in R\) with \(t \leq 0\), \(N^*(x_1, x_2, t) = 1\)

\((\text{Fa2-N2})\) for all \(t \in R\) with \(t > 0\), \(N^*(x_1, x_2, t) = 0\) if and only if \(x_1\) and \(x_2\) are linearly dependent.

\((\text{Fa2-N3})\) \(N^*(x_1, x_2, t)\) is invariant under any permutation of \(x_1\) and \(x_2\).

\((\text{Fa2-N4})\) for all \(t \in R\) with \(t > 0\)

\[N^*(x_1, cx_2, t) = N^*(x_1, x_2, t)\]

if \(c \neq 0, c \in F\)

\((\text{Fa2-N5})\) for \(s, t \in R\) with \(t > 0\) all \(N^*(x_1, x_2 + x_2, t) \leq N^*(x_1, x_2, t)\)

\((\text{Fa2-N6})\) \(N^*(x_1, x_2, t)\) is non-increasing function of \(t \in R\) and \(\lim_{t \to \infty} N^*(x_1, x_2, t) = 0\)

We further assume that for a fuzzy anti 2-normed linear space \((X, N^*)\),

\((\text{Fa2-N7})\) for all \(t \in R\) with \(t > 0\), \(N^*(x_1, x_2, t) < 1\), \(\forall t > 0 \Rightarrow x_1\) and \(x_2\) are linearly dependent.

\((\text{Fa2-N8})\) \(N^*(x_1, x_2, t)\) is a continuous function on \(R\) and strictly decreasing on the subset \(\{t : 0 < N^*(x_1, x_2, t) < 1\}\) of \(R\).

\((\text{Fa2-N9})\) \(a \diamond a = a\), \(\forall a \in [0, 1]\)

Remark 3.1: Let \(N^*\) be a fuzzy anti 2-norm on \(X\) then \(N^*(x_1, x_2, t)\) is non-increasing with respect to \(t\) for each \(x_1, x_2 \in X\).

Proof: Let \(t < s\). Then \(k = s - t > 0\), we have

\[N^*(x_1, x_2, t) = N^*(x_1, x_2, t) \diamond 0\] (by property of t-conorm)

\[= N^*(x_1, x_2, t) \diamond N^*(0, 0, k) \succeq N^*(x_1, x_2, t + k) = N^*(x_1, x_2, s)\]

Hence Proved
Example 3.1: Let \((X, \|\cdot\|)\) be 2-normed linear space and define \(a \triangleq b = a + b - ab\). Define \(N^* : X \times X \times R \to [0,1]\) by
\[
N^*(x_1, x_2, t) = \begin{cases}
0, & \text{if } t > \|x_1, x_2\| \\
\frac{|x_1, x_2|}{t + |x_1, x_2|}, & \text{if } t \leq \|x_1, x_2\|, t > 0 \\
1, & \text{if } t \leq 0
\end{cases}
\]
Then \(N^*\) is a fuzzy anti 2-norm on \(X\) with respect to the \(t\)-conorm \(\triangleleft\) and \((X, N^*)\) is a fuzzy anti 2-normed linear space with respect to the \(t\)-conorm \(\triangleleft\).

Solution:
(i) \(\forall x_1, x_2 \in X \times X\) and \(\forall t \in R, t \leq 0\) we have \(N^*(x_1, x_2, t) = 1\).
(ii) \(\forall t \in R, t \leq 0\) if \(x_1, x_2\) are linearly dependent then \(\|x_1, x_2\| = 0\) so \(N^*(x_1, x_2, t) = 0\) with \(t > 0 \Rightarrow \|x_1, x_2\| < t\), \(\forall t > 0 \Rightarrow \|x_1, x_2\| = 0 \Rightarrow x_1, x_2\) are linearly dependent.
(iii) It is obvious that \(N^*(x_1, x_2, t)\) is invariant under any permutation.
(iv) If \(N^*(x_1, cx_2, t) = 0 \Leftrightarrow t > \|x_1, cx_2\| \Leftrightarrow t > |c| \|x_1, x_2\| \Leftrightarrow \frac{t}{|c|} > \|x_1, x_2\| \Rightarrow N^*(x_1, x_2, \frac{t}{|c|}) = 0\).
\[
N^*(x_1, x_2, t) = 1 \Leftrightarrow t \leq \|x_1, x_2\| \Leftrightarrow t \leq |t| \|x_1, x_2\| \Leftrightarrow \frac{t}{|t|} \leq \|x_1, x_2\| \Rightarrow N^*(x_1, x_2, \frac{t}{|t|}) = 1.
\]
(v) \(N^*(x_1, x_2, s) \triangleleft N^*(x_1, x_2, t) = N^*(x_1, x_2, s) + N^*(x_1, x_2, t) - N^*(x_1, x_2, s) N^*(x_1, x_2, t)\).
If \(s > \|x_1, x_2\|\) and \(t > \|x_1, x_2\|\) so \(s + t > \|x_1, x_2\| + \|x_1, x_2\|\) then \(N^*(x_1, x_2 + x_2', s + t) = 0\) and \(N^*(x_1, x_2, s) \triangleleft N^*(x_1, x_2, t) = 0 + 0 - 0 = 0\).
So \(N^*(x_1, x_2 + x_2', s + t) = N^*(x_1, x_2, s) N^*(x_1, x_2, t)\).
If \(s > \|x_1, x_2\|\) and \(t \leq \|x_1, x_2\|\) then \(N^*(x_1, x_2, s) \triangleleft N^*(x_1, x_2', t) = 0 + 1 = 1\).
If \(s \leq \|x_1, x_2\|\) and \(t \leq \|x_1, x_2\|\) then \(N^*(x_1, x_2, s) \triangleleft N^*(x_1, x_2', t) = 1 + 0 = 1\).
Then in all the above three cases,
\(N^*(x_1, x_2, s) \triangleleft N^*(x_1, x_2', t) = 1 \geq N^*(x_1, x_2 + x_2', s + t)\).
Thus \(N^*(x_1, x_2 + x_2', s + t) \leq N^*(x_1, x_2, s) N^*(x_1, x_2, t)\).
(vi) From the definition if \(t > \|x_1, x_2\|\), then \(\lim_{t \to \infty} N^*(x_1, x_2, t) = 0\). Thus \((X, N^*)\) is a fuzzy anti 2-normed linear space with respect to the \(t\)-conorm \(\triangleleft\).

Example 3.2: Let \((X, \|\cdot\|)\) be 2-normed linear space and define \(a \triangleq b = \min\{a+b, 1\}\). Define \(N^* : X \times X \times R \to [0,1]\) by
\[
N^*(x_1, x_2, t) = \begin{cases}
0, & \text{if } t > \|x_1, x_2\| \\
\frac{|x_1, x_2|}{t + |x_1, x_2|}, & \text{if } t \leq \|x_1, x_2\|, t > 0 \\
1, & \text{if } t \leq 0
\end{cases}
\]
Then \(N^*\) is a fuzzy anti 2-norm on \(X\) with respect to the \(t\)-conorm \(\triangleleft\) and \((X, N^*)\) is a fuzzy anti 2-normed linear space with respect to the \(t\)-conorm \(\triangleleft\).

Solution:
(i) From the definition we have \(N^*(x_1, x_2, t) = 1\) if \(\forall t \in R, t \leq 0\).
(ii) If \(t > 0 \) and \(t \leq \|x_1, x_2\| \) the \(N^*(x_1, x_2, t) = \frac{|x_1, x_2|}{t + \|x_1, x_2\|} \) if \(x_1, x_2 \) are linearly dependent so \(x_1, x_2 = 0 \) therefore \(N^*(x_1, x_2, t) = 0 \).

Conversely, \(N^*(x_1, x_2, t) = 0 \) then \(t > \|x_1, x_2\| \) \(\forall t \Rightarrow \|x_1, x_2\| = 0 \) , so \(x_1, x_2 \) are linearly dependent.

(iii) It is obvious that \(N^*(x_1, x_2, t) \) is invariant under any permutation of \(x_1 \) and \(x_2 \).

(iv) If \(N^*(x_1, c x_2, t) = 0 \) \(\Leftrightarrow \|x_1, c x_2\| \) \(\Leftrightarrow \left\| \frac{t}{\|x_1, c x_2\|} \right\| \leq \left\| \frac{t}{\|x_1, x_2\|} \right\| \) \(\Leftrightarrow N^*(x_1, x_2, t) = 0 \).

If \(N^*(x_1, c x_2, t) = \frac{\|x_1, c x_2\|}{t + \|x_1, c x_2\|} \) \(\Leftrightarrow \|x_1, c x_2\| \leq \|x_1, x_2\| \) \(\Leftrightarrow N^*(x_1, x_2, t) = \frac{\|x_1, x_2\|}{t + \|x_1, x_2\|} = \frac{\|x_1, c x_2\|}{t + \|x_1, c x_2\|} \)

(v) \(N^*(x_1, x_2, s) * N^*(x_1, x_2', t) = \min \left\{ N^*(x_1, x_2, s) + N^*(x_1, x_2', t), 1 \right\} \) If \(\|x_1, x_2\| \geq s \) and \(\|x_1, x_2'\| \geq t \) then

\[
N^*(x_1, x_2, s) + N^*(x_1, x_2', t) = \frac{\|x_1, x_2\|}{s + \|x_1, x_2\|} + \frac{\|x_1, x_2'\|}{s + \|x_1, x_2'\|} \geq 1
\]

Since \(s + \|x_1, x_2\| > st \).

In this case \(N^*(x_1, x_2, s) * N^*(x_1, x_2', t) = 1 \geq N^*(x_1, x_2 + x_2', s + t) \).

If \(\|x_1, x_2\| \geq s \) and \(\|x_1, x_2'\| < t \) then either \(\|x_1, x_2 + x_2'\| \geq s + t \) or \(\|x_1, x_2 + x_2'\| < s + t \).

Now, \(N^*(x_1, x_2, s) + N^*(x_1, x_2', t) = \frac{\|x_1, x_2\|}{s + \|x_1, x_2\|} + \frac{\|x_1, x_2'\|}{s + \|x_1, x_2\|} < 1 \).

Hence \(N^*(x_1, x_2, s) * N^*(x_1, x_2', t) = \frac{\|x_1, x_2\|}{s + \|x_1, x_2\|} \).

If \(\|x_1, x_2 + x_2'\| \geq s + t \) then consider

\[
N^*(x_1, x_2 + x_2', s + t) - N^*(x_1, x_2, s) * N^*(x_1, x_2', t) = \frac{\|x_1, x_2 + x_2'\|}{s + t + \|x_1, x_2 + x_2'\|} - \frac{\|x_1, x_2\|}{s + \|x_1, x_2\|} \leq \frac{\|x_1, x_2\|}{s + t + \|x_1, x_2\|} - \frac{\|x_1, x_2\|}{s + \|x_1, x_2\|} = \frac{s \|x_1, x_2\| - t \|x_1, x_2\|}{s + t + \|x_1, x_2\|} (s + \|x_1, x_2\|) \leq 0, \text{ Since } \|x_1, x_2\| \leq t, 0, \text{ Since } s \leq \|x_1, x_2\| \text{ so } st < \|x_1, x_2\| .
\]

So, \(N^*(x_1, x_2 + x_2', s + t) < N^*(x_1, x_2, s) * N^*(x_1, x_2', t) \).

If \(\|x_1, x_2 + x_2'\| < s + t \) then

\[
N^*(x_1, x_2 + x_2', s + t) = \frac{\|x_1, x_2\|}{s + \|x_1, x_2\|} = N^*(x_1, x_2, s) * N^*(x_1, x_2', t)
\]
If \[\|x_1, x_2\| < s \text{ and } \|x_1, x_2\| \geq t \] then in the similar way we can show that
\[N^*(x_1, x_2 + x'_2, s + t) \leq N^*(x_1, x_2, s) \odot N^*(x_1, x'_2, t). \]

If \[\|x_1, x_2\| < s \text{ and } \|x_1, x'_2\| \geq t \] then \[N^*(x_1, x_2, s) + N^*(x_1, x'_2, t) = 0 + 0 < 1. \]
Therefore, \[N^*(x_1, x_2, s) \odot N^*(x_1, x'_2, t) = 0. \]

Also \[\|x_1, x_2 + x'_2\| \leq \|x_1, x_2\| + \|x_1, x'_2\| < s + t \] and \[N^*(x_1, x_2 + x'_2, s + t) = 0. \]

So \[N^*(x_1, x_2 + x'_2, s + t) = N^*(x_1, x_2, s) \odot N^*(x_1, x'_2, t). \]

So \[N^*(x_1, x_2 + x'_2, s + t) \leq N^*(x_1, x_2, s) \odot N^*(x_1, x'_2, t) \]

(vi) If \[t > \|x_1, x_2\| \] then from the definition \[\lim_{t \to \infty} N^*(x_1, x_2, t) = 0. \]
If \(x_1, x_2 \) are not independent and \(t \leq \|x_1, x_2\| \) then
\[\lim_{t \to \infty} N^*(x_1, x_2, t) = 0. \]

If \(x_1, x_2 \) are linearly dependent and \(t \leq \|x_1, x_2\| \) then \(\lim_{t \to \infty} N^*(x_1, x_2, t) = 0. \)

Hence \(\lim_{t \to \infty} N^*(x_1, x_2, t) = 0. \forall x_1, x_2 \in X \times X. \)

Thus \(N^* \) is a fuzzy anti 2-norm on \(X \) with respect to the \(t \)-conorm \(\diamond \) and \((X, N^*) \) is a fuzzy anti 2-normed linear space with respect to the \(t \)-conorm \(\diamond \).

Example 3.3: Let \((X, \|\|) \) be 2-normed linear space and define \(a \odot b = \min\{a + b, 1\} \). Define \(N^*: X \times X \times R \to [0,1] \) by \(\|x_1, x_2\| \ = \ \frac{\|x_1, x_2\|}{2t - \|x_1, x_2\|} \) if \(t > \|x_1, x_2\| \)
\[N^*(x_1, x_2, t) = \begin{cases} \frac{\|x_1, x_2\|}{2t - \|x_1, x_2\|}, & \text{if } t > \|x_1, x_2\| \\ 1, & \text{if } t \leq \|x_1, x_2\| \end{cases} \]

Then \(N^* \) satisfies all the condition of fuzzy anti 2-norm with respect to t-conorm \(\diamond \). So \(N^* \) is a fuzzy anti 2-norm on \(X \) with respect to the \(t \)-conorm \(\diamond \) and \((X, N^*) \) is a fuzzy anti 2-normed linear space with respect to the \(t \)-conorm \(\diamond \).

Theorem 3.1: Let \((X, N^*) \) be a fuzzy anti 2-normed linear space with respect to a \(t \)-conorm \(\diamond \) satisfying (Fa2-N7) and (Fa2-N9). Then for any \(\alpha \in (0,1) \) the function \(N^*: X \times X \times R \to [0,\infty) \) defined as
\[\|x_1, x_2\| = \alpha \left\{ t > 0 : N^*(x_1, x_2, t) \leq 1 - \alpha \right\} \alpha \in (0,1). \]
is a 2-norm on \(X \). Then \(\|\|_\alpha : \alpha \in (0,1) \) is an ascending family of 2-norm on a linear space \(X \).

Proof:
(i) For \(x_1, x_2 \) for \(t \leq 0 \), so \(N^*(x_1, x_2, t) \leq 1 - \alpha \) is not possible.
So \(\left\{ t > 0 : N^*(x_1, x_2, t) \leq 1 - \alpha \right\} \geq 0 \), \(\alpha \in (0,1) \Rightarrow \|x_1, x_2\| \geq 0, \alpha \in (0,1) \).

(ii) It is obvious \(\left\{ t > 0 : N^*(x_1, x_2, t) \leq 1 - \alpha \right\} = 0 \Rightarrow \forall t > 0, N^*(x_1, x_2, t) < 1 \)
So by (Fa2-N7) \(x_1 \) and \(x_2 \) are linearly dependent.

Conversely, \(x_1 \) and \(x_2 \) are linearly dependent
\[\Rightarrow \left\{ t > 0 : N^*(x_1, x_2, t) \leq 1 - \alpha \right\} = 0, \forall \alpha \in (0,1) \Rightarrow \|x_1, x_2\| = 0. \]
(iii) If \(c = 0 \) it is obvious. If \(c \neq 0 \) then

\[
\left\| x_1, cx_2 \right\| = \land \left\{ s > 0 : N^*(x_1, cx_2, s) \leq 1 - \alpha \right\} \\
= \land \left\{ s > 0 : N^* \left(x_1, x_2, \frac{s}{c} \right) \leq 1 - \alpha \right\} \\
= \land \left\{ \forall x \in X, N^*(x_1, x_2, s) \leq 1 - \alpha \right\} \\
= \land \left\{ \forall x \in X, N^*(x_1, x_2, s) \leq 1 - \alpha \right\}
\]

(iv) \(\left\| x_1, x_2 \right\| + \left\| x_1, x_2 \right\| = \land \left\{ s > 0 : N^*(x_1, x_2, t) \leq 1 - \alpha \right\} \lor \left\{ s > 0 : N^*(x_1, x_2, s) \leq 1 - \alpha \right\} \forall \alpha \in (0, 1)
\]

So \(\land \left\{ s > 0 : N^*(x_1, x_2, t) \lor N^*(x_1, x_2, s) \leq 1 - \alpha \right\} \)

Hence \(\left\| \cdot, \cdot \right\| : \alpha \in (0, 1) \) is a 2-norm on \(X \).

Theorem 3.2: Let \((X, N^*) \) be a fuzzy anti 2-normed linear space satisfying (Fa2-N7) and (Fa2-N8) Also, if \(\left\| \cdot, \cdot \right\| : \alpha \in (0, 1) \) be an ascending family of norms of \(X \), defined by \(\left\| x_0, x_0' \right\| = \land \left\{ s > 0 : N^*(x_0, x_0', s) \leq 1 - \alpha \right\} \alpha \in (0, 1) \) Then for \(x_0, x_0' \) (linearly independent) \(X \) \(\alpha \in (0, 1) \) and \(s > 0 \) in \(R \),

\[
\left\| x_0, x_0' \right\| = s \Leftrightarrow N^*(x_0, x_0', s) = 1 - \alpha.
\]

Proof: let \(\left\| x_0, x_0' \right\| = s \) then \(s > 0 \). Then \(\exists \) a sequence \(\left\{ s_n \right\}_{n \to \infty} \) such that \(s_n \to s \) as \(n \to \infty \) and

\[
N^*(x_0, x_0', s_n) \leq 1 - \alpha, \quad \forall n \in N.
\]

Therefore \(\lim_{n \to \infty} N^*(x_0, x_0', s_n) \leq 1 - \alpha \Rightarrow N^*(x_0, x_0', \lim_{n \to \infty} s_n) \leq 1 - \alpha \Rightarrow N^*(x_0, x_0', s) \leq 1 - \alpha \)

Let \(\alpha \in (0, 1) \), \(x_0, x_0' \) (linearly dependent) \(X \) and \(s = \left\| x_0, x_0' \right\| = \land \left\{ s > 0 : N^*(x_0, x_0', s) \leq 1 - \alpha \right\} \)

Therefore \(N^*(x_0, x_0', s) \leq 1 - \alpha \)

(1)

If possible let \(N^*(x_0, x_0', s) < 1 - \alpha \) then by continuity of \(N^*(x_0, x_0', s) \) at \(s \), there exist \(s' < s \) such that \(N^*(x_0, x_0', s') < 1 - \alpha \), which is impossible since

\[
s = \land \left\{ s > 0 : N^*(x_0, x_0', s) \leq 1 - \alpha \right\}.
\]

Thus \(N^*(x_0, x_0', s) \geq 1 - \alpha \)

(2)

From (1) and (2) it follows that \(N^*(x_0, x_0', s) = 1 - \alpha \). Thus

\[
\left\| x_0, x_0' \right\| = s \Rightarrow N^*(x_0, x_0', s) = 1 - \alpha
\]

(3)
Next if \(N^*(x_0, x'_0, s) = 1 - \alpha, \alpha \in (0,1) \) then
\[
\|x_0, x'_0\|_\alpha = \bigwedge \{ t : N^*(x_0, x'_0, s) \leq 1 - \alpha \} = s.
\] (4)

Hence from (3) and (4) we have for \(\alpha \in (0,1) \), \(x_0, x'_0 \) (linearly independent) \(\in X \) and for \(s > 0, \|x_0, x'_0\| = s \iff N^*(x_0, x'_0, s) = 1 - \alpha. \) Hence proved.

Theorem 3.3: Let \((X, N^*) \) be a fuzzy anti 2-normed linear space with respect to a t- conorm \(\diamond \) satisfying (Fa2-N7), (Fa2-N8) and (Fa2-N9).

Let \(\|x_1, x_2\|_\alpha = \bigwedge \{ t : N^*(x_1, x_2, t) \leq 1 - \alpha \}, \alpha \in (0,1). \) Also, let \(N^*_1 : X \times X \times R \to [0,1] \) be defined by
\[
N^*_1(x_1, x_2, t) = \begin{cases}
1 - \alpha : \|x_1, x_2\|_\alpha \leq t \\
1, \text{ otherwise}
\end{cases}
\]
Then \(N^*_1 = N^* \).

Proof: Let \((x_0, x'_0, t_0) \in X \times X \times R \) and \(\alpha \in (0,1) \). To prove this we consider the following cases:

Case (i): For any \((x_0, x'_0) \in X \times X \) and \(t \leq 0, N^*(x_0, x'_0, t_0) = N^*_1(x_0, x'_0, t_0) = 1. \)

Case (ii): Let \(x_0, x'_0 \) (linearly dependent), \(t_0 > 0. \)
Then \(N^*(x_0, x'_0, t_0) = 0 \) also \(\|x_1, x_2\|_\alpha = 0 \) so \(N^*_1(x_0, x'_0, t_0) = 0 \)

Case (iii): Let \(x_0, x'_0 \) (linearly independent), \(t_0 > 0 \) such that \(N^*(x_0, x'_0, t_0) = 1. \) By theorem (3.2), we have \(N^*(x_0, x'_0, t_0) = 1 - \alpha. \) Since \(N^*(x_0, x'_0, t_0) = 1 > 1 - \alpha \) it follows that
\[
N^*(x_0, x'_0, t_0) = 1 - \alpha < N^*(x_0, x'_0, t_0) \quad \text{and since} \quad N^*(x_0, x'_0, t_0) \quad \text{is strictly non-increasing.}
\]
So \(t_0 < \|x_1, x_2\|_\alpha, \forall \alpha \in (0,1). \) So \(N^*_1(x_0, x'_0, t_0) = \bigwedge \{ 1 - \alpha : \|x_1, x_2\|_\alpha \leq t_0 \} = 1. \)
Thus \(N^*(x_0, x'_0, t_0) = N^*_1(x_0, x'_0, t_0) = 1. \)

Case (iv): Let \(x_0, x'_0 \) (linearly independent), \(t_0 > 0 \) such that \(N^*(x_0, x'_0, t_0) = 0. \)
As \(\|x_0, x'_0\|_\alpha = \bigwedge \{ t : N^*(x_0, x'_0, t) \leq 1 - \alpha \}, \alpha \in (0,1) \).
As \(N^*(x_0, x'_0, \|x_0, x'_0\|_\alpha) = 1 - \alpha \) as \(N^* \) is decreasing.

It follows that, \(\|x_0, x'_0\|_\alpha < t_0, \forall \alpha \in (0,1), \) by (Fa2-N6). Therefore,
\[
\|x_1, x_2\|_\alpha < t_0 \implies N^*_1(x_0, x'_0, t_0) = \bigwedge \{ 1 - \alpha : \|x_0, x'_0\|_\alpha \leq t_0 \} = 0,
\]
Thus \(N^*(x_0, x'_0, t_0) = N^*_1(x_0, x'_0, t_0) = 0. \)

Case (v): Let \(x_0, x'_0 \) (linearly independent), \(t_0 > 0, \) s.t., \(0 < N^*(x_0, x'_0, t_0) < 1. \)
Let, \(N^*(x_0, x'_0, t_0) = 1 - \beta, \) as \(\|x_0, x'_0\|_\beta = \bigwedge \{ t : N^*(x_0, x'_0, t) \leq 1 - \beta \} \)
as \(N^* \) is non-increasing function of \(t, \) we have \(\|x_0, x'_0\|_\beta \leq t_0 \)
So \(N_t^*(x_0, x'_0, t_0) \leq 1 - \beta \). Therefore,

\[
N_t^*(x_0, x'_0, t_0) \leq N^*(x_0, x'_0, t_0)
\]

(1)

As \(N_t^*(x_0, x'_0, t_0) = 1 - \beta \Leftrightarrow \|x_1, x_2\|_\beta = t_0 \).

If \(\beta < \alpha < 1 \) and let \(\|x_0, x'_0\|_{\beta} = t_1 \) then \(N_t^*(x_0, x'_0, t_1) = 1 - \alpha < 1 - \beta = N_t^*(x_0, x'_0, t_0) \)

As \(N_t^*(x_0, x'_0, \cdot) \) is monotonically decreasing so \(t_0 < t_1 \) since \(\|x_0, x'_0\|_{\beta} = t_1 > t_0 \).

So \(N_t^*(x_0, x'_0, t_0) > 1 - \beta = N_t^*(x_0, x'_0, t_0) \)

(2)

So from (1) and (2) we have \(N_t^*(x_0, x'_0, t_0) = N^*(x_0, x'_0, t_0) \).

Hence proved.

Lemma 3.4: Let \((X, N^*) \) be a fuzzy anti 2-normed linear space with respect to t- conorm \(\diamond \) satisfying (Fa2-N7), (Fa2-N8) and (Fa2-N9), every sequence is convergent if and only if it is convergent with respect to its corresponding \(\alpha \)-2-norms, \(\alpha \in (0,1) \).

Proof: Let \((X, N^*) \) be a fuzzy anti 2-normed linear space satisfying (Fa2-N7), (Fa2-N8), (Fa2-N9) and \(\{x_n\} \) be a sequence in \(X \) such that \(x_n \to x \) as \(n \to \infty \).

\[
\lim_{n \to \infty} N^*(x_n - x, x_0, t) = 0, \quad \forall t > 0.
\]

Let \(0 < \alpha < 1 \). So, \(\lim_{n \to \infty} N^*(x_n - x, x_0, t) = 0 < 1 - \alpha \Rightarrow \exists n_0(t), \) such that

\[
N^*(x_n - x, x_0, t) < 1 - \alpha \quad \forall n \geq n_0(t, \alpha).
\]

Now, \(\|x_n - x, x_0\|_\alpha = \bigwedge \{ t \geq 0 : N^*(x_n - x, x_0, t) \leq 1 - \alpha \} \)

\[
\Rightarrow \|x_n - x, x_0\|_\alpha \leq t, \quad \forall n \geq n_0(t, \alpha)
\]

Since \(t > 0 \) is arbitrary, \(\|x_n - x, x_0\|_\alpha \to 0 \) as \(n \to \infty \), \(\forall \alpha \in (0,1) \).

Conversely, suppose that \(\|x_n - x, x_0\|_\alpha \to 0 \) as \(n \to \infty \), \(\forall \alpha \in (0,1) \).

Then for \(\alpha \in (0,1), \varepsilon > 0, \exists n_0(\alpha, \varepsilon) \) such that \(\|x_n - x, x_0\|_\alpha < \varepsilon, \forall n \geq n_0(\alpha, \varepsilon), \alpha \in (0,1) \).

Now,

\[
N^*(x_n - x, x_0, \varepsilon) = \bigwedge \{ 1 - \alpha : \|x_n - x, x_0\|_\alpha \leq \varepsilon \}
\]

\[
\Rightarrow N^*(x_n - x, x_0, \varepsilon) \leq 1 - \alpha, \quad \forall n \geq n_0(\alpha, \varepsilon), \alpha \in (0,1).
\]

\[
\Rightarrow \lim_{n \to \infty} N^*(x_n - x, x_0, \varepsilon) = 0, \quad \forall t > 0.
\]

Thus \(x_n \) converges to \(x \).

Hence Proved.

Corollary 3.5: Let \((X, N^*) \) be a fuzzy anti 2-normed linear space with respect to t- conorm \(\diamond \) satisfying (Fa2-N7), (Fa2-N8) and (Fa2-N9). \(W \subseteq X \) is closed in \((X, N^*) \) if and only if it is closed with respect to its corresponding \(\alpha \)-2-norms, \(\alpha \in (0,1) \).

Theorem 3.6 (Riesz lemma): Let \(W \) be a closed and proper subspace of a fuzzy anti 2-normed linear space \((X, N^*) \) with respect to t- conorm \(\diamond \) satisfying (Fa2-N7) (Fa2-N8) and (Fa2-N9). Then for each \(\varepsilon > 0 \) there exist \(y_1, y_2 \in (X - W)^2 \) such that \(N^*(y_1, y_2, \varepsilon) \leq 1 - \alpha \) and \(N^*(y_1 - w, y_2 - w, \varepsilon) \leq 1 - \alpha \) for all \(w(y,1) \leq 1 - \alpha \) and \(w \in W \).
Proof: As \[\left\| x_1, x_2 \right\|_\alpha = \bigwedge \{ \alpha : N^\alpha(x_1, x_2, t) \leq 1 - \alpha, \alpha \in (0, 1) \} \] is an ascending family of fuzzy \(\alpha\)-2-norm on a linear space \(X\). Now by Riesz lemma for 2-normed linear space, it follows that for any \(\varepsilon > 0\) there exist \(y_1, y_2 \in (X - W)^t\) such that \[\left\| y_1, y_2 \right\|_\alpha = 1 \] and \[\left\| y_1 - w, y_2 - w \right\|_\alpha > 1 - \varepsilon \] \(\forall w \in W\).

Now, from theorem (3.3), for all \(\alpha \leq 1 - \alpha\) we have

\[N^\alpha(y_1, y_2, t) = \bigwedge \{ 1 - \alpha : \left\| y_1, y_2 \right\|_\alpha \leq t \} \]
\[\Rightarrow N^\alpha(y_1, y_2, 1) = \bigwedge \{ 1 - \alpha : \left\| y_1, y_2 \right\|_\alpha \leq 1 \} \]
\[\Rightarrow N^\alpha(y_1, y_2, 1) \leq 1 - \alpha \]

Again,

\[N^\alpha(y_1 - w, y_2 - w, t) = \bigwedge \{ 1 - \alpha : \left\| y_1 - w, y_2 - w \right\|_\alpha \leq t \} \]
\[\Rightarrow N^\alpha(y_1 - w, y_2 - w, \varepsilon) = \bigwedge \{ 1 - \alpha : \left\| y_1 - w, y_2 - w \right\|_\alpha \leq \varepsilon \} \]
\[\Rightarrow N^\alpha(y_1 - w, y_2 - w, w) \leq 1 - \alpha. \]

Hence proved.

Theorem 3.7: Let \((X, N^\alpha)\) be a fuzzy anti 2-normed linear space with respect to a \(t\)-conorm \(\diamond\) satisfying (Fa2-N7), (Fa2-N8) and (Fa2-N9). If the set \(\{ x_1, x_2 : N^\alpha(x_1, x_2, 1) \leq 1 - \alpha, \alpha \in (0, 1) \}\) is compact then \(X\) is a space of finite dimension.

Proof: It can be easily verified that \(\{ x_1, x_2 : N^\alpha(x_1, x_2, 1) \leq 1 - \alpha, \alpha \in (0, 1) \}\) and \(\left\{ x_1, x_2 : \left\| x_1, x_2 \right\|_\alpha \leq 1, \alpha \in (0, 1) \right\}\) by applying Riesz lemma 3.6, it can be proved that if for some \(\alpha \in (0, 1)\) the set \(\{ x_1, x_2 : \left\| x_1, x_2 \right\|_\alpha \leq 1, \alpha \in (0, 1) \}\) is compact then \(X\) is of finite dimensional. By lemma (3.4), it follows that , for some \(\alpha \in (0, 1)\), \(\{ x_1, x_2 : N^\alpha(x_1, x_2, 1) \leq 1 - \alpha \}\) is compact then \(X\) is a space of finite dimensional.

REFERENCES

Source of support: Nil, Conflict of interest: None Declared

[Copyright © 2016. This is an Open Access article distributed under the terms of the International Journal of Mathematical Archive (IJMA), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.]