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ABSTRACT 
In this paper we have generalized fuzzy anti 2-norm by introducing t-conorm in the earlier definition. The Riesz lemma 
and a few properties of finite dimensional fuzzy anti 2-normed linear space has been established with respect to            
t-conorm ◊ . 
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INTRODUCTION 
 
The concept of fuzzy set was introduced by Zadeh [11] in 1965 and thereafter several authors applied it different 
branches of pure and applied mathematics. The concept of fuzzy norm was introduced by Katsaras [9] in 1984. In 1992 
Felbin [8] introduced the concept of fuzzy normed linear space. A satisfactory theory of 2-norm on a linear space has 
been introduced and developed by Gähler [6]. Jebril and Samanta [7] gave the definition of fuzzy anti-normed linear 
space. In 2011, B. Surender Reddy [1] introduced the idea of fuzzy anti 2-normed linear space. 
 
In the present paper we have modified the definition of fuzzy anti 2- normed linear space. The Riesz lemma and 
important properties of finite dimensional fuzzy anti 2- normed linear space has been established with respect to            
t-conorm ◊ . 
 
PRELIMINARIES 
 
Definition 2.1[10]: A binary operation ]1,0[]1,0[]1,0[: →×◊  is a t- conorm if ◊ satisfies the following condition: 

(i) ◊  is commutative and associative, 
(ii) ],1,0[a    a,0   a ∈∀=◊    
(iii)   ,d  cb  a ◊≤◊ whenever  db,ca ≤≤  and ]1,0[d,c,b,a ∈ . 

 
Example: (i) b  a ◊  = a+b-ab (ii) b  a ◊  = max {a, b} (iii) b  a ◊  = {a+b, 1} 
 
Definition 2.2[1]: Let X  be a linear space over a real field F . A fuzzy subset ∗N  of ×× XX R  is called a fuzzy anti 2-
norm on X  if and only if it satisfies,   
(Fa2-N1)  for all Rt∈  with ( ) 1,,  ,0 21 =≤ ∗ txxNt  

(Fa2-N2)  for all Rt ∈  with ( ) 0,,  ,0 21 => ∗ txxNt  if and only if 1x  and 2x  are linearly dependent. 

(Fa2-N3)  ( )txxN ,, 21
∗  is invariant under any permutation. 

(Fa2-N4)  for all Rt ∈  with ,0>t ( ) Fcc
c
txxNtcxxN ∈≠









= ∗∗   ,0  if   ,,,, 2121   

(Fa2-N5) for Rts ∈,  with 0>t  all ( ) ( ) ( ){ }txxNsxxNtsxxxN ,,,,,max,, 2121221 ′≤+′+ ∗∗∗  

(Fa2-N6)  ( )txxN ,, 21
∗  is non-increasing function of  Rt∈  and  ( ) 0.,,lim 21t

=∗

∞→
txxN
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Then ( )∗NX ,  is called a fuzzy anti 2-normed linear space. The following condition of fuzzy anti 2-norm ∗N will be 
required later on,  
(Fa2-N7) for Rt∈ with 0>t , ( ) ⇒>∀<∗ 0  ,1,, 21 ttxxN 1x  and 2x  are linearly dependent. 
 
Definition 2.3[1]: Let ( )∗NX ,  be a fuzzy anti 2- normed linear space. A sequence { }nx  in X  is said to be convergent 

to Xx∈  if ∃<<>    , 10  ,0 rt  an integer Nn ∈0 such that ( ) 00   ,,, nnrtxxxN n ≥∀<−∗ . 
 
Definition 2.4[1]: Let ( )∗NX ,  be a fuzzy anti 2- normed linear space. A sequence { }nx  in X  is said to be cauchy 

sequence if ∃<<>    , 10  ,0 rt an integer Nn ∈0 such that ( ) rtxxxN npn <−+
∗ ,, 0 , for all 0nn ≥ .  .....3,2,1=p  

 
Definition 2.5[3]: A subset A of a fuzzy anti 2-normed linear space ( )∗NX ,  is said to be bounded iff ∃  t > 0, 

( ) ( ) AyxrtyxNtsr ∈∀<∈ ∗ ,   ,,,  ,.  1,0 .      
 
Definition 2.6[3]: Let ( )∗NX ,   be a fuzzy anti 2- normed linear space. A subset B of  X  is said to be closed if any 

sequence { }nx  in B converges to Bx∈  that is ( )   0      ,0,,lim >∀=−∗

∞→
ttyxxN nn

 ., Byx ∈⇒  

 
Definition 2.7[1]: A subset A of a fuzzy anti 2-normed linear space ( )∗NX ,  is said to be compact if any sequence{ }nx  
in A  has a subsequence converging to an element of A . 
 
3. FUZZY ANTI 2- NORMED LINEAR SPACE 
 
In this section we have modified the definition of fuzzy anti 2- norm with respect to a t-conorm ◊ and deduced some 
important results. 
 
Definition 3.1: Let X  be a linear space over a real field F . A fuzzy subset ∗N  of RXX ××  is called a fuzzy anti 2-
norm on X  if and only if it satisfies,   
(Fa2-N1)  for all Rt∈  with 1),,(,0 21 =≤ ∗ txxNt   

(Fa2-N2)  for all Rt∈  with 0),,(,0 21 => ∗ txxNt  if and only if 1x and 2x  are linearly dependent. 

(Fa2-N3)  ),,( 21 txxN ∗  is invariant under any permutation of 1x  and 2x . 
(Fa2-N4) for all Rt∈  with 0>t  

,,,),,( 2121 









= ∗∗

c
txxNtcxxN  if Fcc ∈≠ ,0  

(Fa2-N5)  for Rts ∈,  with 0>t all  ( ) ( ) ( ){ }txxNsxxNtsxxxN ,,  ,,,, 2121221 ′◊≤+′+ ∗∗∗
 

(Fa2-N6)  ( )txxN ,, 21
∗  is non-increasing function of  Rt∈  and ( ) 0,,lim 21t

=∗

∞→
txxN  

 
We further assume that for a fuzzy anti 2- normed linear space ( )∗NX , ,

 (Fa2-N7) for all Rt∈  with 0>t , ( ) ⇒>∀<∗ 0  ,1,, 21 ttxxN 1x  and 2x  are linearly dependent. 

(Fa2-N8) ( ),., 21 xxN ∗  is a continuous function on R  and strictly decreasing on the subset ( ){ }1,,0: 21 << ∗ txxNt  of R. 
(Fa2-N9) aa  a =◊  ,  ]1,0[a∈∀  . 
 
Remark 3.1: Let ∗N  be a fuzzy anti 2- norm on X  then ( )txxN ,, 21

∗  is non-increasing with respect to t for each 
., 21 Xxx ∈    

 
Proof: Let st < . Then 0>−= tsk , we have 

( ) ( ) 0  ,,,, 2121 ◊= ∗∗ txxNtxxN       (by property of t-conorm) 
                    ( ) ( ) ( ) ( ).,,,,,0,0  ,, 212121 sxxNktxxNkNtxxN ∗∗∗∗ =+≥◊=             Hence Proved 
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Example 3.1: Let ( ).,.,X  be 2-normed linear space and define abbaba −+=◊  .  Define ]1,0[: →××∗ RXXN  by  

( )






≤

>
=∗

21

21
21 ,  tif     ,1

,  t if    ,0
,,

xx

xx
txxN

 
Then ∗N  is a fuzzy anti 2- norm on X  with respect to the t- conorm ◊  and ( )∗NX ,  is a fuzzy anti 2- normed linear 
space with respect to the t- conorm ◊ . 

  
Solution:  
(i) XXxx ×∈∀ 21,  and 0, ≤∈∀ tRt  we have .1),,( 21 =∗ txxN  

(ii) 0 , ≤∈∀ tRt  if 21, xx  are linearly dependent then 0, 21 =xx  so .0),,( 21 =∗ txxN  Again if 0),,( 21 =∗ txxN  with

⇒=⇒∈>∀<⇒> 0,)0(,,0 2121 xxRttxxt 21, xx  are linearly dependent. 

(iii) It is obvious that ),,( 21 txxN ∗
 is invariant under any permutation. 

(iv) If 21212121 ,,,0),,( xx
c
txxctcxxttcxxN >⇔>⇔>⇔=∗  

                     0,, 21 =









⇔ ∗

c
txxN  

.1,,,,,1),,( 2121212121 =









⇔≤⇔≤⇔≤⇔= ∗∗

c
txxNxx

c
txxctcxxttcxxN  

(v) ).,,().,,(),,(),,(),,(),,( 212121212121 txxNsxxNtxxNsxxNtxxNsxxN ′−′+=′◊ ∗∗∗∗∗∗  

If 21, xxs >  and 21, xxt ′>  so 2121 ,, xxxxts ′+>+ then 0),,( 221 =+′+∗ tsxxxN  

and .0000),,(),,( 2121 =−+=′◊ ∗∗ txxNsxxN  
 
So ).,,(),,(),,( 2121221 txxNsxxNtsxxxN ′◊=+′+ ∗∗∗  
 
If 21, xxs >  and 21, xxt ′≤  then .1010),,(),,( 2121 =−+=′◊ ∗∗ txxNsxxN  
 
If 21, xxs ≤  and then .1001),,(),,( 2121 =−+=′◊ ∗∗ txxNsxxN  
 
If 21, xxs ≤  and 21, xxt ′≤  then .1111),,(),,( 2121 =−+=′◊ ∗∗ txxNsxxN  
Then in all the above three cases, 

).,,(1),,(),,( 2212121 tsxxxNtxxNsxxN +′+≥=′◊ ∗∗∗
 

Thus  ).,,(),,(),,( 2121221 txxNsxxNtsxxxN ′◊≤+′+ ∗∗∗  

(vi) From the definition if 21, xxt > , then ( ) 0,,lim 21t
=∗

∞→
txxN  . Thus ( )∗NX ,  is a fuzzy anti 2- normed linear space 

with respect to the t- conorm ◊ . 
 
Example 3.2: Let ( ).,.,X  be 2- normed linear space and define b  a ◊ = min {a+b, 1}. Define  ]1,0[: →××∗ RXXN  
by  

          

( )












≤

>≤
+

>

=∗

0  tif     ,1

0,,  t if,
,

,

,  t if    ,0

,, 21
21

21

21

21 txx
xxt

xx

xx

txxN

 

Then ∗N is a fuzzy anti 2- norm on X  with respect to the t- conorm ◊  and ( )∗NX ,  is a fuzzy anti 2- normed linear 
space with respect to the t- conorm ◊ . 

  
Solution: 
(i) From the definition we have 1),,( 21 =∗ txxN  if .0, ≤∈∀ tRt  
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(ii) If  0>t  and 21, xxt ≤  the 
21

21
21 ,

,
),,(

xxt
xx

txxN
+

=∗  if 21, xx are linearly dependent so 0, 21 =xx therefore

0),,( 21 =∗ txxN . 

Conversely,  0),,( 21 =∗ txxN  then txxt ∀> ,, 21  0, 21 =⇒ xx  , so 21, xx are linearly dependent. 

(iii) It is obvious that ),,( 21 txxN ∗  is invariant under any permutation of 1x  and 2x . 

(iv) If 21212121 ,,  ,0),,( xx
c
txxctcxxttcxxN >⇔>⇔>⇔=∗

 

                                     

0,, 21 =









⇔ ∗

c
txxN

 
     If

 
2121

21

21
21 ,,

,
,

),,( xx
c
tcxxt

cxxt
cxx

tcxxN ≤⇔≤⇔
+

=∗
 

                                              
21

21

21

21
21 ,

,

,

,
,,

cxxt
cxx

xx
c
t

xx
c
txxN

+
=

+
=










⇔ ∗  

(v)   { }.1  ), ,,(),,(min),,(),,( 21212121 txxNsxxNtxxNsxxN ′+=′◊ ∗∗∗∗

  

If

  

sxx ≥21,

 

and txx ≥′21,  then 

21

21

21

21
2121 ,

,
,

,
),,(),,(

xxt
xx

xxs
xx

txxNsxxN
′+

′
+

+
=′+ ∗∗  

                                            

( )
( ) 1

,, ,,
, ,,, ,,

21212121

212121212121 ≥
+′+′+

′+′+′+
=

stxxsxxxxxxt
xxxxxxsxxxxxxt

 

Since ., , 2121 stxxxx >′  
 
In this case ).,,(1),,(),,( 2212121 tsxxxNtxxNsxxN +′+≥=′◊ ∗∗∗

 
 
If

  

sxx ≥21,

 

and txx <′21,  then either
 

tsxxx +≥′+ 221, or ., 221 tsxxx +<′+
  

 

Now,
    

.10
,

,
),,(),,(

21

21
2121 <+

+
=′+ ∗∗

xxs
xx

txxNsxxN
 

Hence     .
,

,
),,(),,(

21

21
2121 xxs

xx
txxNsxxN

+
=′◊ ∗∗  

 
If tsxxx +≥′+ 221,  then consider 

),,(),,(),,( 2121221 txxNsxxNtsxxxN ′◊−+′+ ∗∗∗

21

21

221

221

,
,

,
,

xxs
xx

xxxts
xxx

+
−

′+++

′+
=  

                                                                               21

21

2121

2121

,
,

,,
,,

xxs
xx

xxxxts
xxxx

+
−

′+++

′+
≤

   

                                                                               ( )( )212121

2121

, ,,
,,

xxsxxxxts
xxtxxs
+′+++

−′
=

 

                                                                               ( )( )212121

21

, ,,
,

xxsxxxxts
xxtst

+′+++

−
< ,  Since ,, 21 txx <′  

                                                                               ,0≤  Since 2121 ,  so  , xxtstxxs <≤  . 

So, ),,(),,(),,( 2121221 txxNsxxNtsxxxN ′◊<+′+ ∗∗∗ . 
 
If tsxxx +<′+ 221,

 
then 

),,(),,(
,

,
0),,( 2121

21

21
221 txxNsxxN

xxs
xx

tsxxxN ′◊=
+

≤=+′+ ∗∗∗
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If sxx <21,  and txx ≥′21,

 
then in the similar way we can show that 

),,(),,(),,( 2121221 txxNsxxNtsxxxN ′◊≤+′+ ∗∗∗ .  
 
If sxx <21,  and txx ≥′21,

 
then 100),,(),,( 2121 <+=′+ ∗∗ txxNsxxN .  

Therefore, 0),,(),,( 2121 =′◊ ∗∗ txxNsxxN .  
 
Also tsxxxxxxx +<′+≤′+ 2121221 ,,,

 
and 0),,( 221 =+′+∗ tsxxxN .  

 
So ),,(),,(),,( 2121221 txxNsxxNtsxxxN ′◊=+′+ ∗∗∗ .  
 
So ),,(),,(),,( 2121221 txxNsxxNtsxxxN ′◊≤+′+ ∗∗∗  

 
(vi)  If 21, xxt >  then from the definition ( ) 0,,lim 21 =∗

∞→
txxN

t
. If 21, xx   are not independent and 21, xxt ≤  then  

( ) 0
,

,
lim,,lim

21

21
21 =

+
=

∞→

∗

∞→ xxt
xx

txxN
tt

. 

 
If 21, xx  are linearly dependent and 21, xxt ≤  then ( ) .0,,lim 21 =∗

∞→
txxN

t
 

 
Hence ( ) .0,,lim 21 =∗

∞→
txxN

t
XXxx ×∈∀ 11, . 

 
Thus ∗N  is a fuzzy anti 2-norm on X with respect to the t -conorm ◊  and ( )∗NX ,  is a fuzzy anti 2-normed linear 
space with respect to the t -conorm ◊ . 

 
Example 3.3: Let ( ).,.,X  be 2-normed linear space and define b  a ◊ = min{a+b, 1}. Define  ]1,0[: →××∗ RXXN  

by ( )








≤

>
−=∗

21

21
21

21

21

,  tif                 ,1

,  t if  ,
,2

,
,,

xx

xx
xxt

xx
txxN

 

Then ∗N  satisfies all the condition of fuzzy anti 2- norm with respect to t-conorm ◊ .So ∗N is a fuzzy anti 2- norm on 
X  with respect to the t- conorm ◊  and ( )∗NX ,  is a fuzzy anti 2- normed linear space with respect to the t- conorm ◊ . 

  
Theorem 3.1: Let ( )∗NX ,  be a fuzzy anti 2- normed linear space with respect to a t- conorm ◊ satisfying (Fa2-N7) 

and (Fa2-N9). Then for any ( )1,0∈α the function [ )∞→××∗ ,0:, 21 RXXxx α  defined as  

( ){ } ( )1,0   ,1,,:0  , 2121 ∈−≤>∧= ∗∗ ααα txxNtxx .  

is a 2-norm on X . Then { })1,0(:.,. ∈∗ αα
 is an ascending family of 2-norm on a linear space .X  

 
Proof:  
(i) For 21, xx  for 0≤t  , so ( ) α−≤∗ 1,, 21 txxN  is not possible.  

So ( ){ } ( ) ( )1,0,0,1,0   ,01,,:0  2121 ∈≥⇒∈≥−≤>∧ ∗∗ ααα αxxtxxNt . 
 
(ii) It is obvious ( ){ } ( ) 1,,,001,,:0  2121 <>∀⇒=−≤>∧ ∗∗ txxNttxxNt α   

So by (Fa2-N7) 1x  and 2x  are linearly dependent. 
 
Conversely, 1x  and 2x  are linearly dependent  

( ){ } ( ) .0,1,0,01,,:0  2121 =⇒∈∀=−≤>∧⇒ ∗∗
ααα xxtxxNt  
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(iii) If 0=c  it is obvious. If 0≠c  then 

( ){ }αα −≤>∧= ∗∗ 1,,:0  , 2121 scxxNscxx  

                











−≤









>∧= ∗ α1,,:0  21 c

sxxNs  

                ( ){ }α−≤>∧= ∗ 1,,:0  21 txxNtc  

                ( ){ }α−≤>∧= ∗ 1,,:0  21 txxNtc  

                
., 21

∗= αxxc  

(iv) ∗∗ ′+ αα 2121 ,, xxxx  ( ){ } ( ){ } ( )1,0,1,,:0  1,,:0  2121 ∈∀−≤′>∧+−≤>∧= ∗∗ ααα sxxNstxxNt  

                                       ( ) ( ){ }αα −≤′−≤>+∧≥ ∗∗ 1,,,1,,:0  2121 sxxNtxxNst   
 

So ( ) ( ) ( ) ( ){ }αα −◊−≤′◊>+∧ ∗∗ 11,,,,:0  2121 sxxNtxxNst  
                                                                  ( ){ }α−≤+′+>+∧≥ ∗ 1,,:0  221 stxxxNst       by (Fa2-N5) and (Fa2-N9)  

                                                                  ∗′+= α221, xxx  

Hence { })1,0(:.,. ∈∗ αα  
is a 2-norm on .X  

 
If 21 αα ≤ , we have ( ){ } ( ){ }121221 1,,:01,,:0  αα −≤>⊂−≤> ∗∗ txxNttxxNt  

( ){ } ( ){ }121221 1,,:0  1,,:0  αα −≤′>∧≥−≤>∧⇒ ∗∗ txxNttxxNt  

.,,
12

2121
∗∗ ≥⇒ αα xxxx

 
 
So { })1,0(:.,. ∈∗ αα

 is an ascending family of 2- norm on a linear space .X        Hence proved. 
 
Theorem 3.2: Let ( )∗NX ,  be a fuzzy anti 2-normed linear space satisfying (Fa2-N7) and (Fa2-N8) Also, if 

( ){ }1,0:.,. ∈∗ αα
 be ascending family of norms of X , defined by ( ){ } ( ).1,0,1,,:, 0000 ∈−≤′∧=′ ∗∗ ααα txxNtxx  Then 

for 00 , xx ′ (linearly independent) ( ) ( )  R,0 and 1,0   , ∈>∈∈ sX α  

( ) αα −=′⇔=′ ∗∗ 1,,, 0000 sxxNsxx . 
 
Proof: let sxx =′ ∗

α00 ,  then 0>s . Then ∃ a sequence { } 0, >nnn ss  such that ssn → as ∞→n  and

( ) NnsxxN n ∈∀−≤′∗ ,1,, 00 α . Therefore ( ) αα −≤




 ′⇒−≤′

∞→

∗∗

∞→
1lim,,1,,lim 0000 nnnn

sxxNsxxN  

( ) ( )1,0,1,,, 0000 ∈∀−≤′′⇒ ∗∗ αααxxxxN  
 

Let ( ) 00 ,,1,0 xx ′∈α (linearly dependent) X∈ and  ( ){ }.1,,:, 0000 αα −≤′∧=′= ∗∗ txxNtxxs  
 
Therefore ( ) α−≤′∗ 1,, 00 sxxN                                                (1) 
 
If possible let ( ) α−<′∗ 1,, 00 sxxN  then by continuity of ( ),., 00 xxN ′∗  at s ,there exist ss <′ such that 

( ) α−<′∗ 1,, 00 sxxN , which is impossible since  

( ){ }α−≤′∧= ∗ 1,,: 00 sxxNts .  

Thus      ( ) α−≥′∗ 1,, 00 sxxN                                                                      (2) 
 
From (1) and (2) it follows that ( ) .1,, 00 α−=′∗ sxxN  Thus  

( ) αα −=′⇒=′ ∗∗ 1,,, 0000 sxxNsxx                                                                                        (3) 
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Next if ( ) ( )1,0,1,, 00 ∈−=′∗ ααsxxN  then 

( ){ } ssxxNtxx =−≤′∧=′ ∗∗ αα 1,,:, 0000 .                                                                                                     (4) 
 
Hence from (3) and (4) we have for ( )1,0∈α , 00 , xx ′ (linearly independent) X∈ and for  

( ) .1,,,,0 0000 α−=′⇔=′> ∗ sxxNsxxs
                                    

Hence proved.
 

 
Theorem 3.3: Let ( )∗NX ,  be a fuzzy anti 2-normed linear space with respect to a t- conorm ◊ satisfying (Fa2-N7), 
(Fa2-N8) and (Fa2-N9).  
 

Let ( ){ } ( ).1,0,1,,:, 2121 ∈−≤∧= ∗∗ ααα txxNtxx  Also, let [ ]1,0:1 →××∗ RXXN  be defined by 

( ) { }




 ≠≤−∧

=
∗

∗

otherwise                                  ,1

0 dependent,linearly  are   if   ,,:1
,, 21

21
ttxx

txxN αα
 

Then .1
∗∗ = NN  

 
Proof: Let ( ) ( )1,0  and  ,, 000 ∈××∈′ αRXXtxx . To prove this we consider the following cases:

 
 
Case (i): For any ( ) ( ) ( ) .1,,,,,0  and  , 000100000 =′=′≤×∈′ ∗∗ txxNtxxNtXXxx  
 
Case (ii): Let ( ) .0,dependentlinearly  , 000 >′ txx  

( ) 0,,Then   000 =′∗ txxN  also 0, 21 =∗
αxx  so ( ) 0,, 0001 =′∗ txxN  

 
Case (iii): Let ( ) ( ) .1,,such that   0,tindependeninearly  , 000000 =′>′ ∗ txxNtxx  By theorem (3.2). 
 
we have ( ) αα −=′′ ∗∗ 1,,, 0000 xxxxN . Since ( ) α−>=′∗ 11,, 000 txxN  it follows that 

 ( ) ( )0000000 ,,1,,, txxNxxxxN ′<−=′′ ∗∗∗ αα  and since ( ),., 00 xxN ′∗  is strictly non-increasing. 
 

So ( )1,0,, 210 ∈∀< ∗ ααxxt . So ( ) { } .1,:1,, 0210001 =≤−∧=′ ∗∗ txxtxxN αα  
 
Thus ( ) ( ) .1,,,, 0001000 =′=′ ∗∗ txxNtxxN  
 
Case (iv): Let ( ) ( ) .0,, such that  0,tindependenlinearly , 000000 =′>′ ∗ txxNtxx   
 

As
 

( ){ } ( ).1,0,1,,:, 0000 ∈−≤′∧=′ ∗∗ ααα txxNtxx    
 
As  ( ) αα −=′′ ∗∗ 1,,, 0000 xxxxN  as ∗N  is decreasing                  
 

It follows that, ( )1,0,, 000 ∈∀<′ ∗ αα txx , by (Fa2-N6). Therefore,  

( ) { } 0,:1,,, 0000001021 =≤′−∧=′⇒< ∗∗∗ txxtxxNtxx αα α , 
 
Thus ( ) ( ) .0,,,, 0001000 =′=′ ∗∗ txxNtxxN  
 
Case (v): Let ( ) ( ) .1,,0  .,.  ,0 ,tindependenlinearly , 000000 <′<>′ ∗ txxNtstxx   
 

Let, ( ) β−=′∗ 1,, 000 txxN , as { }ββ −≤′∧=′ ∗∗ 1),,(:, 0000 txxNtxx
 

as ∗N  is non-increasing function of t, we have 000 , txx ≤′ ∗
β                                  
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So ( ) β−≤′∗ 1,, 0001 txxN . Therefore,  

     ( ) ( )0000001 ,,,, txxNtxxN ′≤′ ∗∗                                                       (1) 
 
As ( ) ⇔−=′∗ β1,, 000 txxN ., 021 txx =∗

β
 

 

If  1<<αβ  and let 100 , txx =′ ∗
β then ( ) ( )000100 ,,11,, txxNtxxN ′=−<−=′ ∗∗ βα  

 

As ( ),., 00 xxN ′∗  is monotonically decreasing so 10 tt <  since ., 0100 ttxx >=′ ∗
α  

 
So ( ) ( )0000001 ,,1,, txxNtxxN ′=−>′ ∗∗ β                                                    (2)    
 
So from (1) and (2) we have ( ) ( ). ,,,, 0000001 txxNtxxN ′=′ ∗∗                          Hence proved. 
 
Lemma 3.4: Let ( )∗NX ,  be a fuzzy anti 2-normed linear space with respect to t- conorm ◊  satisfying (Fa2-N7),    
(Fa2-N8) and (Fa2-N9), every sequence is convergent if and only if it is convergent with respect to its corresponding 
α -2-norms, )1,0(∈α . 
 
Proof: Let ( )∗NX ,  be a fuzzy anti 2-normed linear space satisfying (Fa2-N7), (Fa2-N8), (Fa2-N9) and { }nx  be a 
sequence in X  such that xxn →  as ∞→n . 

( ) .0      ,0,,lim 0 >∀=−∗

∞→
ttxxxN nn

 

 
Let 10 <<α . So, ( ) )(  10,,lim 00 tntxxxN nn

∃⇒−<=−∗

→∞
α  such that 

( ) ).,(     1,, 00 αα tnntxxxN n ≥∀−<−∗  
 

Now,  ( ){ }αα −≤−>∧=− ∗∗ 1,,:0, 00 txxxNtxxx nn  

,, 0 txxxn ≤−⇒ ∗
α  ),( 0 αtnn ≥∀  

 

Since 0>t  is arbitrary, 0, 0 →− ∗
αxxxn  as ∞→n , )1,0(∈∀α . 

 

Conversely, suppose that  0, 0 →− ∗
αxxxn  as ∞→n , )1,0(∈∀α . 

 

Then for )1,0(∈α , ),(    ,0 0 εαε n∃> such that εα <− ∗
0, xxxn , ).1,0(),,( 0 ∈≥∀ αεαnn  

 

Now,           ( ) { }εαε α ≤−−∧=− ∗∗
00 ,:1,, xxxxxxN nn     

( ) ,1,, 0 αε −≤−⇒ ∗ xxxN n ).1,0(),,( 0 ∈≥∀ αεαnn  

( ) .0      ,0,,lim 0 >∀=−⇒ ∗

∞→
txxxN nn

ε  

Thus nx  converges to x .                                                                                   Hence Proved. 
 
Corollary 3.5: Let ( )∗NX ,  be a fuzzy anti 2-normed linear space with respect to a t- conorm ◊  satisfying (Fa2-N7), 
(Fa2-N8) and (Fa2-N9). XW ⊆  is closed in ( )∗NX ,  if and only if it is closed with respect to its corresponding α -2-
norms , )1,0(∈α . 
 
Theorem 3.6 (Riesz lemma): Let W be a closed and proper subspace of a fuzzy anti 2- normed linear space ( )∗NX ,  
with respect to a t- conorm ◊ satisfying (Fa2-N7) (Fa2-N8) and (Fa2-N9). Then for each 0>ε  there exist 

( )221, WXyy −∈  such that α−≤∗ 1)1,,( 21 yyN  and αε −≤−−∗ 1),,( 21 wywyN  for all α−≤1)1,(yu and .Ww∈  
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Proof: As ( ){ } ( )1,0,1,,:, 2121 ∈−≤∧= ∗∗ ααα txxNtxx and { })1,0(:.,. ∈∗ αα  is an ascending family of fuzzy α -2-norm 

on a linear space .X Now by Riesz lemma for 2- normed linear space, it follows that for any 0>ε  there exist 

( )221, WXyy −∈ such that 1, 21 =∗
αyy  and  Wwwywy ∈∀−>−− ∗  ,  1, 21 εα                    

 
Now, from theorem (3.3), for all α−≤1)1,(yu  we have 

     
( ) { }tyytyyN ≤−∧= ∗∗

αα 2121 ,:1,,
 { }1,:1)1,,( 2121 ≤−∧=⇒ ∗∗

αα yyyyN  

α−≤⇒ ∗ 1)1,,( 21 yyN  
 
Again,  

      
{ }twywytwywyN ≤−−−∧=−− ∗∗

αα 2121 ,:1),,(
 { }εαε α ≤−−−∧=−−⇒ ∗∗ wywywywyN 2121 ,:1),,(
 

.1),,( 21 αε −≤−−⇒ ∗ wywyN
                                   

Hence proved. 
 
Theorem 3.7: Let ( )∗NX ,  be a fuzzy anti 2-normed linear space with respect to a t- conorm ◊  satisfying (Fa2-N7), 

(Fa2-N8) and (Fa2-N9). If the set ( ){ } )1,0(,11,,:, 2121 ∈−≤∗ ααxxNxx  is compact then X  is a space of finite 
dimension. 
 
Proof: It can be easily verified that ( ){ } { } )1,0(,1,:,11,,:, 21212121 ∈≤=−≤ ∗∗ αα αxxxxxxNxx . By applying Riesz 

lemma 3.6, it can be proved that if for some )1,0(∈α the set { }1,:, 2121 ≤∗
αxxxx  is compact then X  is of finite 

dimensional. By lemma (3.4), it follows that , for some )1,0(∈α , ( ){ }α−≤∗ 11,,:, 2121 xxNxx  is compact then X  is a 
space of finite dimensional. 
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