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ABSTRACT

In this paper we have generalized fuzzy anti 2-norm by introducing t-conorm in the earlier definition. The Riesz lemma
and a few properties of finite dimensional fuzzy anti 2-normed linear space has been established with respect to
t-conorm ¢ .
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INTRODUCTION

The concept of fuzzy set was introduced by Zadeh [11] in 1965 and thereafter several authors applied it different
branches of pure and applied mathematics. The concept of fuzzy norm was introduced by Katsaras [9] in 1984. In 1992
Felbin [8] introduced the concept of fuzzy normed linear space. A satisfactory theory of 2-norm on a linear space has
been introduced and developed by Géhler [6]. Jebril and Samanta [7] gave the definition of fuzzy anti-normed linear
space. In 2011, B. Surender Reddy [1] introduced the idea of fuzzy anti 2-normed linear space.

In the present paper we have modified the definition of fuzzy anti 2- normed linear space. The Riesz lemma and
important properties of finite dimensional fuzzy anti 2- normed linear space has been established with respect to
t-conorm ¢ .

PRELIMINARIES

Definition 2.1[10]: A binary operation ¢:[0,1]x[0,1] — [0,1] is a t- conorm if ¢ satisfies the following condition:
(i) ¢ is commutative and associative,
(i) a0 0=a, Vae[0]],
(iif) a¢b<c0d, whenever a<c,b<d and a,b,c,de[0]].

Example: (i) a¢b =atb-ab (ii)) a0b =max {a, b} (iii) a¢b ={at+b, 1}

Definition 2.2[1]: Let X be a linear space over a real field F . A fuzzy subset N* of X x X x R is called a fuzzy anti 2-
normon X if and only if it satisfies,

(Fa2-N1) forall teR with t<0, N*(x;,x,,t)=1
(Fa2-N2) forall te R with t>0, N*(Xl,xz,t):O if and only if x; and x, are linearly dependent.

(Fa2-N3) N*(Xl, Xz,t) is invariant under any permutation.

. . # t
(Fa2-N4) forall te R with t>0, N (xl,cxz,t)z N [xl,xz,ﬂ

(Fa2-N5) for s,t e R with t >0 all N*(x;,x, +X5,5+1)< max{N*(xl,xz,s),N*(xl,xé,t)}

J if c20,ceF

(Fa2-N6) N*(x;,%,,t) is non-increasing function of teR and lim N*(x;, X,,t)=0.
t—o0
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Then (X, N*) is called a fuzzy anti 2-normed linear space. The following condition of fuzzy anti 2-norm N™ will be
required later on,

(Fa2-N7) for t e Rwith t >0, N*(x,X,,t)<1, Vt>0= X and X, are linearly dependent.

Definition 2.3[1]: Let (X, N*) be a fuzzy anti 2- normed linear space. A sequence {xn} in X is said to be convergent

to xe X if t>0, 0<r<1, 3 aninteger ny € N such that N*(x, —x,X,,t)<r, ¥Yn>ny.

Definition 2.4[1]: Let (X, N*) be a fuzzy anti 2- normed linear space. A sequence {xn} in X is said to be cauchy

sequence if t>0, 0<r <1, Janinteger ny € N such that N*(xn+p —xn,xo,t)< r,forall nzn,. p=123...

Definition 2.5[3]: A subset A of a fuzzy anti 2-normed linear space (X,N*) is said to be bounded iff 3 t > 0,
re(01) st, N*(x,y,t)<r, Vx,yeA.

Definition 2.6[3]: Let (X,N*) be a fuzzy anti 2- normed linear space. A subset B of X is said to be closed if any

sequence {xn} in B converges to x e B thatis lim N*(x, —x,y,t)=0, Vt>0 =x,yeB.
nN—o0

Definition 2.7[1]: A subset A of a fuzzy anti 2-normed linear space (X N *) is said to be compact if any sequence {xn}
in A has a subsequence converging to an element of A.

3. FUZZY ANTI 2- NORMED LINEAR SPACE

In this section we have modified the definition of fuzzy anti 2- norm with respect to a t-conorm ¢ and deduced some
important results.

Definition 3.1: Let X be a linear space over a real field F . A fuzzy subset N* of X x X xR is called a fuzzy anti 2-
normon X if and only if it satisfies,

(Fa2-N1) forall teR with t <0,N*(x,%,,t) =1

(Fa2-N2) forall teR with t>0,N"(x,X,,t)=0 ifand only if x and x, are linearly dependent.
(Fa2-N3) N*(x,X,,t) is invariant under any permutation of ¥ and x, .

(Fa2-N4) forall te R with t>0

N ™ (X, CX,, 1) = N*[lexzxﬁ]' if c20,ceF

(Fa2-N5) for s,teR with t>0all N*(x,x, +x’2,s+t)s{N*(xl,x2,s)<> N*(xl,x’z,t)}
(Fa2-NB) N*(x,, x,,t) is non-increasing function of te R and lim N*(x;,x,,t)=0
t—o

We further assume that for a fuzzy anti 2- normed linear space (X ,N *)
(Fa2-N7) forall t e R with t >0, N*(x;,X,,t)<1, Vt>0= X and X, are linearly dependent.

(Fa2-N8) N*(x,,X,,.) is a continuous function on R and strictly decreasing on the subset {t :0< N*(x,, xz,t)<1} of R.
(Fa2-N9) ada=a , vae[0]] .

Remark 3.1: Let N* be a fuzzy anti 2- norm on X then N*(xl,xz,t) is non-increasing with respect to t for each
X1, Xo € X.

Proof: Let t<s.Then k=s-t>0 we have
N*(x, X,,t)= N*(x,%,,t)00  (by property of t-conorm)
= N* (%, %, 1) O N*(0,0,k)> N* (%, X, t + k)= N*(x, %, 5). Hence Proved
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Example 3.1: Let (X ||||) be 2-normed linear space and define a0b=a+b—ab. Define N*: X x X xR —[0,1] by

* 0, if t>x, %]
N"0xq, Xp,t)=
(%, %, t) {1, if t£||X1vX2"

Then N is a fuzzy anti 2- norm on X with respect to the t- conorm ¢ and (X, N*) is a fuzzy anti 2- normed linear
space with respect to the t- conorm ¢.

Solution:
(i) VX, %, € XxX and VteR,t<0 we have N*(x;,X,,t)=1.

(i) vteR,t<0 if x;,x, are linearly dependent then |x;,X,|=0 so N"(x;,X,,t)=0. Again if N*(x,X,,t)=0 with
t>0=> X, X <t,Vt(>0) € R= %y, X, =0= X, X, are linearly dependent.

(iii) It is obvious that N*(xy, X,,t) is invariant under any permutation.

(iv) If N™ (%, 0%y, 1) =0 = t > X, 0%, | = t > [e]|x. X, || <= s (%0, %o |

d
* t
< N [xl,xz,ﬂjzo

t . t)
H£||x1,x2||<:> N {xl,xz,HJ—l.

(V) N™ (X, X0, S)ON" (X, X5, 1) = N* (X, Xp, ) + N* (%, X5,t) = N (X, X5, 8).N" (X, X5,t).
If s >|x., X, | and t >]|x, X5]| SO s+t > |xy, X, |+ ¥y, X5]|then N*(xq, X, + X5, 5 +1) =0

and N™(xg, X, S)ON™ (X, X5,t) =0+0-0=0.

N (%, X, 1) =1 t < [x, 0%, | = t < [e]|xy, %o =

S0 N (X, Xy + X5, S+1) = N" (X, X5, S)ON " (X, X5, ).
If s >|x, X, | and t <||x;, x5] then N"(x;,X;,S)ON" (%, X5,t) =0+1-0=1.
If 5<%, %,| and then N"(x;,X,,s)ON"(x;,X5,t) =1+0-0=1.

If s <||x, X, || and t <||x;, 5| then N (x;, X;,)ON" (¥}, X5, t) =1+1-1=1.
Then in all the above three cases,
N*(Xg, X0, S)ON ™ (X, X5,1) =1> N (X, X, + X5, S +1).
Thus N*(Xg, X, +X5,5+1) < N* (X1, %o, S)ON* (%, X5, ).
(vi) From the definition if t > |x;, |, then t'LYEN*(Xer,t): 0 . Thus (X , N*) is a fuzzy anti 2- normed linear space

with respect to the t- conorm ¢.

Example 3.2: Let (X ||||) be 2- normed linear space and define a 0 b = min {a+b, 1}. Define N*:X x X xR —[0,1]
by
0, if t>xy, X,

.
t+ %, % |
1, if t<0

N*(x,, Xp,1)= if t<||x, %[t >0

Then N™is a fuzzy anti 2- norm on X with respect to the t- conorm ¢ and (X,N*) is a fuzzy anti 2- normed linear
space with respect to the t- conorm ¢ .

Solution:
(i) From the definition we have N*(x,x,,t)=1 if Vte R,t<0.
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(i) If t>0 and t<|x,x,| the N"(x;,X,t)= l'r" el ] if %, X, are linearly dependent so |x,,x,| =0 therefore
X1 X2

N* (X, X,,t) =0.
Conversely, N*(x;,X,,t) =0 then t > |x;, X, |, vt =[x, X[ =0, 50 X, x, are linearly dependent.

(iii) It is obvious that N*(xy, X,,t) is invariant under any permutation of ¥, and x, .

(iv) I N (%,CXp, 1) =0 = t > 3y, Cxo | = t > ] ||xl,x2||<:>ﬁ>||x1,x2||
" t
< N (XI,XZ,HJ:O
If N*(X,CX,,t :M©t<xcx & —<|Ixg, X
(X, CX,t) t+||X1,CX " ” 1 2” || " 1 2"
- N*[XllXZ’LJz . [, e
Il Tt % x|

| |+||Xl o

(v) N*(xl,x2,5)<>N*(x1,xf7_,t)=min{N*(x1,x2 8)+ N (g, X5, 1), 1} If |x.%;[|=s and |x,x;|>t then
Paxel
5+, t+||X1 X
(e o+ e o ]+ o+ o ol s )
(s, el + s el e X5+ s, )+t

N (X, Xp,8) + N (X, X5,1) =

since [x,, X,|[|x. 3] > st.
In this case N* (X, Xy, S)ON™ (X, X5,t) =1> N (X}, X, + X5, 5 +1).

If %, %] >s and [[x,, x5 <t then either [x;, X, + X5[ = s+t or [x,, X, + X5 <s+t.

NOW’ N (Xl X2 S)+N (Xl X2 t)— " |:|LX 2)|(| ||+0<1
10 A2
* * ' [Ixa, %o|
Hence  N7(X, X5, S)ON" (X, X5,1) = .
S+[x0. %,

If ||x,, X, + X5 > s+t then consider
TR I
S+t+[x X+ X5 s+[x0, Xy
o e+ lroel
s+t+||xl x2|| ||x1 x’2|| s+||x1,x2||
. X5~ th
(S+t+||xl Xal| + 0. X5 s + 0. %,
. st—tx,, X,
(-4t o+ o )5 + s, e )

<0, Since s<|x, X, || s0 st <t]x;, X, -

N* (X, Xy + X5, 8 +1) = N (X, X5, S)ON " (X, X5,1) =

, Since [)x;, X3 <t,

S0, N (X, X, + X5, 5 +1) < N* (X, X5, S)ON* (%, X5,1) .

If %, X, + X[ < s+t then

N* (X, Xy + Xp, S +1) = S|“|LX|TXX’|(| ] = N* (X, Xy, )ON* (X, X5, 1)
10 A2
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If ||, X, <'s and |[x;, X5 >t then in the similar way we can show that

N* (X, Xy + X5, 5 +1) < N (X, Xy, S)ON (X, X5, 1) .

If X, X, <'s and [x;, x5 >t then N*(x;,X,,5)+N"(x, X5,t) =0+0<1.

Therefore, N*(x;, Xy, S)ON™ (%, X5,t) =0.

AISO [|xq, X + X5|| < Xy, Xo | +||X, X5 < S+t and N*(xy, %, +X5,5+1) =0
S0 N (X, Xy + X5, 5 +1) = N (X, Xp, S)ON " (X, X5, 1) .

S0 N™ (X, Xy + X5, 5 +1) < N (X, Xy, S)ON ™ (X, X5, 1)

(vi) If t>||x, X, | then from the definition lim N*(x,, x,,t)=0. If X;,X, are not independent and t <||x;, ,|| then

t—>w

. * i .
t“_ToN (XllX2’t)_t|l>r2t+||x1ax2" -

If X, X, are linearly dependent and t < |x;, X, | then lim N*(x,,x,,t)=0.
to>wo
Hence Iim N*(x;, X,,t)=0. VX, % € X x X .
t—o

Thus N™ is a fuzzy anti 2-norm on X with respect to the t-conorm ¢ and (X : N*) is a fuzzy anti 2-normed linear
space with respect to the t-conormo¢.

Example 3.3: Let (X||||) be 2-normed linear space and define a 0 b = min{a+b, 1}. Define N*: X x X xR —[0,1]

4. %]
by N”(x,, Xp,t)= Zt_”Xl’XZ"l
1, it t <X, X,

if t> %, X

Then N* satisfies all the condition of fuzzy anti 2- norm with respect to t-conorm ¢.So N is a fuzzy anti 2- norm on
X with respect to the t- conorm ¢ and (X, N *) is a fuzzy anti 2- normed linear space with respect to the t- conorm ¢ .

Theorem 3.1: Let (x,N*) be a fuzzy anti 2- normed linear space with respect to a t- conorm ¢ satisfying (Fa2-N7)
and (Fa2-N9). Then for any &  (0,1)the function x;, X, : X x X x R —[0,00) defined as

[0 %, = A {t >0: N*(xl,xz,t)sl—a}, ae(0]).

isa2-normon X . Then {||||Z ‘ae (0,1)} is an ascending family of 2-norm on a linear space X.

Proof:
(i) For x, X, for t<0 ,s0 N*(x;,%,,t)<1—ea is not possible.

So A {t>0:N*(xl,x2,t)§1—a}20, a €(01)=|x, %[, 20, €(01).

(ii) Itis obvious A > 0:N"(x, %,,t) <1—ar}=0=> vt > 0,N*(x, X,,t) <1
So by (Fa2-N7) ¥, and X, are linearly dependent.

Conversely, ¥ and X, are linearly dependent

= A >0 N*(xl,xz,t)sl—a}:O,Va €(02)=|x, x|, =0.
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(iii) If ¢ =0 itis obvious. If c=0 then

(S {s >0: N*(xl,cxz,s)gl—a}

=A {s>0: N*[xl,xz,ﬁjsl—a}

=A {c|t>0:N*(x1,x2,t)sl—a}
= Alc| {'{>O:N*(xl,x2,t)sl—a}
=[clx0, e[,
(V) %0 %o, + % %3] = {t>0:N*(x1,x2,t)s1—a}+/\ {s>0:N*(xl,x'z,s)sl—a},Vae(O,l)
> A {t+s>0:N*(xl,xz,t)sl—a,N*(xl,x’z,s)sl—a}
S0 A f+5>0:N"(x, X, LN (X, X5, 8)< (1- o1 - )}
2/\{t+s>0:N*(xl,x2+x’2,t+s)sl—a} by (Fa2-N5) and (Fa2-N9)
=[x + %],
Hence {||||a :ae(o,l)} isa2-normon X.
If &, <a,,we have {t>0: N*(xl,xz,t)gl—az}c{t>0: N*(xl,xz,t)sl—al}

=>A {t>0: N*(xl,xz,t)sl—az}zx\ {t>0: N*(xl,x’z,t)sl—al}

=[xl 2l

So {||||; ae (0,1)} is an ascending family of 2- norm on a linear space X. Hence proved.

Theorem 3.2: Let (X,N*) be a fuzzy anti 2-normed linear space satisfying (Fa2-N7) and (Fa2-N8) Also, if
{|||a ‘a e(O,l)} be ascending family of norms of X, defined by |x,, %[ = /\{t: N*(xo,x(’),t)sl—a},a €(01) Then
for Xo, X (linearly independent) € X, a e(0,1)and s(>0)eR,

[%. %o, =s = N*(x0, %, 8)=1-a.

Proof: let ||x0,x5||:; =s thens>0. Then 3a sequence {s,},s,>0 such that s,—>sas n—o and
N* (X, %5, S, )<1—a,Vne N . Therefore lim N* (X, X0, 8y ) <1—a = N*(xo,xé,r!Ln;ansl—a

= N*(xo,x{,,||x0,x{)||:;)£1—a,Va c(02)

Leta e (0,2) X, X; (linearly dependent) X and s =[x, x{)"; = /\{t: N* (%o, x{),t)sl—a}.

Therefore N*(xo,x),5)<1-a 1)

If possible let N*(xo,x),5)<1-a then by continuity of N*(xy,x),.) ats.there exist s <ssuch that
N*(Xq, %9, ) <1—a , which is impossible since

s=/\{t:N*(x0,x('),s)£1—a}.
Thus  N*(xp,%),8)21-a )

From (1) and (2) it follows that N*(x,, x},s)=1—a. Thus

%0, X[, =35 = N*(x9, %5,5)=1-« ©)
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Next if N*(xo,x),5)=1-a,a €(01) then
%, X6 :/\{t:N*(xO,x{),s)sl—a}zs. (4)

Hence from (3) and (4) we have for a e (0,1), Xo, X5 (linearly independent) e X and for

5>0,[%, Xgl| =5 = N"(xo, %p,5)=1-a. Hence proved.

Theorem 3.3: Let (X, N*) be a fuzzy anti 2-normed linear space with respect to a t- conorm ¢ satisfying (Fa2-N7),
(Fa2-N8) and (Fa2-N9).

Let %, %] :/\{t: N*(x,, xz,t)gl—a},a €(0,1). Also, let N; : X x X x R —[0,1] be defined by

N* (3, 5,1) = /\{L—a:"xl,xz":;st} if are linearly dependent, t = 0
v otherwise

Then Ny =N".
Proof: Let(xy, Xp,tg)€ X x X xR and a (0,1). To prove this we consider the following cases:
Case (i): For any (Xo,X))e X x X and t <0,N*(xg, X5,t)= Ny (Xg, X5, tp) =1.

Case (ii): Let x,,x)(linearly dependent),t, > 0.

Then N*(xg, X5.to)=0 also [x,, %[ =0 s0 Ny (x5, Xp,ty)=0
Case (iii): Let xg, x)(inearly independent),t, >0 such that N*(xo, x),t,)=1. By theorem (3.2).

we have N*(xo, X0 %o X(')”;):l—a .Since N*(xy,X),ty)=1>1—-a it follows that

N*(xo, X0 [¥o, x6||2)=1—a < N*(x9, %ty ) and since N*(xg,X,.) is strictly non-increasing.
S0 ty <[[x. %, . Ve €(01). So Nf(xo,x{),to):/\{l—a:||x1,x2||z <t, }:1.
Thus N*(Xg, X5t )= N; (Xg, X5, tg ) = 1.
Case (iv): Let xo, x)(linearly independent),t, > 0such that N*(xy, xj,to)=0.
As %0 % :/\{t ; N*(xo,xé,t)sl—a},a c(02)
5 N i 5 )1 a5 N is dcreasing

It follows that, [xo,X;|, <to,Vere(0,1), by (Fa2-N6). Therefore,

o] <t = N (0 X0t )= ALt g, 30 [ <t =0,

Thus N* (X, X5ty )= Ny (Xg, X, to ) =0.

Case (V): Let xq, xp(linearly independent), ty >0, st., 0< N*(xo, X),t,)<1.

Let, N* (%o, X5,tp)=1— 3, as [x,, x6||; = A{t: N (Xg, X5, t) gl—ﬁ}
as N is non-increasing function of t, we have |x,, xé"} <ty
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So N; (Xg, X),t)<1- /3 . Therefore,
N7 (Xo, Xt ) < N* (0, %5, 1) )

As N*(xg, X0, )=1- S = I %ol = to.

If B<a<1andlet ||x0,x6||*ﬂ =ty then N*(Xo, X, ty)=1—a <1- 8= N*(xg, X5, ;)

As N*(x;,Xp,.) is monotonically decreasing so t, <t; since [x, Xp|, =t >t,.

S0 Ni(Xg, Xp,te)> 1= B =N"(xo, X0, o) @)

So from (1) and (2) we have N;(Xo, X5,ty)= N*(Xo, X5, 1o ). Hence proved.

Lemma 3.4: Let (X, N*) be a fuzzy anti 2-normed linear space with respect to t- conorm ¢ satisfying (Fa2-N7),

(Fa2-N8) and (Fa2-N9), every sequence is convergent if and only if it is convergent with respect to its corresponding
a -2-norms, « < (0,1).

Proof: Let (x, N*) be a fuzzy anti 2-normed linear space satisfying (Fa2-N7), (Fa2-N8), (Fa2-N9) and {xn} be a

sequence in X such that x, — x asn— oo,
lim N*(x, =X, %,t)=0, Vt>0.

n—oo

LetO<a <1. S0, lim N*(x, —x,Xg,t)=0<1-a =13 ny(t) such that

n—oo

N*(x, =X, X, t)<1l-a Vn>ny(t,a).

Now, |, —x,x0||; = /\{t >0:N*(x, — X, xo,t)sl—a}

= %0 = X%, <t Vn2ng(t,a)
Sincet >0 is arbitrary, x, =X, %[, =0 asn > Vae(0]).
Conversely, suppose that ||, — X, x0||2 —0asn—>mo Vae(0]).
Then for a € (0),£>0, 3 ng(a, &) such that [[x, - x, %[ <&, vn=ny(a,),a € (0).

Now, N*(xn—x,xo,g):/\{l—a:"xn—x,x0||z Ss}
= N*(X, =X, %, &) <1—a, Vn=ny(a, ), a € (0,)).

= lim N*(x, =X, %,£)=0, Vt>0.

n—oo

Thus x, converges to X . Hence Proved.

Corollary 3.5: Let (X , N*) be a fuzzy anti 2-normed linear space with respect to a t- conorm ¢ satisfying (Fa2-N7),

(Fa2-N8) and (Fa2-N9). W < X is closed in (x N ) if and only if it is closed with respect to its corresponding « -2-
norms, a <(01).

Theorem 3.6 (Riesz lemma): Let W be a closed and proper subspace of a fuzzy anti 2- normed linear space (X, N*)
with respect to a t- conorm ¢ satisfying (Fa2-N7) (Fa2-N8) and (Fa2-N9). Then for each &>0 there exist
Vi, ¥s € (X =W ) such that N*(y,y,1) <1-a and N*(y; —w,y, —w,&) <1-a forall u(yl)<l-aand weWw.
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Proof: As |x, x,||, = /\{t N (g, xz,t)gl—a},a e(01)and {|||:; ae (0,1)} is an ascending family of fuzzy « -2-norm
on a linear space X.Now by Riesz lemma for 2- normed linear space, it follows that for any ¢>0 there exist

Yi.Yo € (X -W P such that |y, y,|, =1 and [y, -w,y, —w| >1-¢ ,vweW

Now, from theorem (3.3), for all u(y,1) <1-«a we have
N (3 yo.0)= A-a [ el <t}

= N*(y1,¥,.0) :/\{l_a:"yl’ y2"; Sl}
= N'(y V) <1l-«a

Again,
N*(y, - W, Y, —W,t)=A{1—ai||Y1—Wa Vz—"""; St}
N (-, - wie) = Ay - w, i <]

=Ny -w,y, -w,8)<1l-a. Hence proved.

Theorem 3.7: Let (X : N*) be a fuzzy anti 2-normed linear space with respect to a t- conorm ¢ satisfying (Fa2-N7),

(Fa2-N8) and (Fa2-N9). If the set {xl,x2 : N*(xl,xz,l)sl—a},ae(o,l) is compact then X is a space of finite
dimension.

Proof: It can be easily verified that {xl,x2 ; N*(xl,xz,l)sl—a}z {xl,x2 [ %o gl},ae(o,l). By applying Riesz
lemma 3.6, it can be proved that if for some « e (0,1) the set {xl,x2 x| Sl} is compact then X is of finite

dimensional. By lemma (3.4), it follows that , for some « <(0,1), {xl,x2 : N*(xl,xz,l)sl—a} is compact then X is a
space of finite dimensional.
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