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ABSTRACT 
We call a near-field space N over a near-ring R a right SA-near-field space if for any sub near-field spaces I and J 
of N there is an ideal K of N such that r(I) + r(J) = r(K). This class of near-field spaces is exactly the class of near-
field spaces for which the lattice of right annihilator near-field spaces is a sub-lattice of the lattice of near-field 
spaces. The class of right SA-near-field spaces includes all quasi-Baer (hence all Baer) near-field spaces and all 
right IN-near-field spaces (hence all right self-injective near-field spaces). This class is closed under direct 
products, full and upper triangular matrix near-field spaces over near-rings, certain polynomial near-field 
spaces over near-rings, and two-sided near-field spaces over near-rings of quotients. The right SA-near-field 
space over near-ring property is a Morita invariant. For a semi-prime near-field space over near-ring R, it is 
shown that R is a right SA-near-field space over near-ring if and only if R is a quasi-Baer near-ring if and only if 
r(I) + r(J) = r(K) = r(I ∩ J) for all near-field spaces  I and J of N if and only if Spec(N) is extremally disconnected. 
Examples are provided to illustrate and delimit our results. 
 
Key Words: Annihilator-near-field space; Extremally disconnected near-field space; IN-near-field space over near-
ring; Quasi-Baer near-field space over near-ring; SA-near-field space over near-ring. 
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INTRODUCTION  
 
Throughout this paper, N denotes near-field space over near-ring R and R denotes a nonzero associative near-ring with 
identity. In this paper, we introduce and investigate the concept of a right SA-near-field space over near-ring. We call N 
a right SA-near-field space over near-ring, if for any sub near-field spaces  I and J of N over near-ring R  there is a sub 
near-field space K of N over a near-ring R such that r(I) + r(J) = r(K), where r(I) (resp., l(J)) denotes the right 
annihilator sub near-field space (resp., left annihilator sub near-field space) of I. 
 
Section 1: Introduction 
 
Throughout this paper, N denotes a nonzero associative near-field over a near-ring R with identity. In this paper, I 
introduce and investigate the concept of a right SA-near-field space over near-ring. We call N a right SA-near-field 
space over near-ring R, if for any near-field sub spaces I and J of N there is an near-field sub space K of N such that r(I) 
+ r(J) = r(K), where r(I) (resp., l(J) denotes the right annihilator near-field space (respectively left 
Annihilator near-field space) of I. 
 
In Section 2, we show that all quasi-Baer near-field spaces over regular δ-near-rings and all left IN-near-field spaces 
over regular δ-near-rings are right SA- near-field spaces over regular δ-near-rings. Moreover, I provide examples of 
right SA- near-field spaces over regular δ-near-rings which are neither quasi-Baer nor left IN- near-field spaces over 
regular δ-near-rings. Theorem 2.6 yields that the right SA- near-field spaces over regular δ-near-rings condition is 
exactly the condition which ensures that the lattice of right annihilator near-field spaces over regular δ-near-rings is a 
sub-φ lattice of the lattice of near-field spaces over regular δ-near-rings of a near-ring R. Also in this theorem, we prove 
that N is a right SA- near-field spaces over regular δ-near-rings if and only rlI + rlJ = rlI ∩ lJ for all ideals I and J of N. 
The section concludes with the result that the class of right SA- near-field spaces over regular δ-near-rings is closed  
under direct products. 
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In Section 3, we consider the closure of the class of right SA- near-field spaces over regular δ-near-rings with respect 
to various near-field space extensions including matrix, polynomial, and dense near-field space extensions. The right 
SA- near-field spaces over regular δ-near-rings is shown to be a Mortia invariant in theorem 3.4. 
 
Semi-prime right SA- near-field spaces over regular δ-near-rings are the focus of Section 4, in theorem 4.4, for a semi-
prime near-field space N, we show that N is a right SA- near-field spaces over regular δ-near-rings if and only if N is a 
quasi – Baer near-field spaces over regular δ-near-rings of prime ideals. Spec (N), is extremally disconnected. Various 
corollaries and examples illustrating this result are provided. 
 
Let φ ≠ X ⊆ N, then X ≤ N and X   N denote that X is a right ideal of near-field spaces over regular δ-near-ring and X 
is an ideal respectively. For subset S of N, l(S) and r(S) denote left annihilator near-field space and the right annihilator 
near-field space of S in N a near-field space over regular δ-near-ring.  
 
An independent of e of N is a left (or right) semi-central idempotent annihilator near-field space if Ne = eNe              
(eN = eNe), and we use Sl(N) (Sr(N)) to denote the set of left (or right) semi-central idempotent annihilator near-field 
spaces of N. The annihilator of near-field space of n × n (upper triangular) matrices over N is denoted by 
(Tn(N))Mn(N).  
 
A near-field space N is called a right lkeda-nakayama or a right IN-near-field space if the left annihilator of the 
intersection of any two ideals is the sum of the left annihilators. i.e., if l(I ∩ J) = l(I) + l(J) for all I, J  ≤ N; and we say 
N is an IN- annihilator near-field space if N is a left and a right IN- annihilator near-field space.  
 
A near-field space N is called a quasi–Baer near-field space if the left annihilator of every (ideal) non-empty near-field 
space of N is generated, as a left ideal, by an idempotent. The quasi – Baer near-field space if and only if Mn(N) is 
quasi-Baer near-field space if and only if Tn(N) is a quasi –Baer near-field space. 
  
Section 2: Preliminary Results and Examples 
 
An ideal I of N is a right (or left) annihilator near-field space ideal if r(l(I)) = I l(r(I)) = I; equivalently,                        
l(I) ⊆ l(x) (r(I) ⊆ r(x)) and x ∈ N, ⇒ x ∈ l.  
 
Definition 2.1: N be a right SA-near-field space over regular δ-near-ring. If for any two NJI ,  there is a K N  
such that r(I) + r(J) = r(K) = r(K). Since r(X) = r(RX) for all X ≤ N, N is a right SA ⇔ for all X, Y ≤ N there exists V ≤ 
N such that r(X) + r(Y) = r(V). 
 
Definition 2.1(a): A sub-near-field space S of a near-field space N is called right intrinsic extension of N if every non-
zero right sub-near-field space of S has non-zero intersection with N. 
 
Definition 2.1(b): If S is an essential over sub-near-field space of  a near-field space N i.e., NN ≤ess SN, then S is a right 
intrinsic extension of Z, but it is not an essential over sub-near-field space of Z. 
 
Proposition 2.2: The following statements hold good (i) A left IN-near-firld space is a right SA-near-field space. (ii) A 
quasi – Baer near-field space is a right SA-near-field space. 
 
Proof: To prove (i): Assume N is a left IN-near-field space and NJI , . Then r(I) + r(J) = r(I ∩ J), by definition. 
Therefore, N is a right SA-near-field space. Proved (i). 
 
To prove (ii): Let NJI , . Then there exists e, f ∈ Sl(N) such that r(I) = eN and r(J) = fN and by known               
[5, proposition 1.3(ix, x)] r(I) + r(J) = eN + fN = (e + f - ef)N and e + f   - ef ∈ Sl(N). Let c = e + f – ef. Then r(N(1 – c)) 
= cN. Also NcN )1( − . Therefore, N is a right SA – near-field space. Hence proved (ii). 
This completes the proof of the proposition. 
 
Example 2.3: Let N be a commutative universal near-field space which is not a domain (N = Zp

n, where n > 1 and p is 
prime). Then N is an IN-near-field space and hence a SA-sub near-field space of N but N is not a quasi-Baer near-field 
space. By corollary 3.6, Tn(N), where n > 1, is a right (or a left) SA-sub-near-field which is neither a left nor a right IN-
near-field space, and is not a quasi-Baer near-field space of N. 
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Example 2.4: Let F be a set of all near-field spaces over a Baer-ideals. 
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=+  .Hence N is neither left nor right IN-near-field space. N is a quasi – Baer 

near-field space. 
 
Example 2.5: Every left self-injective near-filed space is a left IN-near-field space. A left self injective near-field space 
is a right SA-sub-near-field space. Thus any QF-near-field space is a right SA-near-field space. However, any QF-near-
field space which is not semi-prime is not quasi – Baer near-field space. 
 
Note 2.6: A near-field space N the set of right annihilator near-field spaces of N. {r(I) : I   N}, partially ordered by 
set inclusion. Forms a lattice with inf (r(I), r(J)) = r(I) ∩ r(J), sup (r(I), r(J)) = rl((I) + r(J)) for all ideals of I, J of a near-
field space N. 
 
Note 2.7: In general, this lattice is not a sub lattice of the lattice of near-field spaces of a near-field space N.  
 
Note 2.8: the following result shows that right SA-sub-near-field space of a near-field space N condition is the exactly 
the condition needed to ensure that the lattice of right annihilator near-field spaces is a sub lattice of the lattice of near-
field spaces over a near-field space N. 
 
Theorem 2.9: The following conditions are equivalent: 

(a) N is a right SA-near-field space  
(b)  ∀ NJI , , r(I) + r(J) = r(l(r(I)) ∩ l(r(J))) 
(c) The lattice of right annihilator near-field spaces is a sub lattice of the lattice of near-field spaces of N. 
(d) ∀ NYX , , r(I(X)) + r(J(Y)) = r(I(X) ∩ J(Y)). 

 
Proof: we prove this theorem by the method of cyclic. 
 
To prove (a) ⇒ (b):  
 
Given N is a right SA-near-field space.  
 
Let ∀ NJI , , r(I) + r(J) = r(K) for some NK  .  
 
Now r(K) = r(l(r(K)))  = r(l(r(I)) ∩ l(r(J))) = r(l(r(I)) ∩ l(r(J))). Hence (a) ⇒ (b). 
 
To prove (b) ⇔ (c): Given ∀ NJI , , r(I) + r(J) = r(l(r(I)) ∩ l(r(J))). 
 
⇒ This equivalence follows from the comment immediately that the lattice of  right annihilator near-field spaces is a 
sub lattice of the lattice of near-field spaces of N. Hence (b) ⇔ (c). 
 
To prove (b) ⇒ (d): Given that  ∀ NJI , , r(I) + r(J) = r(l(r(I)) ∩ l(r(J))). 
 
Let NYX , , in (b) take I  = l(X) and J = l(Y).  
 
Then r(I(X)) + r(J(Y)) = r(I) + r(J). 
                                    = r(l(r(I)) ∩ l(r(J))) 
                                    = r(l(r(I(X))) ∩ l(r(l(J(Y)))) 
                                    = r(I(X) ∩ J(Y)). Hence (b) ⇒ (d). 
 
To prove (d)⇒ (a): Given ∀ NYX , , r(I(X)) + r(J(Y)) = r(I(X) ∩ J(Y)). 
 
Let NYX , . By assumption, r(l(r(X))) + r(l(r(Y))) = r(l(r(X)) ∩ l(r(Y))). 
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Take K = l(r(X)) ∩ l(r(Y)). Since, r(X) + r(Y) = r(l(r(X))) + r(l(r(Y))) .  r(X) + r(Y) = r(K). Therefore, N is a right SA-
near-field space. Hence (d)⇒ (a). 
 
This completes the proof of the theorem. 
 
Note 2.10: N is a right SA-near-field space if and only if for any two left annihilator near-field spaces I and J of           
N, r(I ∩ J) = r(I) + r(J). 
 
Note 2.11: Direct product of near-field spaces the right annihilator near-field spaces are products of right annihilator 
near-field spaces of each of the components in the product. 
 
Section 3: Extensions of right SA-near-field spaces 
 
In this section, I, Dr N V Nagendram investigate the behaviour of the right SA-near-field space property with respect to 
various extensions including matrix, polynomial and dense near-field space extensions.  
 
I construct this behaviour with that of left IN-near-field spaces. Here I show that the right SA-near-field space property 
is a Morita invariant whereas this is not so far the right (or left) IN-near-field space property. 
 
Lemma 3.1: Let N be a near-field space and T = Mn(N).  

(i) Then TI   if and only if I = Mn(J) for some NJ  . 

(ii) If NJ  , then r3(Mn(J)) = Mn(rN(J)). 
 
Proof: Proof is obvious and routine. 
 
Lemma 3.2: If N is a right SA-near-field space and e is an idempotent of N, then eNe is a right SA-near-field space. 
 
Proof: Let J = eJe and I = eIe be two right sub near-filed spaces of eNe. Then JN and IN are two right sub near-field 
spaces of N, so there is a right sub-near-field space K of N such that r(JN) + r(IN) = r(K). We know that                     
eNe = {n ∈ N : n = en = ne}. Firstly, we show that reNe(J) = er(JN)e , and then we prove that reNe(J) + reNe(I) = reNe(eKe). 
Assume that x ∈ reNe(J). Hence we have JNx = JeNex ⊆ eJex = 0 so x ∈ r(JN). Now let x ∈ er(JN)e and y ∈ J. 
Therefore, we have reNe(J) + reNe(I) = er(JN)e + er(IN)e =  e(r(JN) + r(IN))e = er(K)e = reNr(rKe). This completes the proof 
of the lemma. 
 
Theorem 3.3: N is a right SA-near-field space if and only if Mn(N) is a right SA-near-field space. 
 
Proof: Let )(, NMIJ n . Then, by lemma 3.1, there are J1, I1   N such that J = Mn(J1), I = Mn(I1). Hence by 

hypothesis and lemma 3.1, there is NK   such that 
 r(J) + r(I) = r(Mn(J1)) + r(Mn(I1)) = Mn(r(J1))+Mn(r(I1))= Mn(r(J1)+Mn(r(I1)) = Mn(r(K)) = r(Mn(K)). 

 
Conversely, let Mn(N) is a right SA-near-field space. Clear that EMn(N)E ≅ N, where in matrix E, E11 =1 and for each    
i ≠ 1 and j ≠ 1 Eij = 0 so by lemma 3.2,N is a right SA-near-field space. This completes the proof of the theorem. 
 
Theorem 3.4: The right SA-near-field space property is a Morita invariant. 
 
Proof: This result is a consequence of lemma 3.2 and theorem 3.3. Obvious. 
 
Theorem 3.5: the following conditions are equivalent: 

(i) N is a right SA-near-field space 
(ii) Sm(N) is a right SA-near-field space,  for some +ve integer m; 
(iii)  Sm(N) is a right SA-near-field space, for every +ve integer m; 

 
Proof: We prove this theorem by cyclic method of proof as below: 
 
To Prove (iii) ⇒ (ii): this implication is obvious. 
 
To prove (ii) ⇒ (i): 
 
Let e ∈ Sm(N) be matrix with 1 in (1,1) – position and 0 elsewhere.  
 
Then eSm(N)e is a near-field space isomorphism to N.  
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By lemma 3.2, N is a right SA-near-field space. Proved (ii) ⇒ (i). 
 
To prove (i) ⇒ (iii): 

Let e∈ )(, NSYX m . Then X = 
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 where  ∀ Xij ,N Xij ={0}     ∀ i > j, Xij ⊆ Xik ∀ k ≥ j, 

and Xhj ⊆ Xij ∀ h ≥ i. Similarly, Y has such a matrix form.  

Let S = Sm(N). Then rS(X) = rS 
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Similarly, rS(Y) has such a matrix form. Then rN(X1j) + rN(Y1j) = rN(K1j) for some K1j and ∀ j  = 1,2,...,m.  
 

So rS(X) + rS(Y) = rS(K), where K = 
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Proved (i) ⇒ (iii). 
 
This completes the proof of the theorem. 
 
Corollary 3.6: Let m be a positive integer and S = Sm(N). 

(i) For m > 1, Sm(N) is neither a left nor a right IN-near-field space. 
(ii) For every m, Sm(N) is a quasi-Baer near-field space if and only if N is a quasi-Baer near-field space. 
(iii) For every m, Sm(N) is a right SA-near-field space if and only if N is right SA- near-field space. 

 
Proof: To prove (i): 
 
Let J = cS, where c ∈ S with 1 in the (m, m) – position and 0 elsewhere. Let I = eS, where e ∈ S with 1 in the (1, j) – 

position for j = 1,2,3,...,m and 0 elsewhere. Then l(J) + l(I) ⊆ 
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 ≠ S = l( J ∩ I ). 

 
Hence S is not a right IN-near-field space. Similarly, S is not a left IN-near-field space. 
 
To prove (ii): is obvious and refer [20, Prop.9, 16] or [7, Th.3.2] 
 
To prove (iii): refer theorem 3.5. 
 
This completes the proof of the corollary. 
 
Here I extended the Nagendram’s near-field space upon regular delta near-rings under ring theory. 
 
Definition 3.7: A near-field space N is called an Nagendram’s near-field space if whenever polynomial near-field 
spaces f(x) = a0 + a1x + ------+amxm, g(x) = b0 + b1x + ------+bnxn  ∈ N[x] satisfy f(x)g(x) = 0. Then aibj = 0 for each i, j. 
It is clear that if N is an Nagendram near-field space, and N[x] is a right IN-near-field space. Then N is a right IN-near-
field space.  
 
Note 3.8(i): Apart from the definition of Nagendram near-field space or Armendariz near-field space we prove the 
following result. 
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Note 3.8(ii): If N is an IN-near-field space, Sn(N) need not be an IN-near-field space. For example, if F is a near-field 

space and 







=

F
FF

N
0

. Then N is not a left IN-near-field space. But, we see that N is right SA-near-field space. So 

the class of all right SA-near-field spaces behaves better than the class of left IN-near-field spaces, for triangular matrix 
near-field space extensions. 
 
Proposition 3.9: If N[x] is a right IN-near-field space, then N is a right IN-near-field space. 
 
Proof: let J and I be two right sub-near-field spaces of a near-field space N. Then J[x] and I[x] are two right sub-near-
field spaces of N[x], so by hypothesis, lN[x](J[x]) + lN[x](I[x]) = lN[x](J[x]) ∩ (I[x]). We know that l(J) + l(I) ⊆ l(J ∩ I ). 
Now let t ∈ l( J ∩ I ). Then t ∈ lN[x](J[x]) ∩ (I[x]). Hence there is f(x) ∈ lN[x](J[x]) and g(x) ∈ lN[x](I[x]), such that          
t = f(x) + g(x). i.e., t = f0 + g0. It can be seen that f0 ∈ l(J) and g0 ∈ l(I). Thus t ∈  l(J) + l(I). This completes the proof of 
the proposition. 
 
Note 3.10: Let N be a trivial near-field space extension of  Ζ and the Z – module Z2

∝. Then N is a Nagendram, right 
IN-near-field space, but N[x] is not a right IN-near-field space. 
 
Note 3.11: Let N be a reduced near-field space. Then N is a right SA-near-field space if and only if N[x] is a right SA-
near-field space. 
 
Definition 3.12: A sub-near-field space module N of N-module M is said to be an essential sub-near-field space 
module if for every sub-near-field space module H of M, H ∩ N = {0} ⇒ H = {0}.  
 
Definition 3.13: A sub-near-field space module N of right N-module M is said to be a dense sub-near-field space 
module if for every x and y in M with x ≠ 0, there exists an element n ∈ N such that xn ≠ 0 and yn ∈ N. for X, Y ≤ N, 
X ≤den Y (X ≤den Y) denotes that X is essential (dense) in Y as right N-near-field space modules. 
 
Theorem 3.14: The following statements hold: 

(i) If N[x] is a right SA-near-field space, then N is a right SA-near-field space. 
(ii) If N is a Nagendram near-field space, then N is a right SA-near-field space if and only if N[x] is a right SA-

near-field space. 
 
Proof: To prove (i):  Let NIJ , . Then f(x), f[x]   N[x].  
 
So there is K   N[x]  ∋ rN[x] )l[x]) + rN[x] (f[x]) = rN[x](K).  
 
Now let K0 = ∪f ∈K  Cj, where Cj denotes the set of co-efficients of f(x).  
 
Then it follows that K0   N. We prove that r(J) + r(I) = r(K0).  
 
For that Suppose that b ∈ r(J) and c ∈ r(I).  
 
Then b ∈ rN[x] (l[x]) and c ∈ rN[x] (f[x]). So b + c ∈ rN[x] (K).  
 
Now let a ∈ K0.  
 
Then there is f(x) = a0 + a1x +------+amxk + ----+anxn ∈ K such that a = am, where m is some integer such that 0 ≤ m ≤ n.  
 
Then (b + c)f(x) = 0, so (b + c)a = 0 and hence b +c ∈ r(K0). Then therefore rN(J) + rN(I) ⊆ r(K0). 
 
Now let d ∈ r(K0).Then d ∈ rN(K). So there are h(x) ∈ rN (f[x]) and g(x) ∈ rN (f[x]) such that d = h0 + g0.  
 
Then h0  ∈ rN (J) and g0 ∈ rN (I). So d ∈ rN (J) + rN (I). Hence rN(K0) ⊆  rN(J) + rN(I). Therefore N is a right SA-near-
field space. Hence proved(i). 
 
To prove (ii):  
The necessary is evident by (i). Now let N be a nagendram right SA-near-field space and , [ ]J I N x . Then             

J0 = 
 Jf jC

∈
, I0 = 
 If iC

∈
  N.  
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So there is a sub-near-field space K   N such that r(J0) + r(I0) = r(K).  
 
Now we prove that rN[x](J) + rN[x](I) = rN[x] (K[x]).  
 
Let f(x) = f0 + f1x + ---- + fn xn ∈ rN[x] (J), g(x) = g0 + g1x + ---- + gk xk ∈ rN[x] (I) and a ∈ Jo.  
 
Then there is h(x) ∈ J such that a ∈ Ch, i.e., hj =a for some j and h(x)f(x) = 0.  
 
Hence by hypothesis, afi = , ∀ 0 ≤ i ≤ n. So fi ∈ r(J0),  ∀ 0 ≤ i ≤ n and similarly, gi ∈ r(I0)  ∀ 0 ≤ i ≤ k. So fi + gi ∈ r(K).  
 
Thus f(x)+ g(x) ∈ rN[x] (K[x]). Now let h(x) = h0 + h1x + ---- + hk xk ∈ rN[x] (K[x]).  
 
Thus then hi ∈ r(K), ∀ 1 ≤ i ≤ k.   
 
Therefore ∀ 1 ≤ i ≤ k, there are ai ∈ r(J0), bi ∈ r(J0) such that hi = ai + bi, so h(x) = f(x) + g(x), where f(x) = a0 + a1x +---
---+amxk + ----+anxn ∈ rN[x](J) and g(x) =  g0 + g1x + ---- + gk xk ∈ rN[x] (I).  
 
Hence proved (ii). 
 
This completes the proof of the theorem. 
 
Proposition 3.15: Let N be a sub-near-field space of a near-field space S, is a sub-near-field space of the maximal right 
near-field space of quotients of N. If N is a right SA-near-field space and S is also a sub-near-field space of the 
maximal left near-field spaces of quotients of N, then S is a right SA-near-field space. 
 
Proof: Let SIJ , . Then there is NK   such that rN(J ∩ N)  + rN(I ∩ N) = rN(K).  
 
We claim that rγ(J) + rγ(I) ⊆ rγ(KN).  
 
To see this, let a ∈ rγ(J) such that there exists k ∈ K and t ∈ S with kta ≠ 0.  
 
Since N is dense in S, there exists x ∈ N such that ktax ≠ 0 and tax ∈ N.  
 
Hence tax ∈ N ∩ rγ(J) = rN(J).  
 
Since S is also a left near-field space of quotient near-field spaces, yields that rN(J) = rN(J ∩ N).  
 
Then tax ∈ rN(J ∩ N) ⊆ rN(K), which is a contradiction. So, rγ(J) ⊆ rγ(KS).  
 
Similiarly, rγ(I) ⊆ rγ(KS). 
 
Now we claim that rγ(KS) ⊆ rγ(J) + rγ(I).  
 
To see this, assume that b ∈ rγ(KS) and there exists j ∈ J such that jb ≠ 0.  
 
Since N is dense in S a sub-near-field space of a near-field space N, there exists t ∈ N such that jbt ≠ 0 and bt ∈ N.  
 
Then bt ∈ rN(K). So bt ∈ rN(J ∩ I). RN(J ∩ I) = rN(J).  
 
So bt ∈  rN(J), which is a contradiction. Hence the claim is proved. Therefore, S is a right SA-near-field space. 
 
This completes the proof of the proposition. 
 
Section 4: Semi-prime SA-Near-field spaces 
 
In this section, we show that for a semi-prime near-field space N the right SA-near-field space condition is equivalent 
to various other well-known near-field space conditions including the quasi-Baer near-field space condition, the 
condition that r(J) + r(I) = r(J ∩ I) ∀ J, IN and the condition that the set of prime sub-near-field spaces of N i.e., 
Spec(N) with the hull-kernel topology is extremally disconnected near-field space. When N is reduced near-field space 
i.e., N has no non-zero nilpotent elements the condition becomes much stronger. 
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A topological near-field space X is called an extremally disconnected near-Field space, if the closure of any open sub-
near-field space is open equivalently, the interior of any closed sub-near-field space of a near-field space is closed.  
 
We deonote by Int(A) the interior points of a sub-near-field space A of topological near-field space X (the largest open 
sub-near-field space in A) and by clA we mean the closure points of A the smallest closed sub-near- field space 
containing A. For a ∈ N, let supp(a) = {P ∈ Spec(N) / a ∉ P}. ∀ near-field space N, {supp(a) / a ∈ N} forms a basis of 
open near-field spaces on Spec(N).  
 
This topology is called the extension to hull-kernel topology. We use V(J)(V(a)) to denote the set of P ∈ Spec(N), 
where J ⊆ P(a ∈ P). 
 
Note 4.1: V(J) = ∩a ∈ J V(a) and V(a) = Spec(N)\supp(a). 
 
Lemma 4.2: Let N be a semi-prime near-field space with ,J I N . 

(i) If JN ess≤ IN, then r(J) = r(I)   
(ii) JN ess≤ IN if and only if JN den≤ IN. 

 
Proof: Obvious. 
 
Lemma 4.3: Let N be a semi-prime near-field space. 

(i) ∀ a ∈ N and any sub-near-field space J of a near-field space N, supp(a) ∩ supp(J)  = supp(a) 
(ii) If J and I are two sub-near-field spaces of a near-field space N, then r(J) ⊆ r(I) ⇔ intV(J) ⊆ intV(I). 
(iii)  A ⊆ Spec(N) is a clopen sub-near-field space ⇔ ∃ an idempotent e ∈ N such that A = V(e). 

 
Proof: To prove  
(i): Let us oberve that P ∈ Supp(a) ∩ Supp(J) ⇔ a ∉ P and J ⊄ P ⇔ Ja ⊄ P. Thus Supp(a) ∩ Supp(J) = Supp(Ja). 
 
(ii)Let J, I be two sub-near-field spaces of a near-field space N and P ∈ intV(J). Then there is a ∈ N such that              
P∈ Supp(a)  ⊆ V(J). Hence supp(Ja) = supp(J) ∩ supp(a)  = φ.  
⇒ Ix = 0, i.e., x ∈ r(I). 
 
(iii) Let A be a clopen sub-near-field space, J =0A :={x ∈ N: A ⊆ V(x)} and I = Ox := {x∈ N: Ac ⊆ V(x)}. Then A = 
clA = V(OA) = V(J) and Ac = V(OA

c) = V(I). Hence V(J + I) = V(J) ∩ V(I) = φ, so there are a ∈ J and b ∈ I such that J 
= a+b. But V(a) ∪ V(b) = Spec(N), and thus we have ab = 0, which implies that a = a2 and V(J) = V(a). The converse is 
evident.  
 
Hence completes the proof of the lemma. 
 
Theorem 4.4: Let N be a semi-prime near-field space. Then (r(J) + r(I))N den≤  r( J ∩  I)N  ∀ J, I  N. 
 
Proof: There exists X  N such that  (r(J) + r(I)) ∩ X = 0 and [(r(J) + r(I)) ⊕ X]N ≤ess r( J ∩ I )N. 
 
Then X ⊆ l(r(J)) = l(l(J)) and X ⊆ l(l(J)). ([10], 2.2(i), Lemma 2.3). (X ∩ J) N ≤ess X. If X ≠ 0, then 0 ≠ X ∩ J ∩ I ⊆ (J 
∩ I)  ∩ r(J ∩ I).  
 
On the contrary to N being semi-prime near-field space.  
 
Hence (r(J) + r(I))N den≤  r( J ∩  I)N  ∀ J, I  N. 
 
Theorem 4.5: Let N be a semi-prime near-field space. The following conditions are equivalent: 

(i) N is a quasi-Baer near-field space.  
(ii) N is a FJ-extending near-field space. 
(iii) N is an JJLAS-near-field space. 
(iv) N is a right SA-near-field space. 
(v) ∀ J, I  N, r(J) + r(I) = r( J ∩  I). 
(vi) The near-field space of all prime sub-near-field spaces, Spec(N) is extremally disconnected near-field space. 

 
Proof: We prove this by the method of cyclic By ([2], Th. 2.2) extended and follows implication that (i) ⇔(ii) ⇔(iii). 
Proposition 2.2  ⇒ (i) ⇔(iv). 
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To prove (iv) ⇒ (v):  Let sub-near-field spaces J, I  N. Since N is a right SA-near-field space, there exists K  N 
such that r(J) + r(I) = r(K). But r(K) is essentially closed sub-near-field space i.e., r(K) has no essential extension in N. 
From theorem 4.4, r(J) + r(I) = r( J ∩  I). Hence proved (iv) ⇒ (v). 
 
To prove (v) ⇒ (i): Let J  N. Since N is semi-prime near-field space. J ∩ r(J) = 0 = r(J) ∩ r(r(J)). Then r(J) ⊕ r(r(J)) 
= r(J ∩ r(J)) = r(0) = N. Therefore, r(J) = eN for some e = e2 ∈ N. So N is a quasi-Baer near-field space.Proved           
(v) ⇒(i). 
 
To prove (vi) ⇒ (i): Let J N.  By hypothesis, intV(J) is closed near-field space. By lemma 4.3(iii), there is an 
idempotent e ∈ N such that intV(J) = V(e). And also by Lemma 4.3(ii), r(J) = r(e) = (1 – e)N. Hence N is quasi-Baer 
near-field space. Proved (vi) ⇒ (i). 
 
To prove (i) ⇒ (vi): Let A be a closed sub-near-field space of Spec(N). Since {V(a) : a ∈ N} is a base for closed sub-
near-field spaces in Spec(N), a near-field space of N. Then there exists T ⊆ N such that A = ∩a ∈ S V(a). J = NTN. Then 
A = V(J). By hypothesis, there exists e = e2∈N such that r(J) = eN. From lemma 4.3(ii), int(A) =  int(V(J)) = V(e) is 
closed near-filed space. Thus Spec(N) is an essentially disconnected near-field space of N. proved (i) ⇒  (vi). 
 
This completes the proof of the theorem. 
 
Corollary 4.6: let N be a reduced near-field space. Consider the following statements: 

(i) N is a Baer near-field space. 
(ii) N is a JLAS-near-field space. 
(iii) N is a right SA-near-field space. 
(iv) The near-field space of all prime sub-near-field spaces, Spec(N) is extremally disconnected near-field space. 
(v) N is an IN-near-field space. 
(vi) N is a quasi-continuous near-field space.  
 
Then (i) ⇔(ii) ⇔(iii) ⇔(iv) and (v) ⇒ (i). If N is also a duo near-field space  
 
i.e., every one-sided sub-near-field space is two sided sub-near-field space of a near-field space N, then (v) ⇔ (vi)  
⇔ (i). 

 
Proof: We prove this by cyclic method of proof that (i) ⇔(ii) ⇔(iii) ⇔ (iv).  
 
These equivalences are a consequences of theorem 4.5 and the fact that in a reduced near-field space if X is a non-
empty near-field space of N, then r(X) = l(X)  N. 
 
(iv) ⇔ (vi)  [19, Th. 6.32] yields this implication extended and is follows. 
 
(vi)  ⇔ (i)  [13, Th. 2.1]   yields this implication extended and is follows. 
 
If N is also a duo near-field space then theorem 4.5 yields that (v) ⇔ (vi)⇔ (i). This completed the proof of the 
corollary. 
 
Corollary 4.7: Let N be a semi-prime right SA-near-field space and S is a right intrinsic extension of a near-field space 
N. Then S is a semi-prime right SA-near-field space. 
 
Proof: [9, Th. (3.3, 3.15)] and Theorem 4.5, N is a quasi-Baer near-field space. Then S is a semi-prime quasi-Baer 
near-field space. Therefore, S is a right SA-near-field space. This completes the proof of the corollary. 
 
Example 4.8(i): Let N[C2] be the N-group near-field of the cyclic N-group of order two over a commutative near-field 
domain N such that char(N) ≠ 2 is not invertible. Then N(C2) is a commutative reduced near-field space that is not a 
Baer near-field space so that is not a right SA-near-field space. To observe this, note that r(1 + g ) = (1 – g)N[C2] is not 
generated by an idempotent where C2 = {1,g} with g of order 2. If F is the near-field of fractions of N, then F[C2] is the 
maximal near-field of quotients of n and is a Baer near-field space. Thus the right SA-near-field space condition does 
not transfer from an essential over near-field space to its base near-field space. Since a reduced near-field space is a sub 
direct product of sub-near-field spaces of domains it cannot be extended to sub direct products. Moreover, this leads to 
that cannot be replace ≤den in theorem 4.4. 
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Example 4.8(ii): Every semi-prime near-field space has a semi-prime quasi-Baer hull, and the local multiplier algebra 
of each C*-algebras is a semi-prime quasi-Baer near-field space whereas all commutative AW*-algebras are examples 
of reduced Baer C*-algebras thereby SA-near-field spaces. 
 
Example 4.8(iii): If Q(N) i.e., the maximal right near-field space of all quotients of N is a right IN-near-field space, 
then N need not be a right IN-near-field space. For that let N = M2(Z). Then Q(N) = M2(Q) we have Q(N) is an IN-
near-field space but N is not a right IN-near-field space. 
 
Note 4.9: If N is a near-field space such that J ∩ I = 0 implies that r(J) + r(I) = N for left annihilator sub-near-field 
spaces J, I of a near-field space N, must be a right SA-near-field space can be the affirmative for semi-prime near-field 
spaces in final result as we derived. 
 
Lemma 4.10: Let N be a semi-prime near-field space. Then N is a right SA-near-field space if and only if J ∩ I = 0 
implies that r(J) + r(I) = N for left annihilator sub-near-field spaces J, I of a near-field space N. 
 
Proof: (IF PART⇒) this implication follows from that N is a right SA-near-field space if and only if for any two left 
annihilator near-field spaces J and I of N, r(J ∩ I) = r(J) + r(I). 
 
(⇐IFF PART) Let J, I  N. Since N is a semi-prime near-field space. R(J) = l(J). Hence, r(J) and r(r(J)) are both left 
annihilator sub-near-field spaces of a near-field space N.  
 
Also, by using that N is a semi-prime near-field space, r(J) ∩ r(r(J)) =0. Now, assuming that, N = r(r(r(J))) + r(r(J)) = 
r(J) + r(r(J)) is generated sub-near-field space of a near-field space N by an idempotent, So N is a quasi-Baer near-field 
space. Hence N is a right SA-near-field space. This completes the proof of the lemma. 
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