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ABSTRACT 
The aim of this paper is to introduce #gα - quotient mappings using #gα -closed sets and characterize their basic 
properties. We also derive the relation between the stronger forms of  #gα - quotient mappings.  
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1. INTRODUCTION 
 
The topological notions of semi - open sets and semi - continuity and pre - open sets and pre - continuity were 
introduced by N. Levine [2] and A. S. Mashhouret.al., [6] respectively. Generalized closed sets, briefly g - closed sets 
in topological spaces were introduced by  N. Levine [2] in order to extend some important properties of closed sets to a 
larger family of sets. M. LellisThivagar [10] introduced the concepts of α - quotient mappings and α* - quotient 
mappings in topological spaces. K. Nono [9] introduced the concept of g#𝛼𝛼 - closed sets to investigate some topological 
properties. In 2009, R. Devi [1] introduced the notion of #g𝛼𝛼 - closed sets in topological spaces. In this paper, we 
introduce the #gα - quotient functions. Several characterizations and its properties have been established for this 
functions. 
 
2. PRELIMINARIES 
 
Throughout this dissertation (X, τ) and (Y, σ) (or X and Y) represent non - empty topological spaces on which no 
separation axioms are assumed unless otherwise explicitly stated. For a subset A of a space (X, τ), cl(A) and int(A) 
denote the closure and the interior of A in (X, τ) respectively. We list some definitions which are useful in the 
following sections. 
 
Definition 2.1: A subset A of a topological space (X, τ) is called  

(a) a pre - open set [6] if A ⊆ int(cl(A)), 
(b) a semi - open set [2] if A ⊆ cl(int(A)), 
(c) a generalized closed set (briefly g - closed) [3] if cl(A) ⊆ U, whenever A ⊆ U and U is open in (X, τ), 
(d) ag#𝛼𝛼 - closed set (briefly g#𝛼𝛼 - closed) [9] if αcl(A) ⊆ U, whenever A ⊆ U and U is g - open in (X, τ). 

 
The complement of a semi - closed set (respectively α - closed set, g#𝛼𝛼 - closed set) of (X, τ) is called a semi - open set 
(respectively α - open set, g#𝛼𝛼 - open set) of (X, τ). It is evident that a subset B of X is g#𝛼𝛼 - open in (X, τ) if and only 
if F ⊆ αcl(B), whenever F ⊆ B and F is g - closed set in (X, τ); a subset B of  X is α - closed  in (X, τ) if and only if 
cl(int(cl(B))) ⊆ B holds; a subset B of X is semi – closed  in (X, τ) if and only if int(cl(B)) ⊆ B holds. 
 
Definition 2.2: A subset A of a topological space (X, τ) is called a #g𝛼𝛼 - closed set (briefly #g𝛼𝛼 - closed) [1] if         
αcl(A) ⊆ U, whenever A ⊆ U and U is g#𝛼𝛼 - open in (X, τ). Let #g𝛼𝛼O(X) denote the collection of #g𝛼𝛼 - open sets of X 
and #g𝛼𝛼C(X) denote the collection of #g𝛼𝛼 - closed sets of X. 
 

Corresponding Author: S. Visagapriya*2 
2ResearchScholar, Department of Mathematics, 

Kongunadu Arts and Science College, Coimbatore-29, Tamilnadu, India. 
 
 

http://www.ijma.info/�


V. Kokilavani1, S. Visagapriya*2 / On #gα-Quotient Mappings in Topological Spaces / IJMA- 7(1), Jan.-2016. 

© 2016, IJMA. All Rights Reserved                                                                                                                                                                       160   

 
Definition 2.3: A function 𝑓𝑓: (𝑋𝑋, 𝜏𝜏) → (𝑌𝑌, 𝜎𝜎) is called 

(a) α - continuous [7] if 𝑓𝑓-1(V) is α - closed in (X, τ) for every closed set V of (Y, σ), 
(b) g - continuous [4] if 𝑓𝑓-1(V) is g - closed in (X, τ) for every closed set V of  (Y, σ), 
(c) g#α - continuous [9] if 𝑓𝑓-1(V) is g#α - closed in (X, τ) for every closed set V of (Y, σ), 
(d) #g𝛼𝛼- continuous [1] if 𝑓𝑓-1(V) is #g𝛼𝛼- closed in (X, τ) for every closed set V of (Y, σ), 
(e) #g𝛼𝛼 - irresolute [1] if 𝑓𝑓-1(V) is #g𝛼𝛼- closed in (X, τ) for every #g𝛼𝛼 - closed set V of (Y, σ), 
(f) strongly #g𝛼𝛼 - irresolute [16] if 𝑓𝑓-1(V) is closed in (X, τ) for every #g𝛼𝛼 - closed set V of (Y, σ), 
(g) α - irresolute [10] if 𝑓𝑓-1(V) is α - closed in (X, τ) for every α - closed set V of (Y, σ), 
(h) #g𝛼𝛼 - open [1] if the image f(U) is #g𝛼𝛼 - open in (Y, σ) for every open set U of (X, τ), 
(i) #g𝛼𝛼 - closed [1] if the image f(U) is #g𝛼𝛼 - closed in (Y, σ) for every closed set U of (X, τ), 
(j) a quotient map [8], provided a subset V of (Y, σ) is open if and only if 𝑓𝑓-1(V) is open in (X, τ), 
(k) an𝛼𝛼 - quotient map [8], if 𝑓𝑓 is α - continuous and 𝑓𝑓-1(V) is open in (X, τ) implies V is 𝛼𝛼 - open in (Y, σ), 
(l) an𝛼𝛼* - quotient map [8], if 𝑓𝑓 is α - irresolute and 𝑓𝑓-1(V) is α - open in (X, τ) implies V is open in (Y, σ). 
(m) agc - homeomorphism [5] if both 𝑓𝑓 and 𝑓𝑓-1 are g - continuous, 
(n) #g𝛼𝛼c - homeomorphism [1] if 𝑓𝑓 and 𝑓𝑓-1 are #g𝛼𝛼 - irresolute, 
(o) #g𝛼𝛼 - homeomorphism [1] if 𝑓𝑓 and 𝑓𝑓-1 are #g𝛼𝛼 - continuous. 

 
3. #gα - QUOTIENT MAP 
 
Definition 3.1: A surjective function 𝑓𝑓: (𝑋𝑋, 𝜏𝜏) → (𝑌𝑌, 𝜎𝜎) is said to be a #gα - quotient map if 𝑓𝑓 is #gα - continuous and     
𝑓𝑓-1(V) is open in (𝑋𝑋, 𝜏𝜏) implies V is a #gα - open set in (𝑌𝑌, 𝜎𝜎). 
 
Example 3.2: Let X = {a, b, c} = Y with𝜏𝜏 = {𝜙𝜙, X, {a, b}} and𝜎𝜎 = {𝜙𝜙, Y, {a}, {b}, {a, b}}. 
 
Here #gαO(X) = {𝜙𝜙, X, {a}, {b}, {a, b}} and #gαO(Y) = {𝜙𝜙, Y, {a}, {b}, {a, b}}.  
 
Let 𝑓𝑓: (𝑋𝑋, 𝜏𝜏) → (𝑌𝑌, 𝜎𝜎) be defined by f (a) = a, f (b) = b, 𝑓𝑓(c) = c. Then 𝑓𝑓 is #gα - continuous and 𝑓𝑓-1(V) is open in (𝑋𝑋, 𝜏𝜏) 
implies V is a #gα - open set in (𝑌𝑌, 𝜎𝜎). 

 
Definition 3.3: A map 𝑓𝑓: (𝑋𝑋, 𝜏𝜏) → (𝑌𝑌, 𝜎𝜎) is said to be strongly #gα - open if 𝑓𝑓(U) is #gα - open set in (𝑌𝑌, 𝜎𝜎) for each #gα 
- open set U in (𝑋𝑋, 𝜏𝜏). 
 
Theorem 3.4: If a map 𝑓𝑓: (𝑋𝑋, 𝜏𝜏) → (𝑌𝑌, 𝜎𝜎) is surjective, #gα - continuous and #gα - open, then 𝑓𝑓 is a#gα - quotient map. 
 
Proof: It is enough to prove that 𝑓𝑓-1(V) is open in (𝑋𝑋, 𝜏𝜏) implies V is a #gα - open set in (𝑌𝑌, 𝜎𝜎). Let𝑓𝑓-1(V) be open in     
(𝑋𝑋, 𝜏𝜏). Then f(𝑓𝑓-1(V)) is a #gα - open set, since 𝑓𝑓 is #gα - open. Hence V is a #gα - open set, as 𝑓𝑓 is surjective,                  
f (𝑓𝑓-1(V)) = V. Thus, 𝑓𝑓 is a #gα - quotient map. 
 
Theorem 3.5: If a map 𝑓𝑓: (𝑋𝑋, 𝜏𝜏) → (𝑌𝑌, 𝜎𝜎) is #gα - homeomorphism, then 𝑓𝑓 is a #gα - quotient map. 
 
Proof: Since 𝑓𝑓 is #gα - homeomorphism, 𝑓𝑓 is bijective and 𝑓𝑓 is #gα - continuous. Let 𝑓𝑓-1(V) be open in X. Since 𝑓𝑓-1(V) 
is #gα - continuous, f (𝑓𝑓-1(V)) = V is #gα - open in Y. Hence 𝑓𝑓 is a #gα - quotient map. 
 
Theorem 3.6: If 𝑓𝑓: (𝑋𝑋, 𝜏𝜏#gα) → (𝑌𝑌, 𝜎𝜎#gα) be a quotient map, then 𝑓𝑓: (𝑋𝑋, 𝜏𝜏) → (𝑌𝑌, 𝜎𝜎) is a#gα - quotient map. 
 
Proof: Let V be any open set in (𝑌𝑌, 𝜎𝜎), then V is a #gα - open set in (𝑌𝑌, 𝜎𝜎) and V ∈𝜎𝜎#gα. Then 𝑓𝑓-1(V) is open in (𝑋𝑋, 𝜏𝜏). 
Since 𝑓𝑓 is a quotient map, that is, 𝑓𝑓-1(V) is a #gα - open set in (𝑋𝑋, 𝜏𝜏). Suppose 𝑓𝑓-1(V) is open in (𝑋𝑋, 𝜏𝜏), that is,                
𝑓𝑓-1(V) ∈𝜏𝜏#gα. Since 𝑓𝑓 is a quotient map, V ∈𝜏𝜏#gα and V is a #gα open set in (𝑌𝑌, 𝜎𝜎). This shows that 𝑓𝑓: (𝑋𝑋, 𝜏𝜏) → (𝑌𝑌, 𝜎𝜎) is a 
#gα - quotient map. 

 
4. STRONGER FORM OF #gα - QUOTIENT MAP 
 
Definition 4.1: Let 𝑓𝑓: (𝑋𝑋, 𝜏𝜏) → (𝑌𝑌, 𝜎𝜎) be a surjective map. Then 𝑓𝑓 is called strongly #gα - quotient map provided a set 
U of 𝑌𝑌 is open in (𝑌𝑌, 𝜎𝜎) if and only if 𝑓𝑓-1(U) is a #gα - open set in (𝑋𝑋,𝜏𝜏). 

 
Example 4.2: Let X = {p, q, r, s} with𝜏𝜏 = { 𝜙𝜙, X, {p}, {q, r}, {p, q, r}} and Y = {a, b, c} with𝜎𝜎 = { 𝜙𝜙, Y, {a}, {b},    
{a, b}}. Here #gαO(X) = { 𝜙𝜙, X, {p}, {q}, {r}, {p, r}, {q, r}, {p, q, r}} and #gαO(Y) = { 𝜙𝜙, Y, {a}, {b}, {a, b}}.  
 
The function 𝑓𝑓: (𝑋𝑋, 𝜏𝜏) → (𝑌𝑌, 𝜎𝜎) is defined by f(p) = a = (q), 𝑓𝑓(r) = b, (d) = c. Then, clearly 𝑓𝑓-1(U) is a #gα - open set in 
(𝑋𝑋, 𝜏𝜏) if and only if U is open in (𝑌𝑌, 𝜎𝜎). Hence 𝑓𝑓 is strongly #gα - quotient map. 
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Theorem 4.3: Every strongly #gα - quotient map is #gα - open. 
 
Proof: Let 𝑓𝑓: (𝑋𝑋, 𝜏𝜏) → (𝑌𝑌, 𝜎𝜎) be a strongly #gα - quotient map. Let V be an open set in (𝑋𝑋, 𝜏𝜏). Since every open set is 
#gα - open [1] and hence V is #gα - open in (𝑋𝑋, 𝜏𝜏). That is f(𝑓𝑓-1(V)) is #gα - open in (𝑋𝑋, 𝜏𝜏). Since 𝑓𝑓 is strongly                
#gα - quotient, f(V) is open and hence #gα - open in (𝑌𝑌, 𝜎𝜎). This shows that 𝑓𝑓 is a #gα - open. 
  
The converse of the above theorem is not true by the following example. 
 
Example 4.4: Let X = {a, b, c} = Y with 𝜏𝜏 = {𝜙𝜙, X, {a, b}} and 𝜎𝜎 = {𝜙𝜙, Y, {a},{b},{a, b},{a, c}}.  
 
Here #gαO(X) = {𝜙𝜙, X, {a}, {b}, {a, b}} and #gαO(Y) = {𝜙𝜙, Y, {a}, {b}, {a, b}, {a, c}}.  
 
The function 𝑓𝑓: (𝑋𝑋, 𝜏𝜏) → (𝑌𝑌, 𝜎𝜎) is defined by f (a) = a, f (b) = b, 𝑓𝑓(c) = c. Then, clearly 𝑓𝑓 is #gα - open but not strongly 
#gα - quotient map, since 𝑓𝑓-1({a, c}) = {a, c} is not #gα - open in (𝑋𝑋, 𝜏𝜏). 
 
Theorem 4.5: Every strongly #gα - quotient map is strongly #gα - open. 
 
Proof: Let 𝑓𝑓: (𝑋𝑋, 𝜏𝜏) → (𝑌𝑌, 𝜎𝜎) be a strongly #gα - quotient map. Let V be a #gα -open set in (𝑋𝑋, 𝜏𝜏). That is 𝑓𝑓-1((V)) is #gα 
- open in (𝑋𝑋, 𝜏𝜏). Since 𝑓𝑓 is strongly #gα -quotient, f (V) is open and hence #gα - open in (𝑌𝑌, 𝜎𝜎). This shows that 𝑓𝑓 is 
strongly #gα - open.  

 
The converse need not be true which can be seen from the following example. 
 
Example 4.6: Let X = {a, b, c, d} with𝜏𝜏 = {𝜙𝜙, X, {a}, {b, c}, {a, b, c}} and Y = {a, b, c} with𝜎𝜎 = {𝜙𝜙, Y, {a}, {b},     
{a, b}, {a, c}}.  
 
Here #gαO(X) = { 𝜙𝜙, X, {a}, {b}, {c}, {a, c}, {b, c}, {a, b, c}} and #gαO(Y) = { 𝜙𝜙, Y, {a}, {b}, {a, b}, {a, c}}. 
 
The function 𝑓𝑓: (𝑋𝑋, 𝜏𝜏) → (𝑌𝑌, 𝜎𝜎) is defined as f (a) = a = (b), 𝑓𝑓(c) = b,(d) = c. Then, the function 𝑓𝑓 is strongly #gα - open 
but not strongly #gα - quotient map, since {a, c} is open in (𝑌𝑌, 𝜎𝜎) but not #gα - open in (𝑋𝑋, 𝜏𝜏). 
 
Theorem 4.7: Every strongly #gα - quotient map is #gα - quotient.  
 
Proof: It is obvious. 

 
The converse of the above theorem is not true which can be seen from the following example.  
 
Example 4.8: Let X = {a, b, c} = Y with 𝜏𝜏 = {𝜙𝜙, X, {a}, {b}, {a, b}} and𝜎𝜎= {𝜙𝜙, Y, {a, b}}.  
 
Here #gαO(X) = {𝜙𝜙, X, {a}, {b}, {a, b}} and #gαO(Y) = {𝜙𝜙, Y, {a}, {b}, {a, b}}. 
 
The function 𝑓𝑓: 𝑋𝑋 → 𝑌𝑌 is defined as f (a) = a, (b) = b, 𝑓𝑓(c) = c. Then, the function 𝑓𝑓 is #gα - quotient map but not 
strongly #gα - quotient, since {a} is #gα - open in (𝑋𝑋, 𝜏𝜏) but not open in Y. 
 
Definition 4.9: A surjective function 𝑓𝑓: (𝑋𝑋, 𝜏𝜏) → (𝑌𝑌, 𝜎𝜎) is said to be a #gα* - quotient map if 𝑓𝑓 is#gα - irresolute and     
𝑓𝑓-1(V) is #gα - open set in (𝑋𝑋, 𝜏𝜏) implies V is open in (𝑌𝑌, 𝜎𝜎). 
 
Example 4.10: Let X = {a, b, c, d} with𝜏𝜏 = {𝜙𝜙, X, {a}, {b, c}, {a, b, c}} and Y = {p, q, r} with𝜎𝜎 = {𝜙𝜙, Y, {p}, {q},   
{p, q}}.  
 
Here #gαO(X) = {𝜙𝜙, X, {a}, {b}, {c}, {a, c}, {b, c}, {a, b, c}} and #gαO(Y) = {𝜙𝜙, Y, {p}, {q}, {p, q}}. 
 
Define a map 𝑓𝑓: (𝑋𝑋, 𝜏𝜏) → (𝑌𝑌, 𝜎𝜎) by f (a) = p = 𝑓𝑓(c), (b) = q, (d) = r. Then clearly, 𝑓𝑓 is #gα - irrresolute and 𝑓𝑓-1(V) is #gα 
- open in (𝑋𝑋, 𝜏𝜏) implies V is a open set in (𝑌𝑌, 𝜎𝜎). 
 
Theorem 4.11: Every #gα* - quotient map is #gα - irresolute. 
 
Proof: Let 𝑓𝑓: (𝑋𝑋, 𝜏𝜏) → (𝑌𝑌, 𝜎𝜎) be a #gα* - quotient map. Let V be a #gα - open set in 𝑋𝑋. That is  𝑓𝑓-1(f (V)) is #gα - open in 
𝑋𝑋. Since 𝑓𝑓 is #gα* - quotient map, thus f (V) is open in 𝑌𝑌 and hence #gα - open in 𝑌𝑌. Therefore, 𝑓𝑓 is #gα - irresolute. 

 
The converse of the above theorem need not be true which can be seen from the following example.  
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Example 4.12: Let X = {a, b, c} = Y with𝜏𝜏 = {𝜙𝜙, X, {a}, {b}, {a, b}, {a, c}} and 𝜎𝜎 = {𝜙𝜙, Y, {a}, {b}, {a, b}}. Here 
#gαO(X) = {𝜙𝜙, X, {a}, {b}, {a, b}, {a, c}} and #gαO(Y) = {𝜙𝜙, Y, {a}, {b}, {a, b}}. 
 
The function 𝑓𝑓 is defined as f (a) = a, f (b) = b, 𝑓𝑓(c) = c. Therefore, the function 𝑓𝑓 is #gα - irresolute but not #gα* - 
quotient map. Since 𝑓𝑓-1({a, c}) = {a, c} is #gα - open in (𝑋𝑋, 𝜏𝜏) but {a, c} is not open in (𝑌𝑌, 𝜎𝜎). 
 
Definition 4.13: Let 𝑓𝑓: (𝑋𝑋, 𝜏𝜏) → (𝑌𝑌, 𝜎𝜎) be a surjective map. If a set U is #gα - open in Y if and only if 𝑓𝑓-1(U) is #gα - 
open in X, then 𝑓𝑓 is called strongly #gα* - quotient map.  
 
Example 4.14: Let X = {a, b, c, d} with 𝜏𝜏 = {𝜙𝜙, X, {a}, {b, c}, {a, b, c}} and Y = {p, q, r} with𝜎𝜎 = {𝜙𝜙, Y, {p}, {q},  
{p, q}}.  
 
Here #gαO(X) = {𝜙𝜙, X, {a}, {b}, {c}, {a, c}, {b, c}, {a, b, c}} and #gαO(Y) = {𝜙𝜙, Y, {p}, {q}, {p, q}}. 
 
Define a map 𝑓𝑓: (𝑋𝑋, 𝜏𝜏) → (𝑌𝑌, 𝜎𝜎) by f (a) = p = f (b), 𝑓𝑓(c) = q, f (d) = r. Then clearly, 𝑓𝑓 is #gα - open in X if and only if        
𝑓𝑓-1(U) is #gα - open in Y. Hence 𝑓𝑓 is strongly #gα* - quotient map. 
 
Theorem 4.15:  Every #gα* - quotient map is strongly #gα*- quotient.  
 
Proof: Let 𝑓𝑓: (𝑋𝑋, 𝜏𝜏) → (𝑌𝑌, 𝜎𝜎) be #gα* - quotient map. Let U be a #gα - open set in Y. Since 𝑓𝑓 is #gα - irresolute, 𝑓𝑓-1(U) is 
#gα - open in X. Since 𝑓𝑓 is #gα* - quotient, it follows that U is open. Hence U is #gα - open and 𝑓𝑓is strongly #gα* - 
quotient map. 

 
The converse of the above theorem need not be true which can be seen from the following example.  
 
Example 4.16: Let X = {a, b, c} with 𝜏𝜏 = {𝜙𝜙, X, {a}, {a, b}, {a, c}} and Y = {p, q, r} with𝜎𝜎 = {𝜙𝜙, Y, {p}}. Here 
#gαO(X) = { 𝜙𝜙, X, {a}, {a, b}, {a, c}} and #gαO(Y) = { 𝜙𝜙, Y, {p}, {p, q}, {p, r}}.  
 
The function 𝑓𝑓: (𝑋𝑋, 𝜏𝜏) → (𝑌𝑌, 𝜎𝜎) is defined as f (a) = p, f (b) = q, 𝑓𝑓(c) = r. Thus, the function 𝑓𝑓 is strongly #gα*- quotient 
but not #gα* - quotient map. Since 𝑓𝑓-1({p, q}) = {a, b} is #gα - open in 𝑋𝑋 but not open in Y. 
 
Theorem 4.17: Every strongly #gα* - quotient map is #gα - quotient.  
 
Proof: Let 𝑓𝑓: (𝑋𝑋, 𝜏𝜏) → (𝑌𝑌, 𝜎𝜎) be strongly #gα* - quotient map. Let V be an open set in Y. Then V is a #gα - open set.  
 
Since 𝑓𝑓 is strongly #gα* - quotient, 𝑓𝑓-1(V) is #gα - open. Hence 𝑓𝑓 is #gα - continuous. Let 𝑓𝑓-1(V) be an open set in X. 
Then 𝑓𝑓-1(V) is #gα - open in X. Hence V is #gα - open and 𝑓𝑓 is a #gα - quotient map 

 
The converse of the above theorem is not true as seen from the following example.  
 
Example 4.18: Let X = {a, b, c} = Y with𝜏𝜏 = {𝜙𝜙, X, {a}} and 𝜎𝜎 = {𝜙𝜙, Y, {a, b}}.  
 
Here #gαO(X) = {𝜙𝜙, X, {a}, {a, b}, {a, c}} and #gαO(Y) = {𝜙𝜙, Y, {a}, {b}, {a, b}}. 
 
The function 𝑓𝑓 is defined by f (a) = a, f (b) = b, 𝑓𝑓(c) = c. Then, the function 𝑓𝑓 is #gα - quotient map but not strongly 
#gα* - quotient map, since {b} is #gα - open in Y but not #gα - open in 𝑋𝑋. 
 
Definition 4.19: A space (𝑋𝑋, 𝜏𝜏) is T#gα - space if every #gα - closed set is closed. 
 
Theorem 4.20: Let 𝑓𝑓: (𝑋𝑋, 𝜏𝜏) → (𝑌𝑌, 𝜎𝜎) be strongly #gα* - quotient map and Y is T#gα- space. Then 𝑓𝑓 is strongly#gα - 
quotient map.  
 
Proof: Let U be an open set in Y. Then U is #gα - open in Y. Since 𝑓𝑓 is strongly #gα* - quotient, 𝑓𝑓-1(U) is #gα - open. 
Let 𝑓𝑓-1(U) be #gα - open in X. Then U is #gα -open in Y. Since Y is T#gα- Space, U is open in Y and hence 𝑓𝑓 is a 
strongly #gα -quotient map. 
 
5. COMPARISONS 
 
Theorem 5.1: 

(i)  Every quotient map is a #gα-quotient map. 
(ii) Every α-quotient map is a #gα-quotient map. 

 
 



V. Kokilavani1, S. Visagapriya*2 / On #gα-Quotient Mappings in Topological Spaces / IJMA- 7(1), Jan.-2016. 

© 2016, IJMA. All Rights Reserved                                                                                                                                                                       163   

 
Proof: Since every continuous and α - continuous map is #gα - continuous. Also every open set and α - open set is #gα - 
open [1] and hence the proof follows from the definitions ([3.1], [2.3]). 

 
The converse of the above theorem need not be true which can be seen from the following example.  
 
Example 5.2: (a) Let X = {a, b, c} = Y with 𝜏𝜏 = {𝜙𝜙, X, {a, b}} and𝜎𝜎 = {𝜙𝜙, Y, {a}, {b}, {a, b}}. 
 
Here #gαO(X) = {𝜙𝜙, X, {a}, {b}, {c}, {a, c}, {b, c}, {a, b, c}} and #gαO(Y) = {𝜙𝜙, Y, {a}, {b}, {a, b}, {a, c}}.  

 
The function 𝑓𝑓: (𝑋𝑋, 𝜏𝜏) → (𝑌𝑌, 𝜎𝜎) is defined by f (a) = a, f (b) = b, 𝑓𝑓(c) = c. Then, the function 𝑓𝑓 is #gα - quotient map but 
not quotient map, since 𝑓𝑓-1({b}) = {b} is open in (𝑌𝑌, 𝜎𝜎) but {b} is not open in (𝑋𝑋, 𝜏𝜏). 
 
(b) Let X = {p, q, r} and Y = {a, b, c} with topologies 𝜏𝜏 = {𝜙𝜙, X, {p}, {q}, {p, q}} and𝜎𝜎 = {𝜙𝜙, Y, {a, b}}. 
 
Here #gαO(X) = {𝜙𝜙, X, {p}, {q}, {p, q}}, #gαO(Y) = {𝜙𝜙, Y, {a}, {b}, {a, b}} and αO(Y) = {𝜙𝜙, Y, {a, b}}. 
 
The function 𝑓𝑓 is defined by f (p) = a,  f (q) = b, 𝑓𝑓(r) = c. Then, the function 𝑓𝑓 is strongly #gα - quotient map but not          
α-quotient map, since 𝑓𝑓-1({a}) = {p} is open in (𝑋𝑋, 𝜏𝜏) but {a} is not α - open in (𝑌𝑌, 𝜎𝜎). 
 
Theorem 5.3: Every α* - quotient map is a #gα* - quotient map. 
 
Proof: Let 𝑓𝑓 be an α* - quotient map then 𝑓𝑓 is surjective, α - irresolute and 𝑓𝑓-1(U) is an α - open set in (𝑋𝑋, 𝜏𝜏) implies U 
is an open set in (𝑌𝑌, 𝜎𝜎). Since every α - irresolute map is #gα - irresolute, 𝑓𝑓-1(U) is α - open set which is a #gα - open set. 
Hence 𝑓𝑓 is a #gα* -quotient map. 

 
The converse of the above theorem need not be true which can be seen from the following example.  
 
Example 5.4: Let X = {a, b, c, d} with 𝜏𝜏 = {𝜙𝜙, X, {a}, {b, c}, {a, b, c}} and Y = {p, q, r} with𝜎𝜎 = {𝜙𝜙, Y, {p}, {q},     
{p, q}}.  
 
Here #gαO(X) = {𝜙𝜙, X, {a}, {b}, {c}, {a, c}, {b, c}, {a, b, c}}, #gαO(Y) = {𝜙𝜙, Y, {p}, {q}, {p, q}} and αO(X) = {𝜙𝜙, X, {a}, {b, c},     
{a, b, c}}. Define a function 𝑓𝑓 by f (a) = p = 𝑓𝑓(c), (b) = q, f (d) = r. Then, the function 𝑓𝑓 is #gα* - quotient map but not      
α* - quotient map, since 𝑓𝑓-1({p, q}) = {a, b} is α - open in (𝑋𝑋, 𝜏𝜏) but {p, q} is not open in (𝑌𝑌, 𝜎𝜎). 
 
Remark 5.5: From the above results we obtain the following implication diagram. 
 
         α - quotient map Strongly#gα - quotient map 

 

                         Quotient map             #gα - quotient map 

         

#gα* - quotient map 

 
Strongly #gα* - quotient map α* - quotient map  

 
6. APPLICATONS 
 
Theorem 6.1: Let 𝑓𝑓: (𝑋𝑋, 𝜏𝜏) → (𝑌𝑌, 𝜎𝜎) be an open, surjective#gα - irresolute map and 𝑔𝑔: (𝑌𝑌, 𝜎𝜎) → (Z, 𝜂𝜂) be a #gα - 
quotient map. Then their composition 𝑔𝑔∘𝑓𝑓: (𝑋𝑋, 𝜏𝜏) → (Z, 𝜂𝜂) is a #gα - quotient map. 
 
Proof: Let V be any open set in (Z, 𝜂𝜂). Since 𝑔𝑔 is #gα - quotient, 𝑔𝑔-1(V) is #gα -open in Y. Since 𝑓𝑓 is #gα - irresolute,      
𝑓𝑓-1(𝑔𝑔-1(V)) = (𝑔𝑔∘𝑓𝑓)-1(V) is a #gα - open set in X. This implies that (𝑔𝑔∘𝑓𝑓)-1(V) is #gα - open. This shows that 𝑔𝑔∘𝑓𝑓 is a #gα 
- continuous map. Also, assume that (𝑔𝑔∘𝑓𝑓)-1(V) is open in (𝑋𝑋, 𝜏𝜏) for V ⊆ Z. That is, 𝑓𝑓-1(𝑔𝑔-1(V)) is open in (𝑋𝑋, 𝜏𝜏). Since 
𝑓𝑓 is an open map, (𝑓𝑓-1(𝑔𝑔-1(V))) is an open set in Y. It follows that 𝑔𝑔-1(V) is open in Y. Since 𝑔𝑔 is #gα - quotient map, V 
is #gα - open set in (Z, 𝜂𝜂) and hence 𝑔𝑔∘𝑓𝑓: (𝑋𝑋, 𝜏𝜏) → (Z, 𝜂𝜂) is a #gα - quotient map. 
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Theorem 6.2: Let 𝑓𝑓: (𝑋𝑋, 𝜏𝜏) → (𝑌𝑌, 𝜎𝜎) be a #gα - open, surjective and #gα - irresolute map and 𝑔𝑔: (𝑌𝑌, 𝜎𝜎) → (Z, 𝜂𝜂) be a 
strongly #gα - quotient map. Then 𝑔𝑔∘𝑓𝑓: (𝑋𝑋, 𝜏𝜏) → (Z, 𝜂𝜂) is a strongly #gα - quotient map. 
 
Proof: Let U be an open set in Z. Then U is #gα - open. Since 𝑔𝑔 is a strongly #gα -quotient map, 𝑔𝑔-1(U) is #gα - open in 
Y. Then 𝑓𝑓-1(𝑔𝑔-1(U)) is #gα - open in X (Since 𝑓𝑓 is #gα - irresolute). Hence (𝑔𝑔∘𝑓𝑓)-1(U) is #gα - open in Y. Let (𝑔𝑔∘𝑓𝑓)-1(U) 
is #gα - open in X. That is, 𝑓𝑓-1(𝑔𝑔-1(U)) is #gα - open in X. Since 𝑓𝑓 is a #gα - open map, (𝑓𝑓-1(𝑔𝑔-1(U))) is #gα - open in Y 
and hence 𝑔𝑔-1(U) is #gα - open in Y. Since 𝑔𝑔 is a strongly #gα - quotient map, U is open in Z and therefore                  
𝑔𝑔∘𝑓𝑓: (𝑋𝑋, 𝜏𝜏) → (Z, 𝜂𝜂) is a strongly #gα - quotient map. 
 
Theorem 6.3: If h: (𝑋𝑋, 𝜏𝜏) → (𝑌𝑌, 𝜎𝜎) is a #gα - quotient map and 𝑔𝑔: (𝑋𝑋, 𝜏𝜏) → (Z, 𝜂𝜂) is a continuous map that is constant 
on each set h-1(y), for y ∈ Y, then 𝑔𝑔 induces a #gα -continuous map 𝑓𝑓: (𝑌𝑌, 𝜎𝜎) → (Z, 𝜂𝜂) such that 𝑓𝑓∘h = 𝑔𝑔. 
 
Proof: The set g(h-1(y)) is a one point set in (Z, 𝜂𝜂), since 𝑔𝑔 is constant on h-1(y), for each y ∈ Y. If 𝑓𝑓(y) denotes this 
point, then it is clear that 𝑓𝑓 is well defined and for each x ∈ X,  f (h(x)) = 𝑔𝑔(x). We claim that 𝑓𝑓 is #gα - continuous. For 
if, let U be any open set in (Z, 𝜂𝜂). Since 𝑔𝑔 is continuous, 𝑔𝑔-1(U) is open in X. But 𝑔𝑔-1(U) =h-1(𝑓𝑓-1(U)) is open in X. Since 
h is #gα - quotient map, 𝑓𝑓-1(U) is #gα - open and hence 𝑓𝑓 is #gα - continuous. 
 
Theorem 6.4: Let p: (𝑋𝑋, 𝜏𝜏) → (𝑌𝑌, 𝜎𝜎) be a #gα - quotient map where X and Y are T#gα -spaces. Then: (𝑌𝑌, 𝜎𝜎) → (Z, 𝜂𝜂) is 
strongly #gα - irresolute if and only if the composite map 𝑓𝑓∘ p: (𝑋𝑋, 𝜏𝜏) → (Z, 𝜂𝜂) is strongly #gα - irresolute. 
 
Proof: Let 𝑓𝑓: (𝑌𝑌, 𝜎𝜎) → (Z, 𝜂𝜂) be strongly #gα - irresolute and U be a #gα - open set in (Z, 𝜂𝜂). Since 𝑓𝑓 is strongly #gα - 
irresolute, 𝑓𝑓-1(U) is open in Y. Then (𝑓𝑓∘p)-1(U) = p-1(𝑓𝑓-1(U)) is #gα - open in X (since p is #gα - quotient). Since X is 
T#gα - space, p-1(𝑓𝑓-1(U)) is open in X and hence the composite map 𝑓𝑓∘p is strongly #gα - irresolute. 
 
Conversely, suppose that the composite function 𝑓𝑓∘p is strongly #gα - irresolute. Let U be a #gα - open set in                
Z, p-1(𝑓𝑓-1(U)) is open in X. Since p is #gα - quotient map, it implies that, 𝑓𝑓-1(U) is #gα - open in (𝑌𝑌, 𝜎𝜎). Since Y is T#gα -
space, it implies that 𝑓𝑓-1(U) is open in Y. Hence, 𝑓𝑓 is strongly #gα - irresolute. 
 
Theorem 6.5: Let 𝑓𝑓: (𝑋𝑋, 𝜏𝜏) → (𝑌𝑌, 𝜎𝜎) be surjective, strongly #gα - open and #gα - irresolute map and: (𝑌𝑌, 𝜎𝜎) → (Z, 𝜂𝜂) be 
a #gα* - quotient map then 𝑔𝑔∘𝑓𝑓: (𝑋𝑋, 𝜏𝜏) → (Z, 𝜂𝜂) is #gα* - quotient map. 
 
Proof: Let V be a #gα - open set in Z. Then 𝑔𝑔-1(V) is #gα - open in Y because 𝑔𝑔 is #gα* - quotient map. Since 𝑓𝑓 is #gα - 
irresolute, 𝑓𝑓-1(𝑔𝑔-1(V)) is #gα - open in (𝑋𝑋, 𝜏𝜏). Then 𝑔𝑔∘𝑓𝑓 is #gα - irresolute in X. Hence (𝑔𝑔∘𝑓𝑓) is #gα - irresolute. Suppose 
(𝑔𝑔∘𝑓𝑓)-1(V) is a #gα - open set in X for a subset V ⊆ Z. That is, f-1(𝑔𝑔-1(V)) is #gα - open in X. Since 𝑓𝑓 is strongly #gα - 
open map, (𝑓𝑓-1(𝑔𝑔-1(V))) =𝑔𝑔-1(V) is #gα - open in Y. Since 𝑔𝑔 is a #gα* - quotient map, V is open set in (𝑌𝑌, 𝜎𝜎). Hence 𝑔𝑔∘𝑓𝑓 
is #gα* - quotient map. 
 
Theorem 6.6: Let 𝑓𝑓: (𝑋𝑋, 𝜏𝜏) → (𝑌𝑌, 𝜎𝜎) be a strongly #gα - quotient map and 𝑔𝑔: (𝑌𝑌, 𝜎𝜎) → (Z, 𝜂𝜂) be a#gα* - quotient map 
and Y be a T#gα - space. Then 𝑔𝑔∘𝑓𝑓: (𝑋𝑋, 𝜏𝜏) → (Z, 𝜂𝜂) is a #gα* - quotient map. 
 
Proof: Let V be a #gα - open set in Z. Then 𝑔𝑔-1(V) is #gα - open in Y (since 𝑔𝑔 is #gα* - quotient map). Since Y is a T#gα 
- space, 𝑔𝑔-1(V) is an open set in Y. Since 𝑓𝑓 is strongly #gα - quotient, 𝑓𝑓-1(𝑔𝑔-1(V)) is #gα - open in X. That is, (𝑔𝑔∘𝑓𝑓)-1(V) 
is #gα -open in X and hence 𝑔𝑔∘𝑓𝑓: (𝑋𝑋, 𝜏𝜏) → (Z, 𝜂𝜂) is #gα - irresolute. Let (𝑔𝑔∘𝑓𝑓)-1(V) be a #gα - open set in X. That is,      
𝑓𝑓-1(𝑔𝑔-1(V)) is #gα - open in X. This implies 𝑔𝑔-1(V) is open in Y. Hence 𝑔𝑔-1(V) is a #gα - open set. Since 𝑔𝑔 is #gα* - 
quotient, V is open and hence 𝑔𝑔∘𝑓𝑓: (𝑋𝑋, 𝜏𝜏) → (Z, 𝜂𝜂) is a #gα* - quotient map. 
 
Theorem 6.7: The composition of two #gα* - quotient maps is also a #gα* - quotient map. 
 
Proof: Let 𝑓𝑓: (𝑋𝑋, 𝜏𝜏) → (𝑌𝑌, 𝜎𝜎) and 𝑔𝑔: (𝑌𝑌, 𝜎𝜎) → (Z, 𝜂𝜂) be two #gα* - quotient maps. Let U be a #gα - open set in Z. Then 
𝑔𝑔-1(U) is a #gα - open set in Y. Since 𝑓𝑓 is a #gα* - quotient map, 𝑓𝑓-1(𝑔𝑔-1(U)) is a #gα - open set in X. That is, (𝑔𝑔∘𝑓𝑓)-1(U) 
is #gα -open in X. Hence 𝑔𝑔∘𝑓𝑓: (𝑋𝑋, 𝜏𝜏) → (Z, 𝜂𝜂) is #gα - irresolute. Let (𝑔𝑔∘𝑓𝑓)-1 (V) be a #gα -open set in X. Then              
𝑓𝑓-1(𝑔𝑔-1(V)) is #gα - open in X. This implies 𝑔𝑔-1(V) is open in Y and hence 𝑔𝑔-1(V) is #gα - open. Since 𝑔𝑔 is a #gα* - 
quotient map, V is open. Hence 𝑔𝑔∘𝑓𝑓 is a #gα* - quotient map. 
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