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ABSTRACT 
Very recently, Sedghi, Shobe and Aliouche [2] have introduced S-metric space as a generalization of the metric space 
and proved a Fixed Point Theorem similar to Banach contraction principle in metric spaces. In this paper we define 
the concept of a weak S-metric on a S-metric space and establish a Fixed Point Theorem on S-metric space with a weak 
S-metric. We also deduce the theorem proved in [2] from our result. 
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1. INTRODUCTION 
 
In 2012, Sedghi, Shobe and Aliouche [2] introduced the notion of S-metric space as a generalization of a metric space 
as follows: 
 
1.1 Definition ([2] Definition 2.1): Let X be a non empty set. A S-metric on X is a function 𝑆𝑆: 𝑋𝑋3 → [0,∞) satisfying 
the conditions given below for x, y, z, a ∈ 𝑋𝑋: 

i) 𝑆𝑆(𝑥𝑥,𝑦𝑦, 𝑧𝑧) ≥ 0 
ii) 𝑆𝑆(𝑥𝑥,𝑦𝑦, 𝑧𝑧) = 0 if and only if 𝑥𝑥 = 𝑦𝑦 = 𝑧𝑧 
iii) 𝑆𝑆(𝑥𝑥,𝑦𝑦, 𝑧𝑧) ≤ 𝑆𝑆(𝑥𝑥, 𝑥𝑥, 𝑎𝑎) + 𝑆𝑆(𝑦𝑦,𝑦𝑦, 𝑎𝑎) + 𝑆𝑆(𝑧𝑧, 𝑧𝑧, 𝑎𝑎) 

 
A set X with a S-metric defined on it is called a S- metric space and is denoted by (X, S) 
 
1.2. Examples: 

(i) Let (X, d) be a metric space. Define 𝑆𝑆𝑑𝑑 :𝑋𝑋3 → [0,∞) by Sd(x, y, z) = d(x, z) +d (y, z) for x, y, z ∈ X. Then      
(X, Sd) is a S- metric space. 

(ii) Suppose X0 = {0,∞}∪{1 
𝑛𝑛

:𝑛𝑛 ≥ 1} and define S:𝑋𝑋0
3 → [0,∞) by S(x,y,z) = |𝑥𝑥 − 𝑧𝑧| + |𝑦𝑦 − 𝑧𝑧| for x,y,z ∈ X0 

.Then (X0,S) is a S-metric space. 
For other examples see [2]. 
 
The following definitions given in [2] are needed: 
 
1.3. Definition ([2], Definition2.8): Let (X, S) be a S-metric space. A sequence {xn} in X is said to  

(i) converge to x∈X if to each ∈ > 0 there is a natural number n0 such that S(xn, xn, x) < ∈ for all n ≥ n0 and in 
this case we write lim𝑛𝑛→∞ 𝑥𝑥𝑛𝑛 = 𝑥𝑥 in (X,S) or 𝑥𝑥𝑛𝑛 → 𝑥𝑥 as n→ ∞ in (X,S) 

(ii) be a Cauchy sequence if to each ∈ > 0 there is a natural number n0 such that S(𝑥𝑥𝑚𝑚 , 𝑥𝑥𝑚𝑚 , 𝑥𝑥𝑛𝑛) < ∈ for all m,n≥ n0 
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1.4. Remark: It has been proved that every sequence that converges in (X, S) has unique limit ([2], Lemma 2.10) and 
that it is a Cauchy sequence ([2], Lemma2.11). 
 
1.5. Definition: A S-metric space is said to be complete if every Cauchy sequence in it converges. If (X, S) is a S-
metric space then 
 
1.6: S(x, x, y) = S(y, y, x) for all x, y∈ X ([2], Lemma2.5) and Lemma 2.12 of [2] is: 
 
1.7: If {xn} and {yn} are sequences in (X, S) converging respectively to x and y then  

 lim𝑛𝑛→∞ 𝑆𝑆( 𝑥𝑥𝑛𝑛  , 𝑥𝑥𝑛𝑛  ,𝑦𝑦𝑛𝑛  ) = 𝑆𝑆(𝑥𝑥, 𝑥𝑥,𝑦𝑦) 
 
In [1], Kada, Suzuki and Takahashi introduced the concept of a weak distance in a metric space. Analogously we define 
weak S-metric in a S-metric space and use it to prove a fixed point theorem for a selfmap on a S-metric space with a 
weak S-metric. Also we show that a theorem proved in [2] is a particular case of our result. 
 
2. WEAK S-METRIC AND ITS PROPERTIES 
 
2.1. Definition: Suppose (X, S) is a S-metric space. A weak S-metric on X is a function 𝑝𝑝:𝑋𝑋3 → [0,∞] satisfying the 
conditions given below: 

(a1)  𝑝𝑝(𝑥𝑥,𝑦𝑦, 𝑧𝑧) ≤ 𝑝𝑝(𝑎𝑎, 𝑎𝑎, 𝑥𝑥) + 𝑝𝑝(𝑎𝑎, 𝑎𝑎,𝑦𝑦) + 𝑝𝑝(𝑎𝑎, 𝑎𝑎, 𝑧𝑧)  for 𝑥𝑥,𝑦𝑦, 𝑧𝑧, 𝑎𝑎 ∈ 𝑋𝑋 
(b1)  For each 𝑥𝑥 ∈ 𝑋𝑋, 𝑝𝑝(𝑥𝑥, 𝑥𝑥, . ):𝑋𝑋 → [0,∞) is lower continuous 
(c1)  To each ∈> 0 there is a 𝛿𝛿 > 0 such that 𝑝𝑝(𝑎𝑎, 𝑎𝑎, 𝑥𝑥) < 𝛿𝛿 , 𝑝𝑝(𝑎𝑎, 𝑎𝑎,𝑦𝑦) < 𝛿𝛿 and 𝑝𝑝(𝑎𝑎, 𝑎𝑎, 𝑧𝑧) < 𝛿𝛿 for some 𝑎𝑎 ∈ 𝑋𝑋     
        imply that 𝑆𝑆(𝑥𝑥,𝑦𝑦, 𝑧𝑧) < ∈. 

 
2.2. Examples: 

(i) If (X, S) is a S-metric space and 𝑝𝑝:𝑋𝑋3 → [0,∞] is defined by 𝑝𝑝(𝑥𝑥,𝑦𝑦, 𝑧𝑧) = 𝑆𝑆(𝑥𝑥,𝑦𝑦, 𝑧𝑧) for x, y, z ∈ 𝑋𝑋 then p is a 
weak S-metric. In fact,(a1) holds in view of Definition 1.1(c) and (1.6); (b1) holds in view of (1.7) and finally 
for a given ∈> 0, taking 𝛿𝛿 = 𝜖𝜖

3
 it is easy to verify (c1) in view of Definition 1.1(c). 

That is every S-metric on a set X is a weak S- metric 
(ii) Let (X0,S) be the S-metric space given in Example 1.2(ii)  

Define  𝑝𝑝:𝑋𝑋0
3 → [0,∞) by p(x, y, z) = y+2z for x,y,z ∈ X0. Then p is a weak S-metric. To verify this, for         

x, y, z, a ∈ X note that p(a, a, x) + p(a, a, y) + p(a, a, z) = 2(x+y+z) +3a ≥  y+2z = p(x, y, z) which gives (a1); 
if {yn}∈ X tends to y in (X0,S) then (b1) holds.  
since lim𝑛𝑛→∞ 𝑝𝑝(𝑥𝑥, 𝑥𝑥,𝑦𝑦𝑛𝑛  ) = lim

𝑛𝑛→∞
(𝑥𝑥 + 2𝑦𝑦𝑛𝑛) = 𝑥𝑥 + 2𝑦𝑦 = 𝑝𝑝(𝑥𝑥,𝑥𝑥,𝑦𝑦) and finally for ∈ > 0 taking 𝛿𝛿 = ∈

4
 we find 

that p(a, a, x)< 𝛿𝛿, p(a,a,y) < 𝛿𝛿 and p(a,a,z) < 𝛿𝛿 imply 2(x+y+z)+3a< 3𝛿𝛿 < ∈ so that S(x,y,z) = | 𝑥𝑥 + 𝑦𝑦 −
2𝑧𝑧 < 2x+y+z+3a< ∈ proving (c1) 

 
2.3. Remark: For a weak S-metric p on a S-metric space (X, S) observe that p(x, y, z) = 0 need not imply x = y = z. 
Therefore p(x, x, y) and p(y, y, x) need not be equal for x, y ∈ X. 
 
For instance, in Example 2.2(ii), note that p(a,0,0)=0 for all a ∈ X0 
 
2.4. Lemma: Suppose (X, S) is a S-metric space and p is a weak S-metric on X. Let {xn} and {yn} be sequences in          
X, {𝛼𝛼𝑛𝑛  } and { 𝛽𝛽𝑛𝑛 } be sequences in [0,∞) such that 𝑙𝑙𝑙𝑙𝑙𝑙𝑛𝑛→∞ 𝛼𝛼𝑛𝑛 = 𝑙𝑙𝑙𝑙𝑙𝑙𝑛𝑛→∞ 𝛽𝛽𝑛𝑛  = 0 and x,y,z ∈ X. Then 

(i) 𝑝𝑝(𝑥𝑥𝑛𝑛 , 𝑥𝑥𝑛𝑛 ,𝑦𝑦) ≤ 𝛼𝛼𝑛𝑛  𝑎𝑎𝑎𝑎𝑎𝑎 𝑝𝑝(𝑥𝑥𝑛𝑛 , 𝑥𝑥𝑛𝑛 ,𝑦𝑦) ≤ 𝛽𝛽𝑛𝑛  for every 𝑛𝑛 ≥ 1 imply y=z. In particular 𝑝𝑝(𝑥𝑥, 𝑥𝑥,𝑦𝑦) = 𝑝𝑝(𝑥𝑥, 𝑥𝑥, 𝑧𝑧) 
implies y=z 

(ii) 𝑝𝑝(𝑥𝑥𝑛𝑛 , 𝑥𝑥𝑛𝑛 ,𝑦𝑦𝑛𝑛) ≤ 𝛼𝛼𝑛𝑛  𝑎𝑎𝑎𝑎𝑎𝑎 𝑝𝑝(𝑥𝑥𝑛𝑛 , 𝑥𝑥𝑛𝑛 , 𝑧𝑧) ≤ 𝛽𝛽𝑛𝑛  for every 𝑛𝑛 ≥ 1 imply that 𝑦𝑦𝑛𝑛 → 𝑦𝑦 as 𝑛𝑛 → ∞ in (X,S) 
(iii) 𝑝𝑝(𝑥𝑥𝑚𝑚 , 𝑥𝑥𝑚𝑚 , 𝑥𝑥𝑛𝑛) ≤ 𝛼𝛼𝑛𝑛   for all 𝑚𝑚 > 𝑛𝑛 ≥ 1 implies {𝑥𝑥𝑛𝑛} is a Cauchy sequence in (X,S) 
(iv) 𝑝𝑝(𝑦𝑦,𝑦𝑦, 𝑥𝑥𝑛𝑛) ≤ 𝛼𝛼𝑛𝑛  for every 𝑛𝑛 ≥ 1 implies {𝑥𝑥𝑛𝑛} is a Cauchy sequence in (X,S) 

 
Proof: For any ∈> 0 choose a  𝛿𝛿 > 0 satisfying (c1) of Definition 2.1 and then find a natural number n0 such that 
𝛼𝛼𝑛𝑛 < 𝛿𝛿 and  𝛽𝛽𝑛𝑛 < 𝛿𝛿  for 𝑛𝑛 ≥ 𝑛𝑛0 

(i) For 𝑛𝑛 ≥ 𝑛𝑛0 we have  𝑝𝑝(𝑥𝑥𝑛𝑛 , 𝑥𝑥𝑛𝑛 ,𝑦𝑦𝑛𝑛) < 𝛿𝛿 𝑎𝑎𝑎𝑎𝑎𝑎  𝑝𝑝(𝑥𝑥𝑛𝑛 , 𝑥𝑥𝑛𝑛 , 𝑧𝑧) < 𝛿𝛿 so that by (c1), 𝑆𝑆(𝑦𝑦,𝑦𝑦, 𝑧𝑧) < ∈. Since ϵ > 0 is 
arbitrary it follows that S(y, y, z) = 0 giving y = z. 

(ii) For 𝑛𝑛 ≥ 𝑛𝑛0 we get in this case 𝑝𝑝(𝑥𝑥𝑛𝑛 , 𝑥𝑥𝑛𝑛 ,𝑦𝑦) < 𝛿𝛿 𝑎𝑎𝑎𝑎𝑎𝑎 𝑝𝑝(𝑥𝑥𝑛𝑛 , 𝑥𝑥𝑛𝑛 , 𝑧𝑧) < 𝛿𝛿 and again by (c1)  𝑆𝑆(𝑦𝑦𝑛𝑛 ,𝑦𝑦𝑛𝑛 , 𝑧𝑧) < ∈ 
showing 𝑦𝑦𝑛𝑛 → 𝑧𝑧 as 𝑛𝑛 → ∞ in (X, S) (see Definition 1.3(i)) 

(iii) In this case, 𝑝𝑝(𝑥𝑥𝑛𝑛 , 𝑥𝑥𝑛𝑛 , 𝑥𝑥𝑚𝑚 ) < 𝛿𝛿 for 𝑛𝑛 ≥ 𝑛𝑛0.In particular,𝑝𝑝(𝑥𝑥𝑛𝑛0 , 𝑥𝑥𝑛𝑛0 , 𝑥𝑥𝑚𝑚 )< 𝛿𝛿 and 𝑝𝑝(𝑥𝑥𝑛𝑛0 , 𝑥𝑥𝑛𝑛0 , 𝑥𝑥𝑘𝑘 )< 𝛿𝛿 for 
𝑚𝑚 > 𝑘𝑘 > 𝑛𝑛0 which imply by (c1) that 𝑆𝑆(𝑥𝑥𝑚𝑚 , 𝑥𝑥𝑚𝑚 ,𝑥𝑥𝑘𝑘) < ∈ whenever 𝑚𝑚 > 𝑘𝑘 ≥ 𝑛𝑛0.That is {𝑥𝑥𝑛𝑛} is a Cauchy 
sequence in (X,S) (see Definition 1.3(ii)) 

(iv) For 𝑛𝑛 ≥ 𝑛𝑛0, we have  𝑝𝑝(𝑦𝑦,𝑦𝑦, 𝑥𝑥𝑛𝑛) < 𝛿𝛿 so that for 𝑚𝑚 > 𝑛𝑛 ≥ 𝑛𝑛0, 𝑝𝑝(𝑦𝑦,𝑦𝑦, 𝑥𝑥𝑚𝑚 ) < 𝛿𝛿 and 𝑝𝑝(𝑦𝑦,𝑦𝑦, 𝑥𝑥𝑛𝑛) < 𝛿𝛿 and hence 
by (c1), 𝑆𝑆(𝑥𝑥𝑚𝑚 , 𝑥𝑥𝑚𝑚 , 𝑥𝑥𝑛𝑛) < ∈ for 𝑚𝑚 > 𝑛𝑛 ≥ 𝑛𝑛0 giving {𝑥𝑥𝑛𝑛} is a  Cauchy sequence in (X, S). 
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3. MAIN THEOREM 
 
3.1. Theorem: Suppose (X, S) is a complete S-metric space with a weak S-metric p on it. Suppose 𝑓𝑓:𝑋𝑋 → 𝑋𝑋 is a 
continuous function such that 
 
(3.2)   𝑝𝑝(𝑓𝑓𝑓𝑓, 𝑓𝑓𝑓𝑓, 𝑓𝑓𝑓𝑓) ≤ 𝐿𝐿. 𝑝𝑝(𝑥𝑥,𝑦𝑦,𝑦𝑦) for all 𝑥𝑥,𝑦𝑦, 𝑧𝑧 ∈ 𝑋𝑋, for some 𝐿𝐿 ∈ [0,1).Then f has a fixed point 𝑧𝑧 ∈ 𝑋𝑋. Also if 𝑢𝑢 ∈ 𝑋𝑋 
is another fixed point of f  then 𝑝𝑝(𝑢𝑢,𝑢𝑢, 𝑧𝑧) = 0. 
 
Proof: Let 𝑥𝑥0 ∈ 𝑋𝑋 𝑎𝑎𝑎𝑎𝑎𝑎 𝑥𝑥𝑛𝑛= 𝑓𝑓𝑥𝑥𝑛𝑛−1 for 𝑛𝑛 ≥ 1 𝑠𝑠𝑠𝑠 𝑡𝑡ℎ𝑎𝑎𝑎𝑎 {𝑥𝑥𝑛𝑛} ∈ X. We now prove that {𝑥𝑥𝑛𝑛 } is a Cauchy sequence in (X,S). 
 
For any integer 𝑘𝑘 ≥ 0, let 𝛼𝛼𝑘𝑘= 𝑝𝑝(𝑥𝑥𝑘𝑘 , 𝑥𝑥𝑘𝑘  , 𝑥𝑥𝑘𝑘),𝛽𝛽𝑘𝑘= 𝑝𝑝(𝑥𝑥𝑘𝑘 , 𝑥𝑥𝑘𝑘  , 𝑥𝑥𝑘𝑘+1) and 𝛾𝛾𝑛𝑛𝑛𝑛+𝑘𝑘 =  𝑝𝑝(𝑥𝑥𝑛𝑛+𝑘𝑘 , 𝑥𝑥𝑛𝑛+𝑘𝑘  , 𝑥𝑥𝑛𝑛). 
 
Then, by (3.2), 𝛼𝛼𝑘𝑘 = 𝑝𝑝(𝑓𝑓𝑥𝑥𝑘𝑘−1 , 𝑓𝑓𝑥𝑥𝑘𝑘−1, 𝑓𝑓𝑥𝑥𝑘𝑘−1) ≤ 𝐿𝐿. 𝑝𝑝(𝑥𝑥𝑘𝑘−1, 𝑥𝑥𝑘𝑘−1, 𝑥𝑥𝑘𝑘−1) = 𝐿𝐿.𝛼𝛼𝑘𝑘−1  
 
which on repeated use gives 
 
(3.3) 𝛼𝛼𝑘𝑘 ≤ 𝐿𝐿.𝛼𝛼𝑘𝑘−1 ≤ 𝐿𝐿2.𝛼𝛼𝑘𝑘−2 ≤ ⋯ ≤ 𝐿𝐿𝑘𝑘𝛼𝛼0  and  𝛽𝛽𝑘𝑘  = 𝑝𝑝(𝑓𝑓𝑥𝑥𝑘𝑘−1 , 𝑓𝑓𝑥𝑥𝑘𝑘−1, 𝑓𝑓𝑥𝑥𝑘𝑘  ) ≤ 𝐿𝐿. 𝑝𝑝(𝑥𝑥𝑘𝑘−1, 𝑥𝑥𝑘𝑘−1, 𝑥𝑥𝑘𝑘)=𝐿𝐿.𝛽𝛽𝑘𝑘−1  
 
which on repeated use gives 
 
(3.4)  𝛽𝛽𝑘𝑘  ≤ 𝐿𝐿.𝛽𝛽𝑘𝑘−1 ≤  𝐿𝐿2𝛽𝛽𝑘𝑘−2 ≤ ⋯ ≤  𝐿𝐿𝑘𝑘 .𝛽𝛽0 
 
Also since 𝑝𝑝(𝑥𝑥, 𝑥𝑥,𝑦𝑦) ≤ 2𝑝𝑝(𝑎𝑎, 𝑎𝑎, 𝑥𝑥) + 𝑝𝑝(𝑎𝑎, 𝑎𝑎,𝑦𝑦) 𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎 𝑥𝑥,𝑦𝑦, 𝑎𝑎 ∈ 𝑋𝑋  (by (a1) of Definition 2.1), we have  
      
𝛾𝛾𝑛𝑛𝑛𝑛+𝑘𝑘 ≤ 2𝑝𝑝(𝑥𝑥𝑛𝑛+𝑘𝑘−1, 𝑥𝑥𝑛𝑛+𝑘𝑘−1, 𝑥𝑥𝑛𝑛+𝑘𝑘) + 𝑝𝑝(𝑥𝑥𝑛𝑛+𝑘𝑘−1, 𝑥𝑥𝑛𝑛+𝑘𝑘−1, 𝑥𝑥𝑛𝑛) 
         = 2.𝛽𝛽𝑛𝑛+𝑘𝑘−1 + 𝛾𝛾𝑛𝑛𝑛𝑛+𝑘𝑘−1 
        
which on repeated use gives 
 
𝛾𝛾𝑛𝑛𝑛𝑛+𝑘𝑘 ≤ 2𝛽𝛽𝑛𝑛+𝑘𝑘−1 +  2𝛽𝛽𝑛𝑛+𝑘𝑘−2 + ⋯+ 2𝛽𝛽𝑛𝑛 + 𝛾𝛾𝑛𝑛𝑛𝑛  
         = 2𝛽𝛽𝑛𝑛+𝑘𝑘−1 +  2𝛽𝛽𝑛𝑛+𝑘𝑘−2 + ⋯+ 2𝛽𝛽𝑛𝑛 + 𝛼𝛼𝑛𝑛  
 
so that by (3.3) and (3.4) we get  
 
(3.5)  𝛾𝛾𝑛𝑛𝑛𝑛+𝑘𝑘 ≤ 2𝛽𝛽0 . 𝐿𝐿𝑛𝑛(1 + 𝐿𝐿 + ⋯+ 𝐿𝐿𝑘𝑘−1) + 𝐿𝐿𝑛𝑛 .𝛼𝛼0 <  𝐴𝐴𝑛𝑛 , 
           
where 𝐴𝐴𝑛𝑛 =  2𝛽𝛽0

1−𝐿𝐿
 . 𝐿𝐿𝑛𝑛 + 𝛼𝛼0. 𝐿𝐿𝑛𝑛  

 
Therefore, if m= n+k where 𝑘𝑘 ≥ 0 𝑎𝑎𝑎𝑎𝑎𝑎 𝑛𝑛 ≥ 1 then (3.5) shows 𝑝𝑝(𝑥𝑥𝑚𝑚  , 𝑥𝑥𝑚𝑚  , 𝑥𝑥𝑛𝑛) < 𝐴𝐴𝑛𝑛  for all ≥ 𝑛𝑛 ≥ 1 𝑎𝑎𝑎𝑎𝑎𝑎 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝐴𝐴𝑛𝑛 → 0 
as 𝑛𝑛 → ∞(𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 0 ≤ 𝐿𝐿 < 1),  it follows from (iii) of Lemma 2.4 that {𝑥𝑥𝑛𝑛} is a Cauchy sequence in (X, S). 
       
Now since (X,S) is complete there is a 𝑧𝑧 ∈ 𝑋𝑋 such that lim𝑛𝑛→∞ 𝑥𝑥𝑛𝑛 = 𝑧𝑧, and since f is continuous 

𝑓𝑓(𝑧𝑧) = 𝑓𝑓(lim𝑛𝑛→∞ 𝑥𝑥𝑛𝑛) = lim𝑛𝑛→∞ 𝑓𝑓(𝑥𝑥𝑛𝑛 ) = lim𝑛𝑛→∞ 𝑥𝑥𝑛𝑛+1 = 𝑧𝑧 
showing z is a fixed point of f 
       
If 𝑢𝑢 ∈ 𝑋𝑋 is such that fu = u then by (3.2), 

𝑝𝑝(𝑢𝑢,𝑢𝑢, 𝑧𝑧) =  𝑝𝑝(𝑓𝑓𝑓𝑓, 𝑓𝑓𝑓𝑓, 𝑓𝑓𝑓𝑓) ≤ 𝐿𝐿. 𝑝𝑝(𝑢𝑢,𝑢𝑢, 𝑧𝑧)  
 
Which shows 𝑝𝑝(𝑢𝑢,𝑢𝑢, 𝑧𝑧) = 0, since 0 ≤ 𝐿𝐿 ≤ 1 
     
Hence the theorem 
 
3.6 Corollary: ([2], Theorem2.1) If (X, S) is a complete S-metric space and 𝑓𝑓:𝑋𝑋 → 𝑋𝑋 is a mapping for which 
𝑆𝑆(𝑓𝑓𝑓𝑓, 𝑓𝑓𝑓𝑓, 𝑓𝑓𝑓𝑓) ≤ 𝐿𝐿. 𝑆𝑆(𝑥𝑥, 𝑥𝑥,𝑦𝑦) holds for all x, y ∈ 𝑋𝑋 where 0 ≤ 𝐿𝐿 < 1 (such a mapping is called a contraction on (X, S) 
in [2], Definition 2.13) then f has a unique fixed point 𝑧𝑧 ∈ 𝑋𝑋. 
  
Proof: Taking p = S (which is a weak S-metric, see Example 2.2(i)) in the theorem we get a fixed point 𝑧𝑧 ∈ 𝑋𝑋. Also if 
𝑢𝑢 ∈ 𝑋𝑋 is another fixed point then S(u, u, z) = 0 which gives u = z, proving the uniqueness of the fixed point. 
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3.7 Corollary: (Banach Contraction principle). If (X, d) is a complete metric space and 𝑓𝑓:𝑋𝑋 → 𝑋𝑋 is a mapping such 
that 𝑑𝑑(𝑓𝑓𝑓𝑓, 𝑓𝑓𝑓𝑓) ≤ 𝐿𝐿.𝑑𝑑(𝑥𝑥,𝑦𝑦) for all 𝑥𝑥,𝑦𝑦 ∈ 𝑋𝑋,𝑓𝑓𝑓𝑓𝑓𝑓 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝐿𝐿 ∈ [0,1) then f has a unique fixed point 𝑧𝑧 ∈ 𝑋𝑋. 
 
Proof: Given a complete metric space (X, d), define 𝑆𝑆𝑑𝑑 :𝑋𝑋3 → [0,∞) by 𝑆𝑆𝑑𝑑(𝑥𝑥,𝑦𝑦, 𝑧𝑧) = 𝑑𝑑(𝑥𝑥, 𝑧𝑧) + 𝑑𝑑(𝑦𝑦, 𝑧𝑧) for 𝑥𝑥,𝑦𝑦, 𝑧𝑧 ∈ 𝑋𝑋. 
Then (X, 𝑆𝑆𝑑𝑑 ) is a S-metric space and also it is complete. Further since 𝑆𝑆𝑑𝑑  (x, x, y) = 2d(x, y) for any x, y∈ X the 
conditions of this corollary gives 𝑆𝑆𝑑𝑑(𝑓𝑓𝑓𝑓, 𝑓𝑓𝑓𝑓, 𝑓𝑓𝑓𝑓) ≤ 𝐿𝐿. 𝑆𝑆𝑑𝑑(𝑥𝑥, 𝑥𝑥,𝑦𝑦)for all 𝑥𝑥,𝑦𝑦 ∈ 𝑋𝑋.Therefore, by Corollary 3.6, f has a 
unique fixed point 𝑧𝑧 ∈ 𝑋𝑋 
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