COMPLEMENTARY TREE DOMINATION IN BOOLEAN FUNCTION GRAPH B(K_p, INC, \bar{K}_q) OF A GRAPH

S. MUTHAMMAI*
Government Arts College for Women, Pudukkottai- 622 001, Tamilnadu, India.

(Received On: 24-01-16; Revised & Accepted On: 26-02-16)

ABSTRACT

For any graph G, let V(G) and E(G) denote the vertex set and edge set of G respectively. The Boolean function graph B(K_p, INC, \bar{K}_q) of G is a graph with vertex set V(G)\cup E(G) and two vertices in B(K_p, INC, \bar{K}_q) are adjacent if and only if they correspond to two adjacent vertices of G, two nonadjacent vertices of G or to a vertex and an edge incident to it in G. For brevity, this graph is denoted by B_4(G). In this paper, bounds of complementary tree domination number of Boolean function graph B_4(G) are obtained and this number is found for Boolean function graphs of particular graphs. Also a characterization of graphs for which tree domination number is equal to 2 is obtained.

Key Words: Boolean Function Graph, Complementary tree dominating set, tree dominating set.

1. INTRODUCTION

Graphs discussed in this paper are undirected and simple graphs. For a graph G, let V(G) and E(G) denote its vertex set and edge set respectively. The graph G with p vertices and q edges is denoted by G(p, q). The points and edges of a graph are called its elements. Two elements of a graph are neighbors, if they are either incident or adjacent. For a connected graph G, the eccentricity e(v) = \{d(u, v) : u \in V(G)\}, where d(u, v) is the distance between u and v in G. The radius of G is rad(G) = \min\{e(v) u \in V(G)\}. A vertex v is a central vertex if e(v) = rad(G). A Bistar whose central vertices have degree m and n is denoted by S_{m,n}.

The concept of domination in graphs was introduced by Ore [11]. A set D \subseteq V(G) is said to be a dominating set of G, if every vertex in V(G) – D is adjacent to some vertex in D. The domination number \gamma(G) of G is the minimum cardinality of a dominating set. We call a set of vertices a \gamma - set, if it is a dominating set with cardinality \gamma(G). Many domination parameters are obtained by combining domination with another graph theoretical property. Some domination parameters are defined by imposing additional constraint on the complement of a dominating set. Such parameters are called codomination parameters. Based on these, the concepts of split and nonsplit domination in graphs were introduced by Kulli and Janakiram [8, 9]. Chen et.al. [2] defined a tree dominating set D to be a set D whose induced subgraph <D> is a tree. The minimum cardinality of a tree dominating set of G is the tree domination number \gamma_{tr}(G). If there is no tree dominating set in G, then let \gamma_{tr}(G) = 0. A dominating set D \subseteq V(G) is said to be tree dominating set if the induced subgraph <D> is a tree. Muthammai, Bhanumathi and Vidyarthi [10] introduced the concept of complement tree dominating set. A dominating set D \subseteq V(G) is said to be complementary tree dominating set (ctd-set) if the induced subgraph <V(G) - D> is a tree. The minimum cardinality of a ctd-set is called the complementary tree domination number of G and is denoted by \gamma_{ctd}(G).

Whitney [12] introduced the concept of the line graph L(G) of a given graph G in 1932. The concept of total graphs was introduced by Behzad [1] in 1966. Janakiraman et al. introduced the concepts of Boolean and Boolean function graphs [4 - 7].

The Boolean function graph B(K_p, NINC, \bar{K}_q)) of G is a graph with vertex set V(G)\cup E(G) and two vertices in B(K_p, NINC, \bar{K}_q)) are adjacent if and only if they correspond to two adjacent vertices of G, two nonadjacent vertices of G to a vertex and an edge incident to it in G. For brevity, this graph is denoted by B_4(G). In this paper, bounds of complementary tree domination number of Boolean function graph B_4(G) are obtained and this number is found for Boolean function graphs of particular graphs. Also a characterization of graphs for which tree domination number is equal to 2 is obtained. For graph theoretic terminology, Harary [3] is referred.

Corresponding Author: S. Muthammai*
Government Arts College for Women, Pudukkottai- 622 001, Tamilnadu, India.
2. PREVIOUS RESULTS

Observation 2.1: [6]
1. K_p is an induced subgraph of $B_4(G)$ and the subgraph of $B_4(G)$ induced by q vertices is totally disconnected.
2. Number of vertices in $B_4(G)$ is $p + q$, since $B_4(G)$ contains vertices of both G and the line graph $L(G)$ of G.
3. Number of edges in $B_4(G)$ is $\frac{p(p-1)}{2} + 2q$
 (a) If G is complete, then $d_{B_4(G)}(v) = 2(p-1)$
 (b) If G is totally disconnected, then $d_{B_4(G)}(v) = p - 1$
 (c) If G has at least one edge, then $2 \leq d_{B_4(G)}(v) \leq 2(p-1)$ and $d_{B_4(G)}(v) = 1$ if and only if $G \cong 2K_1$.
4. $\gamma(B_4(G)) = 1$ if and only if $G \cong K_1, n \cup mK_1, n, m \geq 1$.
5. For an edge $e \in E(G)$, $d_{B_4(G)}(e) = 2$
6. $B_4(G)$ is always connected.

Theorem 2.1: [10] $\gamma_{ctd}(G) = 1$ if and only if $G \cong T + K_1$, where T is a tree.

Theorem 2.2: [10] For any connected graph G with $p \geq 2$, $\gamma_{ctd}(G) \leq p - 1$.

Theorem 2.3: [10] Let G be a connected graph with $p \geq 2$. $\gamma_{ctd}(G) = p - 1$ if and only if G is a star on p vertices.

Theorem 2.4: [10] Let G be a connected graph containing a cycle. Then $\gamma_{ctd}(G) = p - 2$ if and only if G is isomorphic to one of the following graphs C_p, K_p or G is the graph obtained by attaching pendant edges at least one of the vertices of a complete graph.

Theorem 2.5: [10] Let T be a tree with p vertices which is not a star. Then $\gamma_{ctd}(T) = p - 2$ if and only if T is a path or T is obtained by attaching pendant edges at least one of the end vertices.

3. MAIN RESULTS

In the following, an upper bound of $\gamma_{ctd}(B_4(G))$ is found.

Theorem 3.1: For any graph G with p vertices, $\gamma_{ctd}(B_4(G)) \leq p + q - \Delta(G) - \delta(G) - 2$.

Proof: Let G be a graph with p vertices. Let u be a vertex of G with $deg(u) = \Delta(G)$ and let v be a vertex of G with $deg(v) = t$, where $t = \max\{deg_G(v) : v \not\in N(u)\}$. Then $|N(v)| = t$.

If $D = N(u) \cup N(v) \cup \{u, v\}$, then $V(B_4(G)) - D$ is a complementary tree dominating set of $B_4(G)$ and hence $\gamma_{ctd}(B_4(G)) \leq |V(B_4(G)) - D| = p + q - (\Delta(G) + t + 2) = p + q - \Delta(G) - t - 2$.

Equality holds, if $G \cong K_m, n$ and $C_n (m, n \geq 4)$.

Note 3.1: If G contains at least one edge and three vertices, then $\gamma_{ctd}(B_4(G)) \geq 2$.

Theorem 3.2: Let G be a connected graph with p vertices and $\gamma_{ctd}(G) = 1$. Then $\gamma_{ctd}(B_4(G)) \leq 2p - 5$.

Proof: Let G be a connected graph with p vertices and $\gamma_{ctd}(G) = 1$. Then G is isomorphic to $T + K_1$, where T is a tree on $p - 1$ vertices and hence $B_4(G)$ has $3(p - 1)$ vertices. Let $v \in V(K_1)$ and u be a vertex of T with $deg_G(u) = \Delta(T)$ and $e = (u, v)$ and let E' be the set of edges in $B_4(G)$ corresponding to the edges in E', let $D = D' \cup \{u, v\} - \{e\}$ and $|D'| = deg_G(v) + deg_G(u) + 2 - 1 = p - 1 + \Delta(T) + 1 + p + \Delta(T)$ and $V(B_4(G)) - D$ is a complementary tree dominating set of $B_4(G)$ and hence $\gamma_{ctd}(B_4(G)) \leq |V(B_4(G)) - D'| = 3p - 3 - (p + \Delta(T)) \leq 2p - 5$, since $\Delta(T) \geq 2$.

Equality holds, if $G \cong P_n + K_1$ where P_n is a path on n vertices.

In the following complementary tree domination number of $B_4(G)$ is found when G is a path, cycle, complete graph, complete bipartite graph, star and wheel.
Theorem 3.3: If G is a path P_n on n (n \geq 5) vertices, then $\gamma_{ctd}(B_4(P_n)) = 2n - 7$.

Proof: Let $G \cong P_n$, $n \geq 5$. $B_4(P_n)$ has $2n - 1$ vertices. Let v_i, v_j be two distinct vertices of degree 2 in P_n such that $d_G(v_i, v_j) \geq 2$ and let e_i, e_j be the edges incident with v_i and v_j, e_i, e_j are the edges incident with v_i. Then $v_i, v_j, e_i, e_j, e_{i-1}, e_{i+1} \in V(B_4(P_n))$. If $D = \{v_i, v_j, e_i, e_j, e_{i-1}, e_{i+1}\}$, then $\gamma_{ctd}(B_4(P_n)) \leq \gamma(B_4(P_n)) - |D| = 2n - 1 - 6 = 2n - 7$. Let D' be a ctd-set of $B_4(P_n)$. Since K_n is an induced subgraph of $B_4(P_n)$, $V(B_4(P_n)) - D$ contains at most two vertices of P_n. Also each vertex of $L(G)$ is adjacent to two vertices of G in $B_4(G)$ (4). Therefore any tree of $B_4(G)$ contains at most 6 vertices and hence D' contains at least $2n - 1 - 6 = 2n - 7$ vertices. Therefore $|D'| \geq 2n - 7$. Hence $\gamma_{ctd}(B_4(P_n)) = 2n - 7$.

Remark 3.1: If C_n is a cycle on $n(n \geq 4)$ vertices, then $\gamma_{ctd}(B_4(C_n)) = 2n$ and $\gamma_{ctd}(B_4(K_1)) = 2$.

Theorem 3.4: If K_n is a complete graph on n vertices, then $\gamma_{ctd}(B_4(K_n)) = (n^2 - 3n + 4)/2$, where $n \geq 4$.

Proof: Let $D = \{v_i, v_{i+1}, \ldots, v_k\} \subseteq V(B_4(K_n))$, $<D> = S_{m,n}$ and $|D| = 2n - 2$, where $n \geq 4$. $V(B_4(K_n)) - D$ is a ctd-set of $B_4(K_n)$ and hence $\gamma_{ctd}(B_4(K_n)) \leq n + ((n(n - 1))/2) - (2n - 2) = (n^2 - 3n + 4)/2$. Since K_n is an induced subgraph of $B_4(K_n)$, any tree of $B_4(K_n)$ has at most $2n - 2$ vertices. Therefore any ctd-set of $B_4(K_n)$ contains at least $(n^2 - 3n + 4)/2$ vertices. Hence $\gamma_{ctd}(B_4(K_n)) \geq (n^2 - 3n + 4)/2$.

Theorem 3.5: If $K_{m,n}$ (m $\geq n$) is the complete bipartite graph, then $\gamma_{ctd}(B_4(K_{m,n})) = mn - 2$, m, n ≥ 2.

Proof: Let $[A, B]$ be the bipartition of $K_{m,n}$ such that $|A| = m$ and $|B| = n$. Let $u, v \in B$. Then deg$(u) = deg(v) = m$. If e_1, e_2, \ldots, e_n be the edges incident with u and f_1, f_2, \ldots, f_m be those edges incident with v, then $u, v, e_1, e_2, \ldots, e_n, f_1, f_2, \ldots, f_m \in V(B_4(K_{m,n}))$.

Let $D = \{u, v, e_1, e_2, \ldots, e_n, f_1, f_2, \ldots, f_m\}$. Then $\gamma_{ctd}(B_4(K_{m,n})) = |V(B_4(K_{m,n}))| - D| = m + n + mn - (m + n + 2) = mn - 2$.

Remark 3.2: If G is a star on $n + 1$ vertices, then $\gamma_{ctd}(B_4(K_{1,n})) = n - 2, n \geq 2$.

Theorem 3.6: If W_p is the wheel on p vertices, then $\gamma_{ctd}(B_4(W_p)) = 3p - 9$, where $p \geq 5$.

Proof: Let $v, v_1, v_2, \ldots, v_{p-1}$ be vertices of W_p and let $e_i = (v, v_i), i = 1, 2, \ldots, p-1, e_{i+1} = (v_{i+1}, v_i), i = 1, 2, \ldots, p-2$ and $e_{p-1} = (v_1, v_p)$. $V(B_4(W_p)) = 3p - 1$.

Then $v, v_1, v_2, \ldots, v_{p-1}, e_1, e_2, \ldots, e_{p-1} \in V(B_4(W_p))$. Let v, v_i be two nonadjacent vertices in W_p, and let e_1, e_2, e_3 be the edges incident with v_i and e_1, e_2, e_3 are the edges incident with v_i. Then $e_1, e_2, e_3, v, v_i \in V(B_4(W_p))$. Let $D = \{e_1, e_2, e_3, v, v_i\} \subseteq V(B_4(W_p))$. Then each vertex in D is adjacent to at least one vertex in $V(B_4(W_p)) - D$ and $V(B_4(W_p)) - D \cong S_{3,3}$.

Therefore $V(B_4(W_p)) - D$ is a minimum ctd-set of $B_4(W_p)$ and hence $\gamma_{ctd}(B_4(W_p)) = |V(B_4(W_p)) - D| = 3p - 1 - 8 = 3p - 9$.

Theorem 3.7: If G is a graph obtained from $K_1 + T$ with one pendant edge attached at the vertex of K_1, where T is any tree on $p - 2$ vertices, then $\gamma_{ctd}(B_4(G)) \leq 2p - (\Delta(T) - 4)$.

Proof: If G is a graph as stated in the Theorem, then $\gamma_{ctd}(G) = 2$. Number of vertices in G is p and the number of edges in G is $|E(T)| + p - 2 + 1 = p - 3 + p - 1 = 2p - 4$. Hence number of vertices in $B_4(G)$ is $p + 2p - 4 = 3p - 4$. Let $V(K_1) = \{v\}$ and u be the pendant vertex adjacent to v in G, $e = (u, v)$ and let $v_1, v_2, \ldots, v_{p-2}$ be the vertices of T with $deg_T(v_i) = \Delta(T)$. Let $e_i = (v, v_i), i = 1, 2, \ldots, p - 2$. Then $v_1, v_2, \ldots, v_{p-2}, e_1, e_2, \ldots, e_{p-2} \in V(B_4(G))$. If $D = \{v, v_1, e, e_1, e_2, \ldots, e_{i-1}, e_{i+1}, e_{i+2}, \ldots, e_{p-2}\} \subseteq V(B_4(G))$, then the subgraph of $B_4(G)$ induced by D is isomorphic to $S_{p-2,\Delta(T)}$ and $|D| = p + \Delta(T)$. Since the subgraph of $B_4(G)$ induced by vertices of G is complete, v_i, v_j are adjacent at least one vertex of G in $B_4(G) - D$. Also $e_1, e_2, \ldots, e_{i-1}, e_{i+1}, \ldots, e_{p-2}$ are adjacent to $u, v_1, v_2, \ldots, v_{i-1}, v_{i+1}, \ldots, v_{p-2}$ respectively in $V(B_4(G))$. Therefore, $V(B_4(G)) - D$ is a dominating set of $B_4(G)$ and $\gamma_{ctd}(B_4(G)) = |V(B_4(G)) - D| = 3p - 4 - (p + \Delta(T)) = 2p - \Delta(T) - 4$. Equality holds, if T is a path on $p - 2$ vertices.
Remark 3.3: If T is a star, then $\Delta(T) = p - 3$ and hence $\gamma_{cd}(B_4(G)) \leq 2p - (p - 3) - 4 = p + 7$.

Theorem 3.8: If G is a graph obtained from a tree by joining each of the vertices of the tree to the vertices of K_2 such that $\deg(v) \geq 2$, for all $v \in V(K_2)$, then $\gamma_{cd}(B_4(G)) \leq 2p - 4$.

Proof: Let $V(K_2) = \{u, v\}$ and $\deg_G(u) = m$ and $\deg_G(v) = n$, where $m, n \geq 2$ and $m + n \leq p$ and let T be a tree on $p - 2$ vertices. Then $|E(G)| = |E(T)| + m - 1 + n - 1 + p = p - 3 + m + n + n - 1 = p + m + n - 4$. Therefore $|V(B_4(G)) = |V(G)| + |E(G)| = 2p + m + n - 4$. Let $u_1, u_2, \ldots, u_{m-1}$ be the vertices of T adjacent to u and let $v_1, v_2, \ldots, v_{n-1}$ be the vertices of T adjacent to v in G.

If $e_i = (u, u_i)$ and $f_j = (v, v_j)$ ($i = 1, 2, \ldots, m$ and $j = 1, 2, \ldots, n$), then $D = \{u, v, e_1, e_2, \ldots, e_m, f_1, f_2, \ldots, f_n\} \subseteq V(B_4(G))$ and $|D| = m + n$. Also $D \supseteq S_{m-1,n-1}$ in $B_4(G)$. Each vertex in D is adjacent to at least one vertex in $V(B_4(G)) - D$ and $\gamma_{cd}(D) = n + 3$. Therefore $V(B_4(G)) - D$ is a ctd-set of $B_4(G)$ and hence $\gamma_{cd}(B_4(G)) \leq |V(B_4(G)) - D| = 2p - 4$.

Remark 3.4: If each vertex of the tree is adjacent to both u and v in G, then $\gamma_{cd}(B_4(G)) = 2p - 4$.

In the similar lines, the following theorem can be proved.

Theorem 3.9: If G is a graph obtained from a tree by joining each of the vertices of the tree to the vertices of $2K_1$ such that $\deg(v) \geq 1$, for all $v \in V(K_2)$, then $\gamma_{cd}(B_4(G)) \leq 2p - 5$.

Theorem 3.10: For $n \geq 3$, $\gamma_{cd}(B_4(P_n + K_1)) = 2n - 3$.

Proof: Let $v_1, v_2, \ldots, v_n \in V(C_n)$, $v \in V(K_1)$ and let $e_i = (v, v_i)$, $i = 1, 2, \ldots, n$; $e_{i,n} = (v_i, v_{i+1})$, $i = 1, 2, \ldots, n-1$. Then $D = \{v, v_1, e_1, e_2, \ldots, e_n, e_{n,1}\} \subseteq V(B_4(C_n + K_1))$ and $|D| = n + 1$. Each vertex in D is adjacent to at least one vertex in $V(B_4(C_n + K_1)) - D$ and $\gamma_{cd}(D) = n + 3$. Therefore $\gamma_{cd}(B_4(C_n + K_1)) = 2n - 3$.

Theorem 3.11: For $n \geq 5$, $\gamma_{cd}(B_4(K_{1,n} + K_1)) = 2n - 2$.

Proof: Let $v_1, v_2, \ldots, v_n \in V(C_n)$, $v \in V(K_1)$ and let $e_i = (v, v_i)$, $i = 1, 2, \ldots, n$; $e_{i,n} = (v_i, v_{i+1})$. Then $D \subseteq V(B_4(K_{1,n} + K_1))$ and $|D| = n + 3$. Therefore $\gamma_{cd}(D) = n + 3$. Let $v, v_1, e_1, e_2, \ldots, e_n, e_{1,n} \subseteq V(B_4(K_{1,n} + K_1))$. Then $D = \{v, v_1, e_1, e_2, \ldots, e_n, e_{1,n}\}$ in $B_4(G) - D$. Therefore $\gamma_{cd}(D) = n + 3$. Also $\gamma_{cd}(B_4(K_{1,n} + K_1)) = 2n - 2$. Hence $\gamma_{cd}(B_4(K_{1,n} + K_1)) = 2n - 2$.

Remark 3.5: $\gamma_{cd}(B_4(C_4 + K_1)) = 5$.

Theorem 3.12: For $m, n \geq 2$, $\gamma_{cd}(B_4(K_{m,n} + K_1)) = (mn + 1)$.

Proof: Let A, B be the bipartition of $K_{m,n}$. Assume $A = \{v_1, v_2, \ldots, v_m\}$, $B = \{u_1, u_2, \ldots, u_n\}$ and $V(K_1) = \{v\}$. Let $e_i = (u_i, v)$, $e_i = (v, v_i)$ and $f_j = (v, u_j)$, $i = 1, 2, \ldots, m$ and $j = 1, 2, \ldots, n$. Then $\gamma_{cd}(B_4(K_{m,n} + K_1)) = |V(B_4(K_{m,n} + K_1))| = |V(B_4(K_{m,n}))| + |V(K_1))| + |E(B_4(K_{m,n} + K_1))| + |E(B_4(K_{m,n}))| + |E(K_1)| + |E(K_1)| + |V(B_4(K_{m,n} + K_1))| = m + n + 1 + mn + m + n + mn + 2m + n + 1. If $D = \{v, u_1, e_1, e_2, \ldots, e_n, e_{1,n}\}$, then $D = 2m + n + 1$ and $D = S_{m-1,n-1}$. As in Theorem, $V(B_4(K_{m,n} + K_1)) = 2m + n + 1$ and $D = 2m + n + 1$. Hence $\gamma_{cd}(D) = n + 3$.

Theorem 3.13: For $m, n \geq 3$, $\gamma_{cd}(B_4(K_{1,m} + K_1)) = n + 3$.

Proof: Let $v_1, v_2, \ldots, v_n \in V(K_{1,n})$, where v_1 is the central vertex and $V(K_1) = \{v\}$. Let $e_i = (v, v_i)$, $i = 1, 2, \ldots, n+1$, $e_{i,j} = (v_i, v_j)$, $j = 2, 3, \ldots, n+1$. Then $\gamma_{cd}(B_4(K_{1,m} + K_1)) = |V(K_{1,m} + K_1)) = |V(K_1)) + |e_i, i = 1, 2, \ldots, n+1| + |e_{i,j}, j = 2, 3, \ldots, n+1| = n + 1 + n + 1 + n + 1 = n + 3$.

If $D = \{v, v_1, e_2, e_3, \ldots, e_n, e_{1,2}, e_{1,3}, \ldots, e_{1,n}\} \subseteq V(B_4(K_{1,m} + K_1))$, then $|D| = 2n$ and $|D| = 2$. Also $V(B_4(K_{1,m} + K_1)) - D$ is a minimum ctd-set of $B_4(K_{1,m} + K_1)$ and hence $\gamma_{cd}(B_4(K_{1,m} + K_1)) = 2n + 2 = 2n + n = n + 3$.
Theorem 3.14: For \(p \geq 5 \), \(\gamma_{ctd}(B_4(W_p + K_1)) = 2p - 1 \).

Proof: Let \(v_1, v_2, \ldots, v_p \) be vertices of \(W_p \), where \(v_1 \) is the central vertex and \(v \in V(K_1) \). Let the edges of \(B_4(W_p + K_1) \) be denoted by \(e_i = (v, v_i) \), \(i = 1, 2, \ldots, p \); \(e_{i1} = (v_i, v) \), \(i = 2, 3, \ldots, p-1 \) and \(e_{p2} = (v, v_p) \). \(V(B_4(W_p + K_1)) = (V(W_p + K_1)) \cup (E(W_p + K_1)) \) and \(|V(B_4(W_p + K_1))| = |V(W_p + K_1)| + |E(W_p + K_1)| = (p + 1) + p + (p-1) + (p-2) + 1 = 4p - 1 \). If \(D = \{ v, v_1, e_2, e_3, \ldots, e_p, e_{12}, e_{13}, \ldots, e_{1p} \} \subseteq V(B_4(W_p + K_1)) \), then \(V(B_4(W_p + K_1)) - D \) is a dominating set of \(W_p + K_1 \). Also \(<D> \cong S_{p-1} \). Therefore \(V(B_4(W_p + K_1)) - D \) is ctd-set of \(B_4(W_p + K_1) \) and hence \(\gamma_{ctd}(B_4(W_p + K_1)) \leq |V(B_4(W_p + K_1)) - D| = 4p - 1 - 2p = 2p - 1 \). Also there exists no ctd-set in \(B_4(W_p + K_1) \) having \(2p - 1 \) vertices. Hence \(\gamma_{ctd}(B_4(W_p + K_1)) = 2p - 1 \).

In the following, tree domination number of \(B_4(G) \) is found.

Observation 3.1: \(\gamma(B_4(G)) = \gamma_{tr}(B_4(G)) = 1 \) if and only if \(G \cong K_1, n \cup mK_1, n, m \geq 1 \).

Theorem 3.15: Let \(G \) be not a star and \(\delta(G) \geq 1 \). Then \(\gamma_{tr}(B_4(G)) = 2 \) if and only if there exists a minimum point cover of \(G \) containing two adjacent vertices.

Proof: Let \(D \) be a minimum point cover of \(G \) containing two adjacent vertices say, \(u, v \). Then each vertex of \(G \) in \(B_4(G) \) is adjacent to both \(u \) and \(v \). Since \(D \) is a point cover, each edge in \(G \) is incident with at least one of \(u \) and \(v \). Therefore vertices in \(B_4(G) \) corresponding to the edges of \(G \) are adjacent to at least one of \(u \) and \(v \) and hence \(D \) is a dominating set of \(B_4(G) \). Also \(<D> \cong K_2 \). Therefore \(D \) is a tree dominating set of \(B_4(G) \). Hence \(\gamma_{tr}(B_4(G)) \leq |D| = 2 \). Since \(G \) is not a star, \(\gamma_{tr}(B_4(G)) \geq 2 \). Therefore \(\gamma_{tr}(B_4(G)) = 2 \).

Conversely assume \(\gamma_{tr}(B_4(G)) = 2 \). Then there exists a tree dominating set \(D \) of \(B_4(G) \) containing two vertices and \(D \) contains at least one vertex of \(G \), since vertices of line graph \(L(G) \) of \(G \) in \(B_4(G) \) are independent. Let \(D = \{ u, v \} \). Then \(<D> \cong K_2 \) in \(B_4(G) \).

Case 1: \(u \in V(G) \) and \(v \in V(L(G)) \). Then \(v \in E(G) \) and \(u \) is incident \(v \) in \(G \). Since \(D \) is a dominating set of \(B_4(G) \), each edge in \(G \) is incident with \(u \). That is, \(\alpha_0(G) = 1 \) and \(G \cong K_1, n \cup mK_1, n, m \geq 1 \). But \(\gamma_{tr}(B_4(K_1, n)) = 1 \).

Case 2: \(u, v \in V(G) \)

Then \(D \) is a minimum point cover of \(G \) containing two adjacent vertices and \(\alpha_0(G) = 2 \).

Theorem 3.16: For any graph \(G \) with \(\delta(G) \geq 1 \), \(\gamma_{tr}(B_4(G)) = 0 \) if and only if either \(\alpha_0(G) \geq 3 \) or all the point covers of \(G \) containing two vertices are independent sets of \(G \).

Proof: Assume \(\alpha_0(G) \geq 3 \). Then there exists a minimum point cover of \(G \) containing three vertices. Then \(D \) is a dominating set of \(B_4(G) \) but \(<D> \cong C_3 \) in \(B_4(G) \) and \(D \) will not be a tree dominating set of \(B_4(G) \). Therefore \(\gamma_{tr}(B_4(G)) = 0 \).

Conversely assume \(\gamma_{tr}(B_4(G)) = 0 \). If \(\alpha_0(G) = 1 \), then \(\gamma_{tr}(B_4(G)) = 1 \). If \(\alpha_0(G) = 2 \) and if there exists a point cover \(D \) of \(G \) with \(|D| = 2 \) and \(<D> \cong K_2 \), then \(\gamma_{tr}(B_4(G)) = 2 \). Therefore either \(\alpha_0(G) \geq 3 \) or all the point covers of \(G \) containing two vertices are independent sets of \(G \).

CONCLUSION

In this paper, bounds of complementary tree domination number of Boolean function graph \(B_4(G) \) are obtained and this number is found for Boolean function graphs of particular graphs. Also a characterization of graphs for which tree domination number is equal to 2 is obtained.

ACKNOWLEDGEMENT

The author is grateful to the University Grants Commission for the financial support. (No. F. MRP-5166/14 (SERO/UGC), March 2014)
REFERENCES

4. T. N. Janakiraman, S. Muthammai, M. Bhanumathi, On the Boolean Function Graph of a Graph and on its Complement, Mathematica Bohemica, 130(2005), No.2, pp. 113-134.
5. T. N. Janakiraman, S. Muthammai, M. Bhanumathi, Domination Numbers on the Complement of the Boolean Function Graph of a Graph, Mathematica Bohemica, 130(2005), No.3, pp. 247-263.

Source of support: University Grants Commission, India, Conflict of interest: None Declared

Copyright © 2016. This is an Open Access article distributed under the terms of the International Journal of Mathematical Archive (IJMA), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.