# International Journal of Mathematical Archive-7(2), 2016, 103-110 IMA Available online through www.ijma.info ISSN 2229-5046 

## MULTIPLE ENCRYPTIONS OF INDEPENDENT CIPHERS

A. CHANDRASEKHAR ${ }^{1}$, D. CHAYA KUMARI ${ }^{* 2}$, CH.PRAGATHI ${ }^{3}$ AND ASHOK KUMAR ${ }^{4}$<br>${ }^{1}$ Professor in Engineering Mathematics, GITAM University, Visakhapatnam, India.<br>${ }^{2}$ Assistant Professor in Mathematics, BVRIT Hyderabad College of engineering for women, Hyderabad, India.<br>${ }^{3}$ Associate Professor in Engineering Mathematics, GITAM University, Visakhapatnam, India.<br>${ }^{4}$ Research Scholar, Department of Mathematics, GITAM University, Visakhapatnam, India.

(Received On: 12-02-16; Revised \& Accepted On: 29-02-16)


#### Abstract

The main aim of Cryptography is to protect user privacy. The modern ciphers which were employed in wireless networks, digital content and financial systems are rarely get cracked. In order to enhance the security levels, recent research work suggests multiple encryptions. For these issues designing of mathematical models from Algebraic Structures, Number Theoretic concepts play a vital role. In this paper we proposed multiple encryptions using Lucas, Pell numbers, Affine and Vigenere transformations as layers of encryption.


Keywords: Pell number, Lucas numbers, Affine, Vignere transformations,encryption algorithms, decryption algorithms.

## INTRODUCTION

Super-encryption is a process of encrypting the information that is already encrypted [5][13]. Multiple encryptions is the process of employing multiple ciphers. The generation of key for each cipher plays the pivotal role. Designing an algorithm for each layer of encryption requires independency. If one depends on the other then security levels are very low. Designing of mathematical models for multiple encryptions mostly based on time and space complexity.

## Lucas Numbers

The Lucas number is defined to be the sum of its two immediate previous terms, thereby forming a Fibonacci integer sequence. The first two Lucas numbers are $L_{0}=2$ and $L_{1}=1$ as opposed to the first two Fibonacci numbers $F_{0}=0$ and $F_{1}=1$. Though closely related in definition, Lucas and Fibonacci numbers exhibit distinct properties. The Lucas numbers may thus be defined as follows:

$$
L_{n}= \begin{cases}2 & \text { if } n=0 \\ 1 & \text { if } n=1 \\ L_{n-1}+L_{n-2} & \text { if } n>1\end{cases}
$$

The sequence of Lucas numbers is: $2,1,3,4,7,11,18,29,47,76,123,189 \ldots$.

## Pell Numbers

The Pell numbers are defined by the recurrence relation

$$
P_{n}= \begin{cases}0 & \text { if } n=0 \\ 1 & \text { if } n=1 \\ 2 P_{n-1}+P_{n-2} & \text { other wise }\end{cases}
$$

[^0]
# A. ChandraSekhar ${ }^{1}$, D. Chaya Kumari* ${ }^{2}$, Ch.Pragathi ${ }^{3}$ and Ashok Kumar ${ }^{4} /$ Multiple Encryptions of Independent Ciphers / IJMA- 7(2), Feb.-2016. 

In words, the sequence of Pell numbers starts with 0 and 1, and then each Pell number is the sum of twice the previous Pell number and the Pell number before that. The first few terms of the sequence are $0,1,2,5,12,29,70,169,408,985$, 2378, 5741, 13890,...

## Affine Transformation

An affine enciphering transformation is $C \equiv a P+b(\bmod N)$ where the pair $(\mathrm{a}, \mathrm{b})$ is the encrypting key and $\operatorname{gcd}(\mathrm{a}, \mathrm{N})=1$. If $\mathrm{y}=\mathrm{E}(\mathrm{x})=(\mathrm{ax}+\mathrm{b}) \bmod 26,[5]$ then we can "solve for x in terms of y " and so $E^{-1}(y)$ that is, if $y \equiv(a x+b) \bmod 26$ then $y-b \equiv a x(\bmod 26)$ or equivalently $a x \equiv(y-b) \bmod 26$.

## Vigenere Transformation

The Vigenere cipher was generated by Giovan Batista Belaso in 1553[9]. This cipher uses a secret keyword to encrypt the plaintext. First, each letter in the plaintext is converted into a number. Then this numerical value for each letter of the plaintext is added to the numerical value of each letter of a secret keyword to get the ciphertext. The Vigenere ciphers are more powerful than substitution ciphers.

## Super encryption

Super-encryption is a process of encryption information that is already encrypted. Super encryption is simply the use of multiple ciphers, usually in multiple steps, as a singular encryption scheme and is a very important technique and many modern strong encryption algorithms can be regarded as resulting from super-encryption using a number of comparatively weak algorithm.

## Present Work

An Algorithm for multi encryption using offset rule with Fibonacci numbers as the first layer of encryption and the affine transformation for super encryption

## Multiple Encryption with Lucas numbers

## Encryption algorithm:

Step-1: Alice creates plaintexts $\mathrm{P}=\mathrm{p}_{1} \mathrm{p}_{2}, \mathrm{P}_{3} \ldots \mathrm{p}_{\mathrm{m}}$
Step-2: Alice use off set rule with Lucas numbers $F=f_{1}, f_{2}, f_{3} \ldots f_{n}$ to each value in sequential order and get $1^{\text {sr }}$ ciphertext
Step-3: Alice computes $\mathrm{C}_{\mathrm{i}}=\mathrm{P}_{\mathrm{i}}+\mathrm{F}_{\mathrm{i}}$ for $\mathrm{i}=1,2,3, \ldots \mathrm{~m}$ where $\mathrm{C}_{1 \mathrm{i}}$ is the first construct cipher text.
Step-4: Now Alice perform super encryption with the Affine transformation $E(x)=(a x+b) \bmod 26, G c d(a, N)=1$ and take a and b are secret, from the first level encryption message.

Step-5: Alice sends super encrypted message to Bob.

## Decryption algorithm:

Step-1: Bob receives the super encrypted message.
Step-2: Bob decrypts the super encrypted message by using $E^{-1}(y)=a^{-1}(y-b) \bmod 26$

Step-3: Using reverse offset rule with Lucas number Bob decrypts first decrypted message to get original plaintext.

## SUPER ENCRYPTION OF VIGENERE CIPHER

## Encryption algorithm:

Step-1: Alice creates plaintexts $P=p_{1} p_{2}, p_{3} \ldots \ldots . . p_{m}$
Step-2: Alice use off set rule with Lucas numbers $F=f_{1} f_{2} f_{3 \ldots} f_{n}$ to each value in sequential order and get $1^{\text {sr }}$ ciphertext

# A. ChandraSekhar ${ }^{1}$, D. Chaya Kumari* ${ }^{2}$, Ch.Pragathi ${ }^{3}$ and Ashok Kumar ${ }^{4} /$ Multiple Encryptions of Independent Ciphers / IJMA- 7(2), Feb.-2016. 

Step-3: Alice computes $\mathrm{C}_{\mathrm{i}}=\mathrm{P}_{\mathrm{i}}+\mathrm{F}_{\mathrm{i}}$ for $\mathrm{i}=1,2,3, \ldots \mathrm{~m}$ where $\mathrm{C}_{1 \mathrm{i}}$ is the first constructed cipher text.
Step-4: Alice super encrypts the first encrypted message with vigenere transformation using a secret key.
Step-5: Alice sends super encrypted message to Bob.

## Decryption algorithm:

Step-1: Bob receives the super encrypted message.
Step-2: Bob decrypts with reverse offset rule vigenere transformation to super encryption message. It is the first decryption message

Step-3: Using reverse offset rule with Lucas number Bob decrypts first decrypted message to get original plaintext.

## Multiple Encryption with Pell numbers

## Encryption algorithm:

Step-1: Alice creates plaintexts $\mathrm{P}=\mathrm{p}_{1}, \mathrm{p}_{2}, \mathrm{p}_{3} \ldots \mathrm{p}_{\mathrm{m}}$
Step-2: Alice use off set rule with Pell numbers $F=f_{1}, f_{2}, f_{3} \ldots f_{n}$ to each value in sequential order and get $1^{\text {sr }}$ cipher text
Step-3:Alice computes $\mathrm{C}_{\mathrm{i}}=\mathrm{P}_{\mathrm{i}}+\mathrm{F}_{\mathrm{i}}$ for $\mathrm{i}=1,2,3, \ldots \mathrm{~m}$ where $\mathrm{C}_{1 \mathrm{i}}$ is the first construct cipher text.
Step-4: Now Alice apply super encryption of Affine transformation $E(x)=(a x+b) \bmod 26, \operatorname{gcd}(a, N)=1$ and take a and b are secret, from the first level encryption message.

Step-5: Alice sends super encrypted message to Bob.

## Decryption algorithm:

Step-1: Bob receives the super encrypted message.
Step-2: Bob decrypts with the inverse affine transformation by using $E^{-1}(y)=a^{-1}(y-b) \bmod 26$ as super encrypted message. It is the first decryption message

Step-3: Using reverse offset rule with Pell number Bob decrypts first decrypted message to get original plaintext.

## SUPER ENCRYPTION OF VIGENERE CIPHER

## Encryption algorithm:

Step-1: Alice creates plaintexts $\mathrm{P}=\mathrm{p}_{1} \mathrm{p}_{2}, \mathrm{p}_{3} \ldots \mathrm{p}_{\mathrm{m}}$
Step-2: Alice use off set rule with Pell numbers $\mathrm{F}=\mathrm{f}_{1}, \mathrm{f}_{2}, \mathrm{f}_{3 \ldots} . \mathrm{f}_{\mathrm{n}}$ to each value in sequential order and get $1^{\text {sr }}$ ciphertext
Step-3: Alice computes $\mathrm{C}_{\mathrm{i}}=\mathrm{P}_{\mathrm{i}}+\mathrm{F}_{\mathrm{i}}$ for $\mathrm{i}=1,2,3, \ldots \mathrm{~m}$ where $\mathrm{C}_{1 \mathrm{i}}$ is the first construct cipher text.
Step-4: Alice super encrypts the first encrypted message with vigenere transformation using a secret key
Step-5: Alice sends super encrypted message to Bob.

## Decryption algorithm:

Step-1: Bob receives the super encrypted message.
Step-2: Bob decrypts with the reverse off set rule of vigenere transformation to super encryption message. It is the first decryption message

Step-3: Using reverse offset rule with Pell number Bob decrypts first decrypted message to get original plaintext.


| A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 |

## EXAMPLE

## Encryption algorithm:

Step-1: Let the Plain text be NUMBERTHEORY
Step-2: Using Offset rule with Lucas numbers

| N | U | M | B | E | R | T | H | E | O | R | Y |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 13 | 20 | 12 | 1 | 4 | 17 | 19 | 7 | 4 | 14 | 17 | 24 |
| + | + | + | + | + | + | + | + | + | + | + | + |
| 2 | 1 | 3 | 4 | 7 | 11 | 18 | 29 | 47 | 76 | 123 | 199 |
| 15 | 21 | 15 | 5 | 11 | 28 | 37 | 36 | 51 | 90 | 140 | 223 |

Step-3: Now applying affine transformation $E(x)=(a x+b) \bmod 26$ for $a=5 \& b=20$

| $\mathbf{x}$ | 15 | 21 | 15 | 5 | 11 | 28 | 37 | 36 | 51 | 90 | 140 | 223 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{5 x}+\mathbf{2 0}$ | 95 | 125 | 95 | 45 | 75 | 160 | 205 | 200 | 275 | 470 | 720 | 1135 |
| $\mathbf{( 5 x + 2 0 ) ~ m o d ~ 2 6 ~}$ | 17 | 21 | 17 | 19 | 23 | 4 | 23 | 18 | 15 | 2 | 18 | 17 |
| Second Encrypted message is | R | V | R | T |  | E | X | S | P | C | S | R |

Step-4: Encrypted message is RVRTXEXSPCSR

## Decryption algorithm:

Step-1: First Decrypted Message is RVRTXEXSPCSR
Step-2: Find Inverse of Affine transformation $E^{-1}(y)=a^{-1}(y-b) \bmod 26$

| Message | R | V | R | T | X | E | X | S | P | C | S | R |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{y}$ | 17 | 21 | 17 | 19 | 23 | 4 | 23 | 18 | 15 | 2 | 18 | 17 |
| $\mathbf{y - 2 0}$ | -3 | 1 | -3 | -1 | 3 | -16 | 3 | -2 | -5 | -18 | -2 | -3 |
| $\mathbf{2 1}(\mathbf{y}-\mathbf{2 0})$ | -63 | 21 | -63 | -21 | 63 | -336 | 63 | -42 | -105 | -378 | -42 | -63 |
| 21(y-20)mod26 | 15 | 21 | 15 | 5 | 11 | 2 | 11 | 10 | 25 | 12 | 10 | 15 |
| First Decrypted text | P | V | P | F | L | C | L | K | Z | M | K | P |

Step-3: Reverse Offset rule with the first decrypted message

| Message | P | V | P | F | L | C | L | K | Z | M | K | P |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 15 | 21 | 15 | 5 | 11 | 2 | 11 | 10 | 25 | 12 | 10 | 15 |
| Reverse offset rule with Lucas number | 15 | 21 | 15 | 5 | 11 | 2 | 11 | 10 | 25 | 12 | 10 | 15 |
|  | - | - | - | - | - | - | - | - | - | - | - | - |
|  | 2 | 1 | 3 | 4 | 7 | 11 | 18 | 29 | 47 | 76 | 123 | 199 |
| Mod 26 | 13 | 20 | 12 | 1 | 4 | -9 | -7 | -19 | -22 | -64 | -113 | -184 |
| Second Decrypted message is | 13 | 20 | 12 | 1 | 4 | 17 | 19 | 7 | 4 | 14 | 17 | 24 |
|  | N | U | M | B | E | R | T | H | E | O | R | Y |

## VIGENERE CIPHER

## Encryption algorithm:

## Step-1: Let the Plain text be LUCASSERIES

Step-2: Offset rule with Lucas number

| L | U | C | A | S | S | E | R | I | E | S |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 11 | 20 | 2 | 0 | 18 | 18 | 4 | 17 | 8 | 4 | 18 |
| + | + | + | + | + | + | + | + | + | + | + |
| 2 | 1 | 3 | 4 | 7 | 11 | 18 | 29 | 47 | 76 | 123 |
| 13 | 21 | 5 | 4 | 25 | 29 | 22 | 46 | 55 | 80 | 141 |

Using vigenere cipher as second key

| C | A | R | D |
| :---: | :---: | :---: | :---: |
| 2 | 0 | 17 | 3 |

Step-3: Offset rule with the first encrypted message

|  | 13 | 21 | 5 | 4 | 25 | 29 | 22 | 46 | 55 | 80 | 141 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Offset rule with key | 13 | 21 | 5 | 4 | 25 | 29 | 22 | 46 | 55 | 80 | 141 |
|  | + | + | + | + | + | + | + | + | + | + | + |
|  | 2 | 0 | 17 | 3 | 2 | 0 | 17 | 3 | 2 | 0 | 17 |
|  | 15 | 21 | 22 | 7 | 27 | 29 | 19 | 49 | 57 | 80 | 158 |
| Mod 26 | 15 | 21 | 22 | 7 | 1 | 3 | 13 | 23 | 5 | 2 | 2 |
| Second Encrypted message is | P | V | W | H | B | D | N | X | F | C | C |

Step-4: Encrypted message is PVWHBDNXFCC

## Decryption algorithm:

Step-1: First Decrypted Message is PVWHBDNXFCC
Step-2: Decrypts with the inverse of vigenere transformation

| Message | P | V | W | H | B | D | N | X | F | C | C |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 15 | 21 | 22 | 7 | 1 | 3 | 13 | 23 | 5 | 2 | 2 |
| Reverse Offset rule with key | 15 | 21 | 22 | 7 | 1 | 3 | 13 | 23 | 5 | 2 | 2 |
|  | - | - | - | - | - | - | - | - | - | - | - |
|  | 2 | 0 | 17 | 3 | 2 | 0 | 17 | 3 | 2 | 0 | 17 |
|  | 13 | 21 | 5 | 4 | -1 | 3 | -4 | 20 | 3 | 2 | 11 |
| Mod 26 | 13 | 21 | 5 | 4 | 25 | 3 | 22 | 20 | 3 | 2 | 11 |
| First Decrypted message is | N | V | F | E | Z | D | W | U | D | C | L |

Step-3: Reverse Offset rule with the first decrypted message

| Message | N | V | F | E | Z | D | W | U | D | C | L |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 13 | 21 | 5 | 4 | 25 | 3 | 22 | 20 | 3 | 2 | 11 |
| Reverse Offset rule with Lucas number | 13 | 21 | 5 | 4 | 25 | 3 | 22 | 20 | 3 | 2 | 11 |
|  | - | - | - | - | - | - | - | - | - | - | - |
|  | 2 | 1 | 3 | 4 | 7 | 11 | 18 | 14 | 47 | 76 | 123 |
| Mod 26 | 11 | 20 | 2 | 0 | 18 | -8 | 4 | -9 | -44 | -74 | -112 |
| Second Decrypted message is | 11 | 20 | 2 | 0 | 18 | 18 | 4 | 17 | 8 | 4 | 18 |

## PELL NUMBERS

## Encryption algorithm:

Step-1: Plain text is SECRETMATHS
Step-2: Offset rule with Pell number

| S | E | C | R | E | T | M | A | T | H | S |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 18 | 4 | 2 | 17 | 4 | 19 | 12 | 0 | 19 | 7 | 18 |
| + | + | + | + | + | + | + | + | + | + | + |
| 0 | 1 | 2 | 5 | 12 | 29 | 70 | 169 | 408 | 985 | 2378 |
| 18 | 5 | 4 | 22 | 16 | 48 | 82 | 169 | 427 | 992 | 2396 |

Step-3: Now applying affine transformation $\mathrm{E}(\mathrm{x})=(\mathrm{ax}+\mathrm{b}) \bmod 26$ for $\mathrm{a}=5$ \& $\mathrm{b}=12$

| $\mathbf{X}$ | 18 | 5 | 4 | 22 | 16 | 48 | 82 | 169 | 427 | 992 | 2396 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{5 x + 1 2}$ | 102 | 37 | 32 | 122 | 92 | 252 | 422 | 857 | 2147 | 4972 | 11992 |
| $\mathbf{( 5 x + 1 2 ) ~ m o d ~ 2 6 ~}$ | 24 | 11 | 6 | 18 | 14 | 18 | 6 | 25 | 15 | 6 | 6 |
| Second Encrypted message is | Y | L | G | S | O | S | G | Z | P | G | G |

Step-4: Encrypted message is YLGSOSGZPGG

## Decryption algorithm:

Step-1: First Decrypted Message is YLGSOSGZPGG
Step-2: Find Inverse of Affine transformation $E^{-1}(y)=a^{-1}(y-b) \bmod 26$

| Message | Y | L | G | S | O | S | G | Z | P | G | G |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{y}$ | 24 | 11 | 6 | 18 | 14 | 18 | 6 | 25 | 15 | 6 | 6 |
| $\mathbf{y - 1 2}$ | 12 | -1 | -6 | 6 | 2 | 6 | -6 | 13 | 3 | -6 | -6 |
| $\mathbf{2 1 ( y - 1 2 )}$ | 252 | -21 | -126 | 126 | 42 | 126 | 126 | 273 | 63 | -126 | -126 |
| $\mathbf{2 1 ( y - 1 2 ) m o d 2 6 ~}$ | 18 | 5 | 4 | 22 | 16 | 22 | 4 | 13 | 11 | 4 | 4 |
| First Decrypted text | S | F | E | W | Q | W | E | N | L | E | E |

Step-3: Reverse Offset rule with the first decrypted message

| Message | S | F | E | W | Q | W | E | N | L | E | E |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 18 | 5 | 4 | 22 | 16 | 22 | 4 | 13 | 11 | 4 | 4 |
| Reverse offset rule with Pell number | 18 | 5 | 4 | 22 | 16 | 22 | 4 | 13 | 11 | 4 | 4 |
|  | - | - | - | - | - | - | - | - | - | - | - |
|  | 0 | 1 | 2 | 5 | 12 | 29 | 70 | 169 | 408 | 985 | 2378 |
|  | 18 | 4 | 2 | 17 | 4 | -7 | -66 | -156 | -397 | -981 | -2357 |
| Mod 26 | 18 | 4 | 2 | 17 | 4 | 19 | 12 | 0 | 19 | 7 | 18 |
| Second Decrypted message is | S | E | C | R | E | T | M | A | T | H | S |

## VIGENERE CIPHERE

## Encryption algorithm:

Step-1: Let the Plain text be PELLNUMBERS
Step-2: Offset rule with Pell number

| P | E | L | L | N | U | M | B | E | R | S |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 15 | 4 | 11 | 11 | 13 | 20 | 12 | 1 | 4 | 17 | 18 |
| + | + | + | + | + | + | + | + | + | + | + |
| 0 | 1 | 2 | 5 | 12 | 29 | 70 | 169 | 408 | 985 | 2375 |
| 15 | 5 | 13 | 16 | 25 | 49 | 82 | 170 | 412 | 1002 | 2396 |

Using vigenere cipher as second key

| M | A | T | H |
| :---: | :---: | :---: | :---: |
| 12 | 0 | 19 | 7 |

Step-3: Offset rule with the first decrypted message

|  | 15 | 5 | 13 | 16 | 25 | 49 | 82 | 170 | 412 | 1002 | 2396 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Offset rule with Key | 15 | 5 | 13 | 16 | 25 | 49 | 82 | 170 | 412 | 1002 | 2396 |
|  | + | + | + | + | + | + | + | + | + | + | + |
|  | 12 | 0 | 19 | 7 | 12 | 0 | 19 | 7 | 12 | 0 | 19 |
|  | 27 | 5 | 32 | 23 | 37 | 49 | 101 | 177 | 424 | 1002 | 2415 |
| Mod 26 | 1 | 5 | 6 | 23 | 11 | 23 | 23 | 21 | 8 | 14 | 23 |
| Second Encrypted message is | B | F | G | X | L | X | X | V | I | O | X |

Step-4: Encrypted message is BFGXLXXVIOX

## Decryption algorithm:

Step-1: First Decrypted Message is BFGXLXXVIOX
Step-2: Decrypts with the inverse of vigenere transformation

| Message | B | F | G | X | L | X | X | V | I | O | X |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | 5 | 6 | 23 | 11 | 23 | 23 | 21 | 8 | 14 | 23 |
| Reverse offset rule with Key | 1 | 5 | 6 | 23 | 11 | 23 | 23 | 21 | 8 | 14 | 23 |
|  | - | - | - | - | - | - | - | - | - | - | - |
|  | 12 | 0 | 19 | 7 | 12 | 0 | 19 | 7 | 12 | 0 | 19 |
| Mod 26 | -11 | 5 | -13 | 16 | -1 | 23 | 4 | 14 | -4 | 14 | 4 |
| First Decrypted message is | 15 | 5 | 13 | 16 | 25 | 23 | 4 | 14 | 22 | 14 | 4 |

Step-3: Reverse Offset rule with the first decrypted message

| Message | P | F | N | Q | Z | X | E | O | W | O | E |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 15 | 5 | 13 | 16 | 25 | 23 | 4 | 14 | 22 | 14 | 4 |
| Reverse offset rule with Pell number | 15 | 5 | 13 | 16 | 25 | 23 | 4 | 14 | 22 | 14 | 4 |
|  | - | - | - | - | - | - | - | - | - | - | - |
|  | 0 | 1 | 2 | 5 | 12 | 29 | 70 | 169 | 408 | 985 | 2378 |
|  | 15 | 4 | 11 | 11 | 13 | -6 | -66 | -155 | -386 | -971 | -2371 |
| Mod 26 | 15 | 4 | 11 | 11 | 13 | 20 | 12 | 1 | 4 | 17 | 18 |
| Second Decrypted message is | P | E | L | L | N | U | M | B | E | R | S |

A. ChandraSekhar ${ }^{1}$, D. Chaya Kumari*², Ch.Pragathi ${ }^{3}$ and Ashok Kumar ${ }^{4}$ / Multiple Encryptions of Independent Ciphers / IJMA- 7(2), Feb.-2016.

## 1. Result analysis

| S.No | First encryption | Time for first encryption | Super encryption | Time for super encryption |
| :---: | :---: | :---: | :---: | :---: |
| 1 | PELL NUMBER | 1.01 MILLI SEC | Affine or vigenere | 3.01 MILLI SEC |
| 2 | LUCAS NUMBER | 1.3 MILLI SEC | Affine or vigenere | 3.35 MILLI SEC |

## CONCLUSIONS

For multiple encryptions, two different algorithms were performed. Initial encryption is performed with Lucas or Pell numbers using offset rule whereas for super encryption two different ciphers either Affine or Vigenere are performed. In view of the time both are more or less the same.

## REFERENCES

1. "Application of Fibonacci numbers" edited by A.N.Philippou, A.F.Jordan and G.E.Bergun, Springer science media LLC.
2. A. ChandraSekhar, D. Chaya Kumari, S. Ashok Kumar "Symmetric Key Cryptosystem for Multiple Encryptions", International Journal of Mathematics Trends and Technology (IJMTT). V29 (2):140-144 January 2016. ISSN: 2231-5373.
3. A. Chandra Sekhar, Prasad Reddy. P.V.G.D, A.S.N.Murty, B.Krishna Gandhi "Self-Encrypting Data Streams Using Graph Structures" IETECH International Journal Of Advanced Computations PP 007-009, 2008, vol 2 No
4. A. Chandra Sekhar, K.R. Sudha and Prasad Reddy. P.V.G.D "Data Encryption Technique Using Random Generator" IEEE International Conference on Granular Computing GrC-07, Nov 2-4, 2007, Silicon Valley, USA, PP 576-579.
5. B.Krishna Gandhi, A. Chandra Sekhar and Prasad Reddy P.V.G.D: Cryptographic Scheme for Digital signals" IETECH International Journal Of Advanced Computations", Vol: 2 No: 4, PP195-200, 2008.
6. "Cryptography: A very short introduction" by Fred Piper and Sean Murthy.
7. E.H.Lock Wood, A single-light on pascal's triangle, Math, Gazette 51(1967), PP 243-244.
8. Fibonacci, Lucas and Pell numbers andpascal's triangle, Thomas Khoshy, Applied Probability Trust, PP 125132.
9. Fibonacci and Lucas Numbers with applications Thomas Khouhy ISBN: 978-0-471-39969-8.
10. J.Buchman"Introduction to cryptography" Springer-Verlag 2001.
11. K.R.Sudha, A. Chandra Sekhar, P.V.G.D, Prasad Reddy, "Cryptographic Protection Of Digital Signal Using some Recurrence Relations" IJCNS, May 2007, PP203-207.
12. Linear independent spanning sets and linear transformations for multi-level encryption, A.ChandraSekhar, V.Anusha, B.Ravi Kumar, S.Ashok Kumar Vol36(2015) , No.4, PP;385-392.

## Source of support: Nil, Conflict of interest: None Declared

[Copy right © 2016. This is an Open Access article distributed under the terms of the International Journal of Mathematical Archive (IJMA), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.]


[^0]:    Corresponding Author: D. Chaya Kumari* ${ }^{*},{ }^{2}$ Assistant Professor in Mathematics, BVRIT Hyderabad College of engineering for women, Hyderabad, India.

