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ABSTRACT 
A graphoidal cover of G is a collection ψ of (not necessarily open) paths in G, such that every path in ψ  has at least 
two vertices, every vertex of G is an internal vertex of at most one path in ψ  and every edge of G is in exactly one path 
in ψ . The minimum cardinality of a graphoidal cover of G is called the graphoidal covering of G and is denoted 
by ( )Gη . If every two paths in ψ have at most one common vertex, then it is called simple graphoidal cover of G. The 
minimum cardinality of a simple graphoidal cover of G is called simple graphoidal covering number of G and is 
denoted by ( ).s Gη  Here we determine the simple graphoidal covering number of Snake graphs. 
 
Keywords: Simple Graphoidal Cover, Simple Graphoidal Covering Number, Triangular Snake graph, Quadrilateral 
Snake graph. 
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1. INTRODUCTION 
 
By a graph G = (V, E) we mean a finite undirected graph without loop or multiple edges. The order and size of the G 
are denoted by p and q respectively. For theoretical terminology of graph we refer Harary [1].  All the graphs 
considered in this paper are assumed to be connected and non-trivial. If ( )1 2, , .. nP v v v= … be a path or cycle in a graph 

G, the vertices 2 3 1, , nv v v −……  are called internal vertices of P and 1, nv v  are called external vertices of P. Two paths P 
and Q are said to be internally disjoint if no vertex of G is an internal vertex of both P and Q. The concept of graphoidal 
cover was introduced by Dr. B.D. Acharya and Dr. E. Sampath Kumar [2]. The simple graphoidal cover was introduced 
by Dr. S. Arumugam and Dr. I. Shahul Hamid [3].  
 
Definition 1.1 [1]:  A graphoidal cover of G is a set ψ of (not necessarily open) paths in G satisfying the following 
conditions.  

(i) Every path inψ has at least two vertices. 
(ii) Every vertex of G is an internal vertex of at most one path inψ . 
(iii) Every edge of G is in exactly one path inψ . 

The minimum cardinality of a graphoidal cover of G is called the graphoidal covering number of G and is denoted by 
(G)η  

 
Definition 1.2 [3]:  A simple graphoidal cover of a graph G is a graphoidal cover ψ of G such that any two paths in ψ  
have at most one vertex in common. The minimum cardinality of a simple graphoidal cover of G is called simple 
graphoidal covering number of G and is denoted by s (G).η  
 

Corresponding Author: G. Venkat Narayanan*2, 2Department of Mathematics,  
St. Joseph’s College of Engineering, Chennai 600 119, India. 

 
 

http://www.ijma.info/�


J. Suresh Suseela1, G. Venkat Narayanan*2 / Simple Graphoidal Covering Number of Snake Graphs / IJMA- 7(2), Feb.-2016. 

© 2016, IJMA. All Rights Reserved                                                                                                                                                                      112   

 
Definition 1.3 [2]:  Let ψ  be a collection of internally disjoint paths in G. A vertex of G is said to be an interior vertex 
of ψ  if it is an internal vertex of some path in ψ . Any vertex which is not an interior vertex of ψ is said to be an 
exterior vertex of ψ . 
 
Theorem 1.4 [3]: For any simple graphoidal cover ψ  of a (p, q) of graph G, let tψ denote the number of exterior 

vertices of ψ . Let t = min tψ , where the minimum is taken over all simple graphoidal covers ψ of G. Then 

s (G) q p t .η = − +  
 
Theorem 1.5 [3]: For any graph G, s (G) q p.η ≥ −  Moreover, the following are equivalent. 

(i) s (G) q p.η = −  
(ii) There exists a simple graphoidal cover of G without exterior vertices. 
(iii) There exists a set of P internally disjoint and edge disjoint induced paths without exterior vertices such that 

any two paths in P have at most one vertex in common. 
 
Definition 1.6: A triangular snake is obtained from a path of 1 2( , , ., )nP u u u= … by joining iu and 1iu + with a new 
vertex iv , 1 1.i n≤ ≤ −  (i.e.) every edge of P is replaced by a triangle C3. 
 
Definition 1.7: A double triangular snake consists of two triangular snake graphs that have a common path. 
 
Definition 1.8: A triple triangular snake consists of three triangular snake graphs that have a common path. 
 
Definition 1.9: An alternate triangular snake graph is obtained from a path of 1 2, , ., nu u u… by joining iu and 

1iu + (alternatively) to a new vertex iv ,1 1.i n≤ ≤ −  
 
Definition 1.10: An alternate double triangular snake graph consists of two alternate triangular snake graphs 
 
Definition 1.11: The quadrilateral snake is obtained from a path of 1 2( , , ., )nP u u u= … by joining iu and 1iu + with two 
new vertices ,i iv w , 1 1.i n≤ ≤ −  (i.e.) every edge of  P is replaced by a cycle C4. 
 
Definition 1.12: The double quadrilateral snake consists of two quadrilateral snake graphs that have a common path. 
 
Definition 1.13: The triple quadrilateral snake consists of three quadrilateral snake graphs that have a common path. 
 
2. MAIN RESULTS 
 
Theorem 2.1: Let G be a triangular snake graph then s (G) q p 1.η = − +  
 
Proof: Let 1 2 3 4{ , , , .... }nu u u u u be the underlined path of G and 1 2 3 1{ , , ,..... }nv v v v − be the vertices in G such that each iv  
is adjacent to , 1i iu u + . The collection of path of G given by  

1( , , , ) , 1 1.i i i i iP u v u u i n+= ≤ ≤ −  
is a simple graphoidal cover of G in which 1u is the only vertex which is not an internal.  Therefore s (G) q p 1.η ≤ − +  
Now, let ψ  be any simple graphoidal cover of G. Then ψ  can contain at most (n–1) triangles and paths of length 1. 
Since every triangle can make two vertices internal, at most 2(n–1) vertices can be made internal in ψ . 
Therefore 1tψ ≥ , since 2 –1p n= . Hence s (G) q p 1.η ≥ − +  Thus s (G) q p 1.η = − +  
 
Theorem 2.2: Let G be a double triangular snake graph then s (G) q p n .η = − +  
 
Proof:  Let 1 2 3 4{ , , , .... }nu u u u u  be the underlined path of G and 1 2 3 1 1 2 3 1{ , , ,..... , , , ,..... }n nv v v v w w w w− − be the vertices in 
G such that each iv & iw is adjacent to , 1i iu u + . The collection of paths of G given by  

1( , , , )i i i i iP u v u u+=  
( , )i i iQ u w=  

1( , ) , 1 1.i i iR w u i n+= ≤ ≤ −  
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is a simple graphoidal cover of G in which 1 1 2 1 , , ,  nu w w w −… are not an internal. Therefore s (G) q p n .η ≤ − +  Now, 
let ψ  be any simple graphoidal cover of G. Now, let ψ  be any simple graphoidal cover of G. Then ψ  can contain           
at most (n–1) triangles and paths of length 1. Since every triangle can make two vertices internal, at most 2(n–1) 
vertices can be made internal in ψ . Therefore t nψ ≥ , since p=3n–2. Hence s (G) q p n .η ≥ − +  Thus 

s (G) q p n .η = − +  
 
Theorem 2.3: Let G be a triple triangular snake graph, then s (G) q p 2n 1 .η = − + −  
 
Theorem 2.4: Let G be a quadrilateral snake graph, then  s (G) q p 1.η = − +  
 
Proof: Let 1 2 3 4{ , , , .... }nu u u u u be the underlined path of G and 1 2 1 1 2 1{ , ,..., , , ,....., }n nv v v w w w− − be the vertices in G such 
that by joining iu & 1iu + with two new vertices i iv and w  by the edges ( ,i iu v ), ( ,i iv w ), ( 1, +i iw u ). The collection of 
paths of G given by 

1( , , , , ) , 1 1.i i i i i iP u v w u u i n+= ≤ ≤ −  
is a simple graphoidal cover of G in which 1u is not an internal. Therefore s (G) q p 1.η ≤ − +  Now, let ψ  be any simple 
graphoidal cover of G. Then ψ can contain at most (n–1) cycles of length 4 and paths of length 1. Since every cycles of 
length 4 can make three vertices internal, at most 3(n–1) vertices can be made internal in .ψ Therefore 1tψ ≥  since 

p=3n–2.  Hence s (G) q p 1.η ≥ − +  Thus s (G) q p 1.η = − +  
 
Theorem 2.5: Let G be a double quadrilateral snake graph then  s (G) q p n .η = − +  
 
Proof: Let 1 2 3 4{ , , , .... }nu u u u u be the underlined path in G and 1 2 3 1{ , , ,..., ,nv v v v − 1 2 3 1, , ,....., nw w w w −  1 2 3 1, , , ,...... nx x x x −  

1 2 3 1, , , ,...... }ny y y y − be the vertices in G such that by joining iu & 1iu + with four new vertice s , , &i i i iv w x y  by  the 

edges         ( ,i iu v ), ( ,i iv w ), ( 1, +i iw u ), ( ,i iu x ), ( ,i ix y ) & ( 1,i iy u + ). The collection of paths of G given by 

1( , , , , )i i i i i iP u v w u u+=  

1

( , , )

( , ) , 1 1.
i i i i

i i i

Q u x y

R y u i n+

=

= ≤ ≤ −
 

is a simple graphoidal cover of G in which 1,u 1 2 1 , , ny y y −… are not internal. Therefore s (G) q p n .η ≤ − +  Now, let 
ψ be any simple graphoidal cover of G. Then ψ can contain at most (n–1) cycle of length 4 and at most (n–1) paths of 
length 2. Since every cycle of length 4 can make three vertices internal and every path of length 2, can make one vertex 
internal. Therefore at most 4(n–1) vertices can be made internal in .ψ Therefore t nψ ≥ since p=5n–4. Hence 

s (G) q p n .η ≥ − +  Thus s (G) q p n .η = − +  
 
Theorem 2.6: Let G be triple quadrilateral snake graph then  s (G) q p 2n 1 .η = − + −  
 
Theorem 2.7: Let G be an alternate triangle snake graph then  

1

1 2

2

, 0(mod 4) 2(mod 4)
2

1( ) , 1(mod 4) 3(mod 4)
2
2 , 0(mod 4) 2 (mod 4)

2

  − + ≡ ≡   
+ = − + ≡ ≡  

 
+ − + ≡ ≡ 

 

s

nq p triangular paths starts at u and n or n

nG q p triangular paths starts at u or u and n or n

nq p triangular paths starts at u and n or n

η









 

 
Proof: Let 1 2 3 4{ , , , .... }nu u u u u be the underlined path and 1 2 3 1{ , , ,...., }nv v v v − be the vertices in G such that each iv is 
adjacent to , 1.i iu u +  
 
Case-(i): alternate triangular snake starts at 1u  
 
Subcase-(i): 0(mod 4)n ≡ or 2(mod 4)n ≡  
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The collection of paths of G given by  

0 1 1 2 1

2 2 1

2 1 1 2 2 2 1

( , , , ),

( , ),

2( , , , ) , 1
2

i i i

i i i i i

P u v u u

P u u

nQ u v u u i

+

+ + + +

=

=

− = ≤ ≤  
 

 

is a simple graphoidal cover of G in which 1 3 5 1, , ,........, nu u u u − are not internal.  Therefore s
n(G) q p .
2

 η ≤ − +  
                   

Now, let ψ  be any simple graphoidal cover of G. Since ψ can contain at most 
2
n 

 
 

triangles and each triangle can 

make two vertices internal inψ , at most n vertices can be made internal. Therefore
2
ntψ

 ≥  
 

, since 3
2
np  =  

 
.                

Hence s
n(G) q p .
2

 η ≥ − +  
 

 Thus s
n(G) q p .
2

 η = − +  
 

 

 
Subcase-(ii): 1(mod 4)n ≡ or 3(mod 4)n ≡  
 
The collection of paths of G is given by  

2 1 2 2 1

2 2 1

( , , , ) ,

1( , ) , 1 .
2

i i i i i

i i i

P u v u u

nQ u u i

− −

+

=

− = ≤ ≤  
 

 

is a simple graphoidal cover of G in which 1 3 5, , ,........ nu u u u are not internal. Therefore s
n 1(G) q p .

2
+ η ≤ − +  

 
 Now, 

let ψ  be any simple graphoidal cover of G. Since ψ can contain at most 
1

2
n − 

 
 

triangles and each triangle can make 

two vertices internal in ψ , at most (n–1) vertices can be made internal.  Therefore 1
2

ntψ
+ ≥  

 
, since

3 1
2

np − =  
 

.   

Hence s
n 1(G) q p .

2
+ η ≥ − +  

 
 Thus s

n 1(G) q p .
2
+ η = − +  

 
 

Case-(ii): alternate triangular snake starts at 2u  
 
Subcase-(i): 0(mod 4)n ≡ or 2(mod 4)n ≡  
 
The collection of paths of G given by  

1 2

2 2 1 2

2 1 2 2

( , )

( , , , ) ,

2( , ) , 1 .
2

i i i i i

i i i

P u u

P u v u u

nQ u u i

+

+ +

=

=

− = ≤ ≤  
 

 

is a simple graphoidal cover of G in which 1 2 4 6 8 10, , , , , ........, nu u u u u u u are not internal. Therefore                                     

s
n 2(G) q p .

2
+ η ≤ − +  

 
 Now, let ψ  be any simple graphoidal cover of G. Since ψ  can contain at most 

2
2

n − 
 
 

 

triangles and each triangle can make two vertices internal in ψ , at most (n–2) vertices can be made internal.  Therefore 

2
2

ntψ
+ ≥  

 
, since

3 2
2

np − =  
 

.  Hence s
n 2(G) q p .

2
+ η ≥ − +  

 
 Thus s

n 2(G) q p .
2
+ η = − +  

 
 

 
Subcase-(ii): 1(mod 4)n ≡ or 3(mod 4)n ≡  
The collection of paths of G given by 

2 1 2

2 2 1 2

( , ),
1( , , , ) , 1 .

2

i i i

i i i i i

P u u
nQ u v u u i

−

+

=

− = ≤ ≤  
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is a simple graphoidal cover of G in which 1 2 4 6 8 10 1, , , , , ........, nu u u u u u u −  are not internal. Therefore 

s
n 1(G) q p .

2
+ η ≤ − +  

 
 Now, let ψ be any simple graphoidal cover of G. Since ψ can contain at most 

1
2

n − 
 
 

triangles and each triangle can make two vertices internal in ψ , at most (n–1) vertices can be made internal.  

Therefore 
1

2
ntψ
+ ≥  

 
 since

3 1
2

np − =  
 

.  Hence s
n 1(G) q p .

2
+ η ≥ − +  

 
 Thus s

n 1(G) q p .
2
+ η = − +  

 
 

 
Theorem 2.8: Let G be an alternate double triangle snake graph, then  ( ) .s G q p nη = − +  
 
Proof: Let 1 2 3 4{ , , , .... }nu u u u u be the underlined path in G and 1 2 3 1 1 2 3 1{ , , ,...., , , , ,..... }n nv v v v w w w w− − be the vertices in 
G such that each i iv & w is adjacent to i i 1u , u + . Here we have two cases. 
 
Case-(i): Alternate double triangular snake starts at 1u  
 
Subcase-(i): 0(mod 4)n ≡ or 2(mod 4)n ≡  
 
The collection of paths of G given by  

1 1 2 1

1 1

1 2

2 2 1

( , , , ) ,
( , ) ,
( , ) ,
( , ),+

=
=
=
=i i i

P u v u u
Q u w
R w u
P u u

 

2 1 1 2 2 2 1

2 1 1

1 2 2

( , , , ),
( , ),

2( , ), 1 .
2

i i i i i

i i i

i i i

Q u v u u
R u w

nS w u i

+ + + +

+ +

+ +

=

=

− = ≤ ≤  
 

 

is a simple graphoidal cover of G in which 1 3 5 1 1 2
2

, , ,......, , , ,........,n nu u u u w w w−  
 
 

are not internal. Therefore 

s (G) q p n .η ≤ − +  Now, let ψ  be any simple graphoidal cover of G. Since ψ  can contain at most 
2
n 

 
 

triangles and 

each triangle can make two vertices internal in ψ , at most n vertices can be made internal.  Therefore t nψ ≥ , 

since 2p n= .  Hence s (G) q p n .η ≥ − +  Thus s (G) q p n .η = − +  
 
Subcase-(ii): 1(mod 4)n ≡ or 3(mod 4)n ≡  
 
The collection of paths of G given by  

2 1 2 2 1

2 1

2

2 2 1

( , , , ) ,
( , )
( , ),

1( , ), 1 .
2

i i i i i

i i i

i i i

i i i

P u v u u
Q u w
R w u

nS u u i

− −

−

+

=

=

=

− = ≤ ≤  
 

 

is a simple graphoidal cover of G in which 1 3 5 1 2 1
2

, , ,......, , , ,.........,n nu u u u w w w − 
 
 

are not internal. Therefore 

s (G) q p n .η ≤ − +  Now, let ψ  be any simple graphoidal cover of G. Since ψ can contain at most 1
2

n − 
 
 

triangles and 

each triangle can make two vertices internal inψ , at most (n–1) vertices can be made internal.  Therefore t nψ ≥ , since 

2 1p n= − .  Hence s (G) q p n .η ≥ − +  Thus s (G) q p n .η = − +  
 
Case-(ii): Alternate double triangular snake starts at 2u  
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Subcase-(i): 0(mod 4)n ≡ or 2(mod 4)n ≡  
 
The collection of paths of G given by  

1 2

2 2 1 2

2

( , )
( , , , ),

( , ),
i i i i i

i i i

P u u
P u v u u

Q u w
+

=
=

=

 

2 1

2 1 2 2

( , ),
2( , ), 1 .

2

i i i

i i i

R w u
nS u u i

+

+ +

=

− = ≤ ≤  
 

 

is a simple graphoidal cover of G in which 1 2 4 6 1 2 2
2

, , , ,......, , , ,.........,n nu u u u u w w w − 
 
 

are not internal. Therefore 

s (G) q p n .η ≤ − +  Now, let ψ  be any simple graphoidal cover of G. Since ψ can contain at most 2
2

n − 
 
 

triangles 

and each triangle can make two vertices internal in ψ , at most (n–2) vertices can be made internal.                                
 
Therefore t nψ ≥ , since 2 2p n= − .  Hence s (G) q p n .η ≥ − +  Thus s (G) q p n .η = − +  
 
Subcase-(ii): 1(mod 4)n ≡ or 3(mod 4)n ≡  
 
The collection of paths of G is given by  

( )2 1 2

2 2 1 2

2

2 1

,

( , , , ),

( , ),
1( , ) , 1 .

2

−

+

+

=

=

=

− = ≤ ≤  
 

i i i

i i i i i

i i i

i i i

P u u

Q u v u u

R u w
nS w u i

 

is a simple graphoidal cover of G in which 1 2 4 6, 1 1 2 1
2

, , , ......, , , ,.........,n nu u u u u w w w− − 
 
 

are not internal.                                          

 
Therefore s (G) q p n .η ≤ − +  Now, let ψ  be any simple graphoidal cover of G. Since ψ can contain at most 

1
2

n − 
 
 

triangles and each triangle can make two vertices internal in ψ , at most (n–1) vertices can be made internal.   

Therefore t nψ ≥ , since 2 1p n= − .  Hence s (G) q p n .η ≥ − +  Thus s (G) q p n .η = − +  
 
Theorem 2.9: Let G be an alternate quadrilateral snake graph, then                  

1

s 1 2

2

nq p , triangular pathsstarts at u and n 0(mod 4) or n 2(mod 4)
2
n 1(G) q p , triangular pathsstarts at u or u and n 1(mod 4) or n 3(mod 4)

2
n 2q p , triangular pathsstarts at u and n 0(mod 4) or n 2(mod 4)

2

η

  − + ≡ ≡   
+ = − + ≡ ≡  

 
+ − + ≡ ≡ 

 









 

 
Proof: Let 1 2 3 4{ , , , .... }nu u u u u be the underlined path in G and 1 2 3 1 1 2 3 1{ , , ,...., , , , ,..... }n nv v v v w w w w− − be the vertices in 
G such that joining iu & 1iu + with two new vertices ,i iv w by the edges ( ,i iu v ), ( ,i iv w ), ( 1, +i iw u ).  Here we have two 
cases. 
 
Case-(i): Alternate quadrilateral snake starts at 1u  
 
Subcase-(i): 0(mod 4)n ≡ or 2(mod 4)n ≡  
The collection of paths of G given by  

1 1 1 2 1

2 2 1

( , , , , ),
( , ),i i i

P u v w u u
P u u +

=
=
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2 1 1 1 2 2 2 1
2( , , , , ) , 1 .

2+ + + + +
− = ≤ ≤  

 
i i i i i i

nQ u v w u u i  

is a simple graphoidal cover of G in which 1 3 5 1, , ,........ nu u u u − are not internal. Therefore ( )
2s
nG q pη  ≤ − +  

 
.             

 

Now, let ψ be any simple graphoidal cover of G. Since ψ can contain at most 
2
n 

 
 

cycles of length 4 and each cycles 

of length 4 can make three vertices internal in ψ , at most 3
2
n 

 
 

vertices can be made internal.  Therefore
2
ntψ

 ≥  
 

, 

since 2p n= .  Hence s
n(G) q p .
2

 η ≥ − +  
 

 Thus s
n(G) q p .
2

 η = − +  
 

 

 
Subcase-(ii): 1(mod 4)n ≡ or 3(mod 4)n ≡  
The collection of paths of G given by  

2 1 2 2 1

2 2 1

( , , , , ),

1( , ), 1 .
2

i i i i i i

i i i

P u v w u u

nQ u u i

− −

+

=

− = ≤ ≤ 
 

 

is a simple graphoidal cover of G in which 1 3 5, , ,........ nu u u u  are not internal. Therefore 1( ) .
2s

nG q pη + ≤ − +  
   

Now, 

let ψ  be any simple graphoidal cover of G. Since ψ can contain at most 1
2

n − 
 
 

cycles of length 4 and each cycle of 

length 4 can make three  vertices internal in ψ , at most 3 3
2

n − 
 
 

vertices can be made internal. Therefore 

1
2

ntψ
+ ≥  

 
 , since 2 1p n= − . Hence s

n 1(G) q p .
2
+ η ≥ − +  

 
    Thus s

n 1(G) q p .
2
+ η = − +  

 
 

 
Case-(ii): Alternate quadrilateral triangular snake starts at 2u  
 
Subcase-(i): 0(mod 4)n ≡ or 2(mod 4)n ≡  
The collection of paths of G given by  

1 2

2 2 1 2

2 1 2 2

( , ),
( , , , , ),

2( , ) , 1 .
2

i i i i i i

i i i

P u u
P u v w u u

nQ u u i

+

+ +

=
=

− = ≤ ≤  
 

 

is a simple graphoidal cover of G in which 1 2 4 6 8, , , , ,........, nu u u u u u are not internal. Therefore 2( ) .
2s

nG q pη + ≤ − +  
   

Now, let ψ be any simple graphoidal cover of G. Since ψ can contain at most 2
2

n − 
 
 

cycles of length 4 and paths of 

length 1. Each cycle of length 4 can make three vertices internal in ψ , at most 3 6
2

n − 
 
 

vertices can be made internal.  

Therefore 2
2

ntψ
+ ≥  

 
, since 2 2p n= − . Hence s

n 2(G) q p .
2
+ η ≥ − +  

 
 Thus s

n 2(G) q p .
2
+ η = − +  

 
 

 
Subcase-(ii): 1(mod 4)n ≡ or 3(mod 4)n ≡  
The collection of paths of G given by  

2 1 2

2 , 2 1 2

( , )

1( , , , ), 1
2

i i i

i i i i i i

P u u

nQ u v w u u i

−

+

=

− = ≤ ≤  
 

 

is a simple graphoidal cover of G in which 1 2 4 6 8 1, , , , ,........, nu u u u u u −  are not internal. Therefore 1( ) .
2s

nG q pη + ≤ − +  
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Now, let ψ be any simple graphoidal cover of G.  Since ψ can contain at most 1
2

n − 
 
 

cycles of length 4 and each 

cycle of length 4  can make three  vertices internal in ψ , at most 3 3
2

n − 
 
 

vertices can be made internal. Therefore 

1
2

ntψ
+ ≥  

 
  since 2 1p n= − . Hence s

n 1(G) q p .
2
+ η ≥ − +  

 
 Thus s

n 1(G) q p .
2
+ η = − +  

 
 

 
Theorem 2.10: Let G be alternate double quadrilateral snake graph, then s (G) q p n .η = − +  
 
Proof: Let 1 2 3 4{ , , , .... }nu u u u u be an underlined path in G and 1 2 3 1 1 2 3 1{ , , ,..., , , , ,.....,n nv v v v w w w w− − , 1 2 3 1, , ,...... ,nx x x x −  

1 2 3 1, , ,...... }ny y y y − be the vertices in G by joining iu & 1iu + with four new vertices , , &i i i iv w x y by the edges ( ,i iu v ),     

( ,i iv w ), ( 1, +i iw u ), ( ,i iu x ), ( ,i ix y ) & ( 1,i iy u + ). Here we have two cases. 
 
Case-(i): Alternate double quadrilateral snake starts at 1u  
 
Subcase-(i): 0(mod 4)n ≡ or 2(mod 4)n ≡  
The collection of paths of G is given by  

1 1 1 2 1

1 1 1

1 2

2 2 1

2 1 1 1 2 2 2 1

2 1 1 1

1 2 2

( , , , , )
( , , )
( , )
( , )

( , , , , ),
( , , ),

2( , ) ,1 .
2

+

+ + + + +

+ + +

+ +

=
=
=
=

=

=

− = ≤ ≤ 
 

i i i

i i i i i i

i i i i

i i i

P u v w u u
Q u x y
R y u
P u u

Q u v w u u
R u x y

nS y u i

 

is a simple graphoidal cover of G in which 1 3 5 1 1 2 3
2

, , ,.... , , , ..........,n nu u u u y y y y−  
 
 

 are not internal.                                         

Therefore ( ) .s G q p nη ≤ − +  Now, let ψ  be any simple graphoidal cover of G.  Since ψ can contain at most 

2
n 

 
 

cycles of length 4 and 
2
n 

 
 

 paths of length 2. In each cycle of length 4 can make three vertices internal and each 

paths of length 2 can make one vertex internal in ψ , at most 2n  vertices can be made internal.  Therefore t nψ ≥ , 

since 3p n= . Vertices. Hence s (G) q p n .η ≥ − +  Thus s (G) q p n .η = − +  
 
Subcase-(ii): 1(mod 4)n ≡ or 3(mod 4)n ≡  
The collection of paths of G given by 

2 1 2 2 1

2 1

2

( , , , , ),

( , , ),
( , ),

i i i i i i

i i i i

i i i

P u v w u u

Q u x y
R y u

− −

−

=

=

=

 

2 2 1
1( , ), 1 .

2i i i
nS u u i+
− = ≤ ≤ 

 
 

is a simple graphoidal cover of G in which 1 3 5 1 2 3 1
2

, , ,.... , , , ..........,n nu u u u y y y y − 
 
 

 are not internal.  Therefore 

( ) .s G q p nη ≤ − +  Now, let ψ be any simple graphoidal cover of G.  Since ψ can contain at most 1
2

n − 
 
 

cycles of 

length 4 and 1
2

n − 
 
 

paths of length 2. In each cycle of length 4 can make three vertices internal and each paths of 

length 2 can make one vertex internal in ψ , at most 2 2n − vertices can be made internal. Therefore t nψ ≥
 
since 

3 2p n= − .  Hence s (G) q p n .η ≥ − +  Thus s (G) q p n .η = − +  
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Case-(ii): Alternate double quadrilateral snake starts at 2u  
 
Subcase-(i): 0(mod 4)n ≡ or 2(mod 4)n ≡  
The collection of paths of G given by 

1 2

2 2 1 2

2

2 1

2 1 2 2

( , )
( , , , , ),

( , , ),
( , ),

2( , ), 1 .
2

i i i i i i

i i i i

i i i

i i i

P u u
P u v w u u

Q u x y
R y u

nS u u i

+

+

+ +

=
=

=

=

− = ≤ ≤ 
 

 

is a simple graphoidal cover of G in which 1 2 4 6 1 2 3 2
2

, , , ,.... , , , ..........,n nu u u u u y y y y − 
 
 

 are not internal. Therefore 

( ) .s G q p nη ≤ − +  Now, let ψ  be any simple graphoidal cover of G.  Since ψ can contain at most 2
2

n − 
 
 

cycles of 

length 4 and 2
2

n − 
 
 

paths of length 2. Each cycle of length 4 can make three vertices internal and each paths of length 

2 can make one vertex internal inψ , at most 2 4n − vertices can be made internal.  Therefore t nψ ≥ ,
 
since 3 4p n= − . 

Hence s (G) q p n .η ≥ − +  Thus s (G) q p n .η = − +  
 
Subcase-(ii): 1(mod 4)n ≡ or 3(mod 4)n ≡  
The collection of paths of G given by 

2 1 2

2 2 1 2

2

2 1

( , ),

( , , , , ),

( , , ),
1( , ), 1 .

2

i i i

i i i i i i

i i i i

i i i

P u u

Q u v w u u

R u x y
nS y u i

−

+

+

=

=

=

− = ≤ ≤  
 

 

is a simple graphoidal cover of G in which 1 2 4 6 1 1 2 3 1
2

, , , ,.... , , , ..........,n nu u u u u y y y y− − 
 
 

are not internal. Therefore 

( ) .s G q p nη ≤ − +  Now, let ψ  be any simple graphoidal cover of G.  Since ψ can contain at most 1
2

n − 
 
 

cycles of 

length 4 and 1
2

n − 
 
 

paths of length 2. Each cycle of length 4 can make three vertices internal and each path of length 2 

can make one vertex internal in ψ , at most 2 2n − vertices can be made internal. Therefore t nψ ≥ , since 3 2p n= − . 

Hence s (G) q p n .η ≥ − +  Thus s (G) q p n .η = − +  
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