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ABSTACT 

The concept of Almost Semilattice )(ASL  is introduced and certain properties of ASLs  are derived and established 
set of equivalent conditions for an ASL  to become semilattice. Also, introduced the concept of amicable  set in 
ASL  and certain properties of amicable  set in ASLs  are derived. Introduce the concept of ASL  with 0  and 

prove some properties of ASL  with 0 .  
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1. INTRODUCTION 

 
The concept of semilattice was introduced by F.Klein in (1939) [7]. He was define as a semilattice S  is a partially 
ordered set in which any two elements βα ,  have a greatest lower bound αβ , but not necessarily a least upper bound. 
In Mathematical order theory, a semilattice is a partially ordered set with in which either all binary sets have a supremum 
(join) or all binary sets have an infimum (meet). Consequently, one speaks of either a join semilattice or meet semilattice. 
Semilattices provide a generalization of the more prominent concept of a lattice and as such provide a natural way to 
introduce this concept as partial order which is both a meet and a join semilattice. As a natural consequence of the fact 
that semilattices are among the most basic "Basic-like" structures, they can be characterized both in terms of order theory 
and Universal Algebra. 
 
The concept of Almost Distributive Lattice )(ADL  was introduced by Swamy, U. M. and Rao, G. C. [4] and they 
proved several properties of ADLs. Also, they introduced the concept of ideal, filter and congruences in ADLs and 
proved several properties of these concepts. In this paper we introduce the concept of Almost Semilattice )(ASL  which 
is a generalization of semilattice and derive many important properties of ASLs . In section 2, we recall the necessary 
definitions and results briefly which are taken from [11]. In section 3, we introduce the concept of ASL  and establish 
the independency of axioms in the definition. Also, we give few examples of ASL . In section 4, we prove some results 
in the class of ASL  and obtain a few necessary and sufficient conditions for an ASL  to become a semilattice. In 
section 5, we define amicable sets in ASL and prove that the relation between maximal sets and amicable sets in ASL
. In section 6, we define unimaximal element and unielement in ASL  and obtain certain properties of unimaximal 
elements and unielements in ASL . Finally, in section 7, we introduce the concept of ASL  with 0  and prove some 
properties of ASL  with 0 .  
 
2. PRELIMINARIES 
 
In this section we collect a few important definitions and results which are already known and which will be used more 
frequently in the paper.  

Corresponding Author: Terefe Getachew Beyene*2 

1,2Department of Mathematics, Andhra University, Visakhapatanam, 530003,India. 

http://www.ijma.info/�


G. Nanaji Rao1, Terefe Getachew Beyene*2 / Almost Semilattice / IJMA- 7(3), March-2016. 

© 2016, IJMA. All Rights Reserved                                                                       53   

 
Definition 2.1: Let A  and B  be two nonempty sets. Then a relation R  from A  to B  is a subset of BA× . 
Relations from A  to A  are called relation on A .  

 
A relation R  on a nonempty set A  may have some of the following properties:  
    1.  R  is reflexive if for all a  in A  we have Raa ∈),( .  

    2.  R  is symmetric if for all a  and b  in A ; Rba ∈),(  implies Rab ∈),( .  

    3.  R  is antisymmetric if for all a  and b  in A ; Rba ∈),(  and (𝑏𝑏, 𝑎𝑎) ∈ 𝑅𝑅 implies ba = .  

    4.  R  is transitive if for all Rcba ∈,, ; Rba ∈),(  and Rcb ∈),(  implies Rca ∈),( .  
  

Definition 2.2: A relation R  on a nonempty set A  is an equivalence relation if R  is reflexive, symmetric and 
transitive.  

  
Definition 2.3: A relation R  on a set A  is called a partial order relation if R  is reflexive, antisymmetric and 
transitive.  
 
In this case ),( RA  is called partially ordered set or poset.  
 
Definition 2.4: A partial order relation ≤  on A  is called a total order or linear order if for each Aba ∈, , either 

ba ≤  or ab ≤ . Then ),( ≤A  is called a chain or totally ordered set.  
  

Definition 2.5: Let ),( ≤P  be a poset. The element a  in P  is called a greatest (least) element of P  if for all 
Px∈ , we have )( xaax ≤≤ .  

  
Definition 2.6: Let ),( ≤P  be a poset. An element a  in P  is called a maximal (minimal) element of P  if 

)( axxa ≤≤  implies xa =  for all Px∈ .  
 
Easily seen that every poset has at most one greatest (least) element. How ever, there may be none, one or several 
maximal (minimal) elements. Also, seen that greatest (least) element is maximal (minimal) but not converse.  
 
Definition 2.7: Let ),( ≤P  be a poset and PS ⊆ . Then:  

1. Pa∈  is called an upper bound of S ; if as ≤  for all Ss∈ .  
2. Pa∈  is called a lower bound of S ; if  sa ≤  for all Ss∈ .  
3. The greatest element among the lower bounds of S , whenever if exists, is called the greatest lower bound (glb) 

or infimum of S  and is denoted by 𝑖𝑖𝑖𝑖𝑖𝑖 𝑆𝑆.  
4. The least element among the upper bounds of S , whenever if exists, is called the least upper bound (lub) or 

supremum of S , and is denoted by Ssup .  
  

Definition 2.8: (Zorn’s Lemma): If ),( ≤P  is a poset such that every chain of elements in P  has an upper bound in 
P , then P  has at least one maximal element.  
 
Definition 2.9: A semilattice is an algebra ) ∗,(S  where S  is nonempty set and ∗  is a binary operation on S  
satisfying:  

1.  zyxzyx ∗∗∗∗ )(=)(   
2.  xyyx ∗∗ =   

3.  =x x x∗ , for all Szyx ∈,, .  
  

In other words, a semilattice is an idempotent commutative semigroup. The symbol ∗  can be replaced by any binary 
operation symbol, and in fact we use one of the symbols of    , , +∨∧  or   . , depending on the setting. The most natural 
example of a semilattice is ( )( ),P X ∩ , or more generally any collection of subsets of X  closed under intersection. A 

sub semilattice of ),( ∗S  is a subset of a semilattice S  which is closed under the operation ∗ . Of-course that makes 
T  a semilattice in its own right, since the equation defining a semilattice still hold in ),( ∗T . Similarly, a  
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homomorphism between two semilattices ),( ∗S  and ),( ∗T  is a map TSh →: with the property that 

)()(=)( yhxhyxh ∗∗  far all Syx ∈, . An isomorphism is a homomorphism that is 11−  and onto. It is worth 
nothing that, because the operation is determined by the order and vice versa. Also, it can be easily observed that two 
semilattices are isomorphic if and only if they are isomorphic as ordered sets.  
 
Definition 2.10: [3] An element a  of S  is called a central element if there exist semigroup 1S  with 1and 2S  with 

0  and an isomorphism S  onto 21 SS ×  that mapes a  onto (1,0) . The set )(SB  of all central elements of S  is 
called the Birkhoff center of S  .  

  
Definition 2.11: [9] A ring R  is called a −1p ring if, to each Rx∈ , there exists a central idempotent Rxo ∈  such 
that:   
    1.  xxxo =   
    2.  For any idempotent e  of R , xxe = implies that oo xex =  .  

  
Here, ox  is known as minimal idempotent duplicator of x  in the center of R .  
 
Definition 2.12: [5] A semigroup S  with 0  is called a Bear-Stone semigroup if, to each Sx∈ , there exists a central 
idempotent Sx ∈∗  such that:  
    1.  }=0= |{= yxxySySx ∈∗   

    2.  The map ),( sxsxs ∗∗∗
  is an isomorphism of S  onto SxSx ∗∗∗ × .  

 
Definition 2.13: [12] A ring R  is called a regular ring if, to each Ra∈ , there exists Rx∈  such that aaxa = .  

  
Definition 2.14: [6] A ring R  is called a p- ring ( p is prime) if, for any Rx∈ , xx p =  and 0=px  .  

  
Definition 2.15: [1] A ring R  is called biregular if every principal ideal is generated by a central idempotent .  

  
Definition 2.16: A ring R  is a Bear ring if, to each Rx∈ , there exists a central idempotent Re∈  such that 

}=0=  |{= yxxyRyeR ∈ .  
  

Definition 2.17: A pseudocomplemented distributive lattice with 0  is called a Stone lattice if, for any Lx∈ , 
1=∗∗∗ ∨ xx .  

  
Definition 2.18: [8] A pseudocomplemented semilattice S  is called strongly admissible if:  

1. For each Sx∈ , there exists a dense element 0)=,    (  ∗∈ disthatSd  such that dxx ∗∗= . 

2. There is a mapping DDSf →×∗∗: , where ∗∗S  is the set of all closed elements of S  and D  the set of 

all dense elements of S , such that, for any Sx∈ , ),( dafx ≤  if and only if dax ≤∧  for all ∗∗∈ Sa  
and Sd ∈ .  

3. ),(),(=),( dbfdafdbaf ∧∨  for all ∗∗∈ Sba,  and Da∈ .   
  

Definition 2.19: [10] Let S  be a semigroup with 0  satisfying the hypothesis of the above definition. Then S  is 
called a −1p semigroup if:  

1. For each Sx∈ , there exist )(SBxo ∈  such that xxxo =  

2. For any )(SBa∈  such that xax = , must oo xax =  
 

3. DEFINITION AND INTERPRETATION OF THE AXIOMS  
 
In this section we introduce the concept of an Almost Semilattice and we establish the independency of axioms in the 
definition. Further we give few examples of  Almost Semilattice. 
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Definition 3.1: An Almost Semilattice is an algebra ),( L where L is a nonempty set and   is a binary operation on L ,  
satisfies: 

                                   )(=)(     )( 1 zyxzyxAS     (Associative Law) 

                                   )(=)(     )( 2 zxyzyxAS    (Almost Commutative Law) 

3( )     =                                                           AS x x x  (Idempotent Law) 
 

For brevity, in future, we will refer to this Almost Semilattice as ASL. Now, we give examples to exhibit the idempotency 
of the axioms in the above definition.  
 
Example 3.1: Let }{1,2,3,...=L , the set of all natural number. Define a binary operation  on L by: = .x y x y  for 
all Lyx ∈, , where .  is a usual multiplication.  
 
Here, the algebra ),( L  satisfies the axioms )( 1AS  and )( 2AS . But, it fails to satisfy the axiom )( 3AS , since 

xxxxx ≠.= , for all Lx ∈≠ 1)( .  
 
Example 3.2: Let L  be a nonempty set. Define a binary operation   on L  by 

xyx = , for all Lyx ∈, . 

Here, the algebra ),( L  satisfies the axioms of )( 1AS  and )( 3AS . But, it does not satisfy the axiom )( 2AS . Since 

for any three distinct elements xzxzyxLzyx ==)(,,, ∈  and yzyzxy ==)(  .Therefore, 
zxyzyx  )()( ≠ .  

 
Example 3.3: Let },,{= cbaL . Define a binary operation   on L  as follows: 

  
     a   b  c  
a   a  a   c  
b   c   b   a  
c   a   a   c  

 
Here, the algebra ),( L  satisfies the axioms of )( 2AS  and )( 3AS . But, it fails to satisfy the axiom )( 1AS , since 

)(====)( cbaaaaccacba  ≠ . 
 
We conclude this section by exhibiting the structure of an ASL in some known algebras.  
 
Example 3.4: Every semilattice ),( S  is an ASL.  

  
Example 3.5: Let },,{= cbaL . Define a binary operation   on L  as below:   
 

     a   b  c  
a   a  a   a  
b   a   b   c  
c   a   b   c  

  
Then L  is an ASL, but not a semilattice, since bcbccb  == ≠ . 
 
The following examples shows that every nonempty set can be made into an ASL.  
 
Example 3.6: Let L  be a nonempty set. Define a binary operation   on L  by 

=x y y , for all Lyx ∈,   
 

Then it is easy to verify that ),( L  is an ASL, and it is called discrete ASL.  
 
Example 3.7: Let ,.,0),( +R  be a commutative regular ring with unity. Let oa  be the unique idempotent element in 

R  such that RaaR o= . For any Rba ∈, , define baba o= . Then ),( R  is an ASL.  
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It is well known that the structure of −1P semigroup is a common abstraction of −1P rings and Baer- Stone 
semigroups. Thus the class of −1P semigroups include the classes of Boolean rings, regular rings, P-rings, biregular 
rings, Bear rings, stone lattice, Strongly admissible semilattice etc. In the following example, we define a binary 
operation   on a −1P semigroup ,.)(S  and with this operation, ),( S  becomes an ASL . Thus we have an ASL  
structure in each of the algebras mentioned above. 
 
Example 3.8: Let ,.)(S  be a −1P semigroup. Let us recall that, to each Sx∈ , there exists 0x  in the Birkhorff 

center )(SB  of S  which is least among the elements of )(SB  with the property xxx =0 . Since )(0 SBx ∈ , 

there exists )(0 SBx ∈′  such that the mapping ),( 00 yxyxy ′
  of S  onto SxSx 00 ′×  is an isomorphism. 

Now, define, for any yxyxSyx 0=,, ∈ . Then it can be easily verified that ),( S  is an ASL. 
 
4. PROPERTIES OF ASLs  
 
In this section, we prove some results in the class of ASLs . Further, for any LASL  , we define a partial ordering 

    ≤  on L  and prove that, with this partial ordering, the poset is directed above if and only if L  is a semilattice. We 
also obtain a few more necessary and sufficient conditions for an ASL to become a semilattice. 
 
Throughout the remaining of this section, by L  we mean an ),(  LASL  unless otherwise specified. Using the axioms 
of ASL, we have the following.  
 
Lemma 4.1: For any Lba ∈, , we have  
    1.  babaa  =)(   
    2.  babba  =)(   
    3.  babab  =)(   
 
Proof: Suppose Lba ∈, . Then,  

1.  ( ) = ( )a a b a a b     
               = a b .  
2.  ( ) = ( )a b b a b b     
               = a b .  
3.  ( ) = ( )b a b b a b     
               = ( )a b b   
               = ( )a b b   
               = a b . 

 
We introduce a partial ordering on L  in the following.  
 
Definition 4.2: For any Lba ∈, , we say that a  is less or equal to b  and write ba ≤ , if aba = .  
 
Now, we prove the following results which depends on ≤ .  
 
Lemma 4.3: For any bbaLba ≤∈ ,, . 
 
Proof: Let Lba ∈, . Then we have,   =)( babba   since by (2)  of 4.1  Lemma . Hence bba ≤ . 
 
Lemma 4.4:  For any abbaLba  =,, ∈  whenever ba ≤ .  
 
Proof: Let 𝑎𝑎, 𝑏𝑏 ∈ 𝐿𝐿 such that 𝑎𝑎 ≤ 𝑏𝑏.Now, 𝑎𝑎  b = a = a  a = (a  b)  a = (b a)  a = b  (a  a) = b a. Therefore 
𝑎𝑎  b =  b  a.  

 
In the following, we prove that ≤  is a partially ordered relation.  
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Theorem 4.5: The relation ≤  is a partial ordering on L .  
  
Proof: The reflexivity of ≤  follows from )( 3AS . Let Lba ∈,  be such that ba ≤  and ab ≤ . Then aba =  

and bab = . Therefore by balemma =  4.4,  . Thus ≤  is antisymmetric. Finally, suppose Lcba ∈,,  such 
that ba ≤  and cb ≤ .Then aba =  and bcb = . Now, abacbacbaca = =)(=)(=  . 
Therefore ca ≤ . Thus, ≤  is transitive. Hence ≤  is a partial ordered relation on L . 
 
Remark 4.6: If we define a relation θ  on L  by baθ  if bba = , then θ  is reflexive and transitive. But, θ  is 
not in general antisymmetric. For, consider the ASL  ),( L  defined in 3.6  example . In this example, if L  contains 
at least two elements, say a  and b . Then we have baθ  and abθ . But, ba ≠  and hence θ  is not antisymmetric.  
 
However, in the following, we prove that θ  is antisymmetric equivalent to an ASL  to become a semilattice. Also, 
give a set of equivalent conditions for an ASL  to become a semilattice.  
 
Theorem 4.7: Let L  be an ASL . Then the following are equivalent:  
    1.  L  is a Semilattice  
    2.  The relation }=  |),{(:= bbaLLba ×∈θ  is antisymmetric  
    3.  The relation θ  defined above is a partial ordering on L   

  
Proof: 
(1) ⇒(2): Assume (1). Suppose θ∈),(),,( abba . Then bba =  and aab = .  
Now, bbaaba ===  . Thus ba = . Therefore    θ  is antisymmetric. 
 
(2) ⇒(3): Suppose θ  is anti-symmetric. We shall prove that θ  is both reflexive and transitive. Since aaa =  for 
all La∈ , θ∈),( aa . Therefore θ  is reflexive. Suppose θ∈),(),,( cbba . Then bba =  and ccb = . 
Now, ccbcbacbaca ==)(=)(=  . Thus θ∈),( ca . Hence θ  is transitive. Therefore θ  is a 
partial ordered relation on L . 
 
(3) ⇒(1): Suppose θ  is a partial ordered relation on L . We shall prove that L  is a semilattice. Let 𝑎𝑎, 𝑏𝑏 ∈ 𝐿𝐿. Then 
(𝑎𝑎  b)  (b a) = a  �b  (b a)� = a  �(b b)  a� = a  (b  a) = (a  b)  a = (b  a)  a = b  (a  a) = b  a  and 
(𝑏𝑏  a)  (a  b) = b  �a  (a  b)� = b  �(a  a) b� = b (a  b) = (b  a) b = (a  b)  b = a  (b  b) = a b.   
Therefore θ∈),(),,( baababba  . Since θ  is antisymmetric, abba  = . Thus L  is a semilattice. 
 
Theorem 4.8: For any Lba ∈, , the following are equivalent:  
    1.  L  is a semilattice  
    2.  aba ≤   
    3.  ba   is the glb of a  and b  in ),( L   
    4.  bab ≤   
    5.  ab   is the glb of a  and b  in ),( L   

  
Proof: 
(1) ⇒(2): Suppose L  is a semilattice. Then abba  =  for any Lba ∈, . Since b a a≤ (by leema 4.3)., 

aba ≤  
 
(2) ⇒(3): Suppose aba ≤ . But, we have a b b≤ (by Leema 4.3). Therefore, ba   is a lower bound of a  and 
b . Let Lc∈  such that c  is a lower bound of a  and b . Then ac ≤  and bc ≤ . 
 
Now, 

 ( ) = ( )c a b c a b     

            = c b  ( )c a∴ ≤  

            = c     ( )c b∴ ≤  
Therefore bac ≤ . Hence ba   is the glb of a  and b . 
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(3) ⇒(1): Assume (3) We shall prove that L  is a semilattice. Let Lba ∈, . Then we have ba   is the glb of a  and 
b . Therefore aba ≤ . Hence by lemma 4.4, )(=)( baaaba  . This implies baaaab  )(=)(  and 
hence baaaab  )(=)( . It follows that baab  = . Thus L  is a semilattice. Similarly we can prove that 
conditions (1), (4) and (5) are also equivalent. 
 
Theorem 4.9: For any La∈ , the set }  |{= LxaxLa ∈  is a semilattice under the induced operation  , with a  
as its greatest element.  
  
Proof: Let La∈ . Then, clearly aL  is closed under the operation  . Hence ),( L  is an ASL . let aLst ∈, . Then 

axt =  and ays =  for some Lyx ∈, . Now,  𝑡𝑡  s = (x  a)  (y  a) = �(x  a)  y�  a = �y  (𝑥𝑥  a)�  a =

y  �(x  a)
 a� = y  �(a  x)

 a� = y  �a  (x  a)� = (y  a)


(x  a) = s  t. Then   is commutative. Hence ),( aL  
is a semilattice. 
 
In the following, we prove that the operation   is isotone.  
 
Theorem 4.10: Let Lba ∈,  with ba ≤ . Then cbca  ≤  and   bcac  ≤ for all Lc∈ .  

  
Proof: Suppose Lba ∈,  such that ba ≤  . Then aba = . Now, 

cacbaccabccabccabcbcacbca  =)(=)()(=))((=))((=))((=)()( . 
Thus cacbca  =)()( . Therefore cbca  ≤ .  Also, consider 

acbacbacbaccbaccbcacbcac  =)(=)(=))((=))((=))((=)()( . Thus 
acbcac  =)()( . Hence bcac  ≤ . 

 
5. AMICABLE SETS 

 
If ,.)(S  is a −1P  semigroup, then S  is an ASL  as described in 3.8  example  and the Birkhoff center )(SB  

of   S  has the following property; "given Sx∈  there is an element in )(SB , ).( 0xvia  which is least among the 
elements a  of )(SB  such that xaxxa == ". 
 
In this section, we introduce compatible set, maximal set M , M-amicable element and amicable set in LASL  . Also, 
we prove some results on these concepts. We establish a relation between maximal sets and amicable sets. First we 
introduce definition of compatible set. 
 
Throughout the remaining of this section, by L  we mean an ),(  LASL  unless otherwise specified.  
 
Definition 5.1: Let L  be an ASL . Then for any Lba ∈, , we say that a  is compatible with b  and write 𝑎𝑎~𝑏𝑏 if 

abba  = . A subset S  of L  is said to be compatible set if 𝑎𝑎~𝑏𝑏, for all Sba ∈, .  
 
If L  is an ASL , then it can be easily seen that for any La∈ , }{a  is a compatible set. Also, seen that, the set of all 
compatible sets in an LASL   is a poset with respect to set inclusion.  
 
Definition 5.2: Let L  be an ASL . Then a maximal compatible set of L  is called a 𝑚𝑚𝑎𝑎𝑥𝑥𝑖𝑖𝑚𝑚𝑎𝑎𝑚𝑚 set. 
 
It is clear that if L  is a semilattice, then L  itself a maximal set. This clearly that ~  is reflexive and symmetric. But, 
ingeneral ~  is not transitive in L . For, consider the ASL in 3.5  example . In this example, we have 𝑏𝑏~𝑎𝑎  and 
𝑎𝑎~ 𝑐𝑐.  But, 𝑏𝑏 ≁ 𝑐𝑐 since bcbccb  == ≠ . Hence ~ is not transitive in L . 
 
Now, we prove the following:  
Theorem 5.3: For any 𝑎𝑎, 𝑏𝑏 ∈ 𝐿𝐿, 𝑎𝑎~𝑏𝑏 if and only if 𝑎𝑎  b~b a.  
  
Proof: Suppose 𝑎𝑎  b~b a. Then )()(=)()( baababba  . Now,  
𝑎𝑎  b = (𝑎𝑎  b)  (a  b) = (b  a) (a  b) = (a  b)  (b a) = �(a  b)  b�  a = �a  (b b)�  a = (a  b)  a =
(b  a) a = b (a  a) = b a.  Hence 𝑎𝑎~𝑏𝑏. The converse is trivial. 
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In the following, we prove that, any maximal set in ASL , is a semilattice. For this first we need the following lemmas.  
 
Lemma 5.4: For any Lcba ∈,, , 𝑎𝑎~𝑏𝑏 and 𝑎𝑎~𝑐𝑐 imply that 𝑎𝑎~𝑏𝑏  c.  
  
Proof: Suppose 𝑎𝑎~𝑏𝑏  and 𝑎𝑎~𝑐𝑐  in .L Now, 𝑎𝑎  (b  c) = (a  b)  c = (b  a) c = b  (a  c) = b (c  a) =
(b  c)  a.  Therefore 𝑎𝑎~𝑏𝑏  c. 
 
Lemma 5.5: Let M  be a maximal set in L  and Lx∈  be such that 𝑥𝑥~𝑎𝑎, for all Ma∈ . Then Mx∈ .  
  
Proof: Suppose M  is a maximal set and Lx∈  with 𝑥𝑥~𝑎𝑎 for all 𝑎𝑎 ∈ 𝑀𝑀. Thus }{xM ∪  is a compatible set and 

}{xMM ∪⊆ . It follows that }{= xMM ∪ . Therefore Mx∈ . 
 
Now, we prove the following theorem.  
 
Theorem 5.6: If M  is a maximal set in L , then M  is a semilattice under the induced operation   on L .  
  
Proof: Let M  be a maximal set in L . Then, by lemma 5.4 and 5.5, M  is closed under the operation  . It follows 
that ),( M  is a semilattice. 
 
We immediately have the following corollary, whose proof is straight forward.  
 
Corollary 5.7: The following are equivalent in an LASL  .  
    1.  L  is a semilattice  
    2.  L  is a compatible set  
    3.  L  is a maximal set  

  
In the following, we prove some more properties of maximal set in L .  
 
Theorem 5.8: Let M  be a maximal set in L  and Ma∈ . Then for any MaxLx ∈∈ , .  
  
Proof: Suppose M  is a maximal set in L  and Ma∈ . Then for any Lx∈  and Mb∈ , consider 

)(=)(=)(=)(=)(=)( axbaxbabxabxbaxbax  . Thus 𝑥𝑥  a~b . Therefore by 
Maxlemma ∈  5.5,   . 

 
Corollary 5.9: Let M  be a maximal set. Then M  is an initial segment in the poset ),( L . That is, for any Lx∈  
and axMa ≤∈ ,  implies Mx∈ .  
  
Proof: Suppose M  is a maximal set and Ma∈  such that ax ≤  )( Lx∈ . Then xax = . Since Lx∈  and 

Ma∈ , by the above Maxtheorem ∈  5.8,  . Therefore Maxx ∈= . 
 
Now, we give the definition of M-amicable element in L .  
 
Definition 5.10: Let M  be a maximal set in L . Then an element Lx∈  is said to be amicableM −  if there 
exists Ma∈  such that xxa = .  
 
Theorem 5.11: Let M  be a maximal set and Lx∈  be M- amicable. Then there exists an element Ma∈  with the 
following properties:  
    1.  xxa =   
    2.  For any Lb∈  with xxb = . Then aab =   

   
Proof: Let Lx∈  be M-amicable. Then by the definition of M-amicable, there exists an element Mc∈  such that 

xxc = . Thus by theorem 5.8, Mcx ∈ .  
 
Now, put cxa = . Then, xxcxxcxxcxcxxa ==)(=)(=)(= 

. Therefore (1) is proved. Now, 
suppose Lb∈  with xxb = . Then acxcxbcxbab ==)(=)(=  . Hence (2) is proved. 
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Corollary 5.12: If M  is a maximal set and Lx∈  is M-amicable, then there is a smallest element Ma∈  with the 
property xxa =  .  
 
Proof: Suppose M  is a maximal set and Lx∈  is M-amicable. Then by (1) of theorem 5.11, there exists an element 
a  of M  such that xxa = . It remains to show that a  is the smallest element of M . Suppose Mb∈  such that 

xxb = . Since M  is a maximal set and Mba ∈, , we have 𝑎𝑎~𝑏𝑏 . Now, by leema 5.11(2), we have 
baaba  == . Therefore aba = . Thus ba ≤ . Hence a  is the smallest element of M , with property that 

xxa = . 
 
We denote the element a  of M  in the above 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚𝑎𝑎𝑐𝑐𝑐𝑐 5.12 by Mx . Observe that Mx  depends on M  as well 
as on x .  
 
Corollary 5.13:  Let M  be a maximal set in L  and Lx∈ . Then x  is M-amicable and Mxx =  if and only if 

Mx∈ .  
  
Proof: Suppose Mx∈ . Since Mxx M ∈,  , we have MM xxxxx  == . Therefore Mxx ≤ . On the other 

hand, we have Mx  is the smallest element in M  with the property that xxxM = . It follows that xxM ≤  since 

Mxxxx ∈,= . Thus Mxx = . Converse is clear. 
 
Corollary 5.14: Let M  be a maximal set and Lx∈  be M-amicable. If La∈  such that aax = , then a  is 
M-amicable and MM xa ≤ .  
 
Proof: Suppose Lx∈  is M-amicable and La∈  such that aax = . We have Mx  is the smallest element in M  
such that xxxM = .  Now, 𝑥𝑥𝑀𝑀  a = xM


(x  a) = (xM

 x)
 a = x  a = a.  Hence   a  is M-amicable. Also, 

since a  is M-amicable, we have Ma  is the smallest element in M  such that aaaM = . It follows that 
MM xa ≤ . 

  
Corollary 5.15: Let M  be a maximal set and La∈  be M- amicable. Then MM aaa = .  
  
Proof: Suppose La∈  is M-amicable. Then Ma  is the smallest element in M  such that aaaM =  and 

aaa = . Now,  by 𝑡𝑡ℎ𝑒𝑒𝑐𝑐𝑐𝑐𝑒𝑒𝑚𝑚 5.11(2) we get MM aaa = . 
  
Corollary 5.16: Let M  be a maximal set and Mx∈  be M-amicable. Then Mx  is the largest element of M  with 
the property MM xxx = .  
 
Proof: Suppose M  is a maximal set and Mx∈  is M-amicable. Then by 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚𝑎𝑎𝑐𝑐𝑐𝑐 5.13 we get Mxx = . Hence 

MM xxx = . Now,  we show that Mx  is the largest element. Suppose Mb∈  such that bbx = . Since both 

Mbx ∈,  and M  is maximal set, bbxxb ==  . Thus xb ≤ . Hence Mxb ≤ . Therefore Mx  is the largest 

element of M  with the property MM xxx = . 
 
Corollary 5.17: Let M  be a maximal set and Lx∈  be M-amicable. Then, for any xxaLa =, ∈  and 

aax =  if and only if a  is M-amicable and MM ax = .  
 
Proof: Let Lx∈  be M-amicable and La∈ . Suppose xxa =  and aax = . Since x  is M-amicable, there 
exists a smallest element LxM ∈  such that xxxM = .  
 
Now, aaxaxxaxxax MMM ==)(=)(=  . Thus a  is M-amicable. It remains to show that 

MM ax = . Now, xxaxaaxaaxa MMM ==)(=)(=  . It follows that MM ax ≤ . Similarly we get 
MM xa ≤ . Therefore, MM xa = .  
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Conversely, suppose a  is M-amicable and MM xa = . Then 

xxxxaxaaxaaxxaxa MMMMM ===)(=)(=)(=  . And also, 

aaaaxaxxaxxaaxax MMMMM ===)(=)(=)(=  . Therefore xxa =  and aax = . 
  
Corollary 5.18: Let M  be a maximal set and Lx∈  be M-amicable. Then Mx  is the unique element of M  such 
that xxxM =  and MM xxx = .  
  
Proof: Suppose M  is a maximal set and Lx∈  is M-amicable. Since MxM ∈ , we have Mx   is M-amicable and 

MMM xx )(= . Put Mxa = , then Maa = . Therefore, MM ax = . Since a  is M-amicable and MM ax = , 

Corollary 5.17 imply that xxa =  and aax = . Therefore, xxxM =  and MM xxx = . Now, it remains to 
show that Mx  is a unique element of M . Suppose Mb∈  such that  = xxb  and bbx =  . Now, we show 
that Mxb = . Since xxb = , bbx =  and Mb∈ , by Corollary 5.13 and 5.17, MM xbb == . Thus Mxb =  
and hence Mx  is a unique element of M  satisfying the given condition. 
 
Corollary 5.19: Let M  be a maximal set in L  and Lyx ∈,  be M-amicable such that 𝑥𝑥~𝑐𝑐. Then MM yx =  if 
and only if yx = .  
  
Proof: Suppose MM yx = . Then by colollary 5.17 we have yyx =  and xxy = . Thus yyxxyx ===  , 
since 𝑥𝑥~𝑐𝑐. Conversely, suppose yx = . Then yyyyx ==   and xxxxy ==  . Therefore by corollary 

5.17, MM yx = . 
 
If M  is a maximal set in L , then we denote the set of all M-amicable elements of L  by )(LAM .  Now we prove 
that )(LAM  is an ASL  with the induced operation on L . 
 
Theorem 5.20: Let M  be a maximal set.  Then )),(( LAM  is an ASL . Moreover, for any )(, LAyx M∈ , we 

have MMM yxyx  =)( .  
 
Proof: Suppose M  is a maximal set of L  and )(LAM  is the set of all M-amicable elements of L . Now, we shall 
prove that )(LAM  a sub ASL  of L . Let )(, LAba M∈ . Then there exists Myx ∈,  such that aax =  and 

bby = . Now,  (𝑥𝑥  y)  (a  b) = ((𝑥𝑥  y)  a) b) = (x  (y  a))  b = x  ((y  a) b) = x  ((a  y)  b) =
x  (a  (y  b)) = (x  a)  (y  b) = a b.   
 
Let Mt∈ . Then )(=)(=)(=)(=)(=)( yxtyxtytxytxtyxtyx  . This imply that 
(𝑥𝑥  y)~t ,  for all Mt∈ . Thus, by leema 5.5 x y M∈  and hence ba   is M-amicable. Therefore 

)(LAba M∈ . Hence )),(( LAM  is a sub ASL  and hence is ASL .  It remains to show that 
MMM yxyx  =)( . Now, consider 

(𝑥𝑥𝑀𝑀  yM )


(x  y) = (yM
 xM )


(x  y) = yM

 �xM


(x  y)� = yM
 �(xM

 x)
 y� = yM


(x  y) = (yM

 x)
 y =

(x  yM )
 y = x  (yM

 y) = x  y .  Also, (𝑥𝑥  y)


(xM
 yM ) = (y  x)


(xM
 yM ) = y  �x  (xM

 yM )� =
y  �(x  xM )  yM� = y  (xM

 yM ) = (y  xM )  yM = (xM
 y)  yM = xM

 (y  yM ) = xM
 yM . Hence 

MMMM yxyx )(=)(  . Now, we show that MMMMM yxyx  =)( . But, we have MMMMM yxyx )(=  , 

since Myx MM ∈ . Therefore, Myxyx MMM ∈ =)( .  
 

It can be easily seen that for any maximal set M  of L , LLAM M ⊆⊆ )( . Now we prove the following:  
 
Theorem 5.21:  Let M  be a maximal set in L . Then the following are equivalent:  

1. )(= LAM M   
2. LM =   
3. L  is a semilattice  
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Proof: 
(1) ⇒(2): Assume (1). Let Ma∈  and Lx∈ . Then by Maxtheorem ∈  5.8,  . We need to show that Mxa ∈

 
Now, consider  

xaxxaxxaxaxxaaxxaaxxaax  =)(=)(=)(=))((=))((=)()( . Hence 

MLAxa M =)(∈ . Therefore, Mxaax ∈ ,  and hence 𝑎𝑎  x~x  a.  It follows that  
)()(=)()( axaxaxxa  . Hence, we get xaax  = . Therefore 𝑥𝑥~𝑎𝑎. Thus Mx∈  since M  is a 

maximal set. Therefore ML ⊆  and hence LM = . 
 
(2) ⇒(3): Suppose LM = . Since M  is a maximal set and hence is a compatible set, it follows that abba  =  
for all )(=, LMba ∈ . Thus L  is a semilattice. 
 
(3) ⇒(1): Assume (3). Clearly )(LAM M⊆ . Conversely, let )(LAa M∈ . Then, for any Mt∈ , we have 

taat  = , since L  is a semilattice. Hence 𝑡𝑡~𝑎𝑎 . It follows that Ma∈ . Therefore, MLAM ⊆)( . Hence 

MLAM =)( .  
  
Definition 5.22: A maximal set M  in L  is said to be amicable  if LLAM =)( . That is, every element in L  is 
M-amicable.  
 
Note that, in a discrete ASL, every singleton set is amicable. Now we prove the following theorem:  
 
Theorem 5.23: If ,.)(S  is a −1P  semigroup, then )(SB , the Birkhoff center of S  is an amicable set in S .  
  
Proof: Let ,.)(S  be a −1P  semigroup. Let us recall that, for any Sx∈ , there is a smallest idempotent element 

)(0 SBx ∈  such that xxx =0 . It is enough if we prove that )(SB  is a maximal set and xxx =0
  and 

00 = xxx  . Let Sx∈  such that 𝑥𝑥~𝑎𝑎  for all )(SBa∈ . In particular, 𝑥𝑥~𝑥𝑥  so that 0 0 0 0= =x x x x x  
0 0= = =x x x x x and hence )(SBx∈ . Thus )(SB  is a maximal set. Now, by the definition of the operation   

on S , we have xxxxx == 00
  and 0000 == xxxxx   for all Sx∈ . Hence )(SB  is an amicable set where, 

for any Sx∈ , 0)( = xx SB .  
 
In the following example we describe an LASL  and exhibit a maximal set M  of L  for which 𝐴𝐴𝑀𝑀(𝐿𝐿) ⊊ 𝐿𝐿.  That 
is, M  is a maximal set but not amicable.  
 
Example 5.1: Let L  be the set of all sequences }{ na  of nonnegative integers whose range is finite. Define a binary 

operation   on L  as follows: For any Lba nn ∈}{},{ , 

}{=}{}{ nnn cba   where 


 ≠

0=ifa0,
0ifa,

=
n

nn
n

b
c                                               (1) 

 
Then it can be verified that ),( L  is an ASL . Also observe that, for any {𝑎𝑎𝑖𝑖 }, {𝑏𝑏𝑖𝑖 } ∈ 𝐿𝐿, {𝑎𝑎𝑖𝑖 }~{𝑏𝑏𝑖𝑖} if and only if 

nn ba ≠≠ 0 implies nn ba = . Write 𝑀𝑀 = �{𝑎𝑎𝑖𝑖} ∈ 𝐿𝐿| 𝑎𝑎𝑖𝑖 = 𝑖𝑖 𝑐𝑐𝑐𝑐 𝑎𝑎𝑖𝑖 = 0, 𝑖𝑖𝑐𝑐𝑐𝑐 𝑎𝑎𝑚𝑚𝑚𝑚 𝑖𝑖�. Observe that every sequence in 
M  has only a finite number of nonzero entries. Clearly, M  is a compatible set in L . Now, we prove that M  is a 
maximal set. Let Lcn ∈}{  and let {𝑐𝑐𝑖𝑖 }~{𝑎𝑎𝑖𝑖 } for all Man ∈}{ . Suppose for some m , 0≠mc . 
 

Now consider the sequence }{ na  where 




≠ mifn0,
m=ifn,

=
m

an                                               (2) 

  
Then Mcn ∈}{  so that {𝑐𝑐𝑖𝑖 }~{𝑎𝑎𝑖𝑖}. Hence mac mm ==  since mm ac ≠≠ 0 . Thus Man ∈}{ . Therefore, M  
is a compatible set. 
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Now consider the constant sequence {1}. Here, L∈{1} , but )({1} LAM∉ . For, if )({1} LAM∈ , then there 

exists Man ∈}{  such that {1}={1}}{ na  which means 0≠na  for all n , which is a contradiction. Hence M  
is a maximal set in L  which is not amicable.  

  
Definition 5.24: Let ),( 1 L  and ),( 2 L  be two ASLs . Then a mapping 21: LL →ψ  is said to be a 
ℎ𝑐𝑐𝑚𝑚𝑐𝑐𝑚𝑚𝑐𝑐𝑐𝑐𝑜𝑜ℎ𝑖𝑖𝑖𝑖𝑚𝑚 , if for any )()(=)(  ,, yxyxLyx ψψψ ∈ . A homomorphism ψ  is said to be a 

𝑚𝑚𝑐𝑐𝑖𝑖𝑐𝑐𝑚𝑚𝑐𝑐𝑐𝑐𝑜𝑜ℎ𝑖𝑖𝑖𝑖𝑚𝑚(𝑒𝑒𝑜𝑜𝑖𝑖𝑚𝑚𝑐𝑐𝑐𝑐𝑜𝑜ℎ𝑖𝑖𝑖𝑖𝑚𝑚) if ψ  is 11−  (onto) and ψ  is said to be an 𝑖𝑖𝑖𝑖𝑐𝑐𝑚𝑚𝑐𝑐𝑐𝑐𝑜𝑜ℎ𝑖𝑖𝑖𝑖𝑚𝑚 if ψ  is bijection.  
 
Finally, we conclude this section with the following theorem which explains the relation between the maximal sets in L  
and the amicable sets in L .  
 

Theorem 5.25: Let M  be a maximal set and 'M  be an amicable set in L . Then the mapping 
'Maa   is a 

monomorphism of the semilattice ),( M  into the semilattice ),( '
M . Further, if M  is also amicable, then the above 

mapping is a surjection.  
  

Proof: Suppose M  is a maximal set and 'M  is an amicable set in L . Define ': MM →ψ  by 
'

=)( Maaψ . 

Then for any Mba ∈, , we have Mba ∈ . Now, by theorem 5.20. we get 
' ' '

( ) = ( ) =M M Ma b a b a bψ    . 

= ( ) ( )a bψ ψ Hence ψ  is a homomorphism. Suppose Mba ∈,  such that )(=)( ba ψψ . Then 
''

= MM ba . 
Therefore by corollary 5.19 =a b  since every element in M  is M-amicable. Hence ψ  is an injection. Therefore, 

ψ  is a monomorphisim. Suppose M  is an amicable. Then LLAM =)( . But, we have 'M  is amicable. Therefore 

LLA
M

=)(' . Hence )(==)( ' LALLA
MM . Let 'Mb∈ . Then )(==)(' LALLAb MM

∈ . Thus b  is 

M-amicable. Now, by corollary 5.17, there exists a unique element MbM ∈  such that MM bbb =  and 

bbbM = . On the other hand MbM ∈  is M-amicable. Since 'M  is amicable, )(==)( ' LALLAb
MM

M ∈ . 

Thus Mb  is 'M -amicable. Now, by 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚𝑎𝑎𝑐𝑐𝑐𝑐 5.17 , there exists a unique element ''
)( Mb MM ∈  such that 

''
)(=)( MMMMM bbb   and MMMM bbb =)(

'
 . Hence by uniqueness we get 

'
)(= MMbb . Now, put 

Mba M ∈= . Then bbba MMM =)(=)(=)(
'

ψψ . Hence ψ  is a surjection.  
  

6. UNIELEMENT AND UNIMAXIMAL ELEMENT 
 
In this section, we introduce the concept of unielement and unimaximal element in LASL   and prove some properties 
of these concept. First we begin this section with the following definition:  
 
Definition 6.1: Let M  be a maximal set in L . An element u  of L  is said to be a unimaximal of M  if ua ≤  for 
all Ma∈ .  

 
Observe that a unimaximal of a maximal set, if it exists, then it is unique and is in M . As usual, we say that an element 

Lx∈  is a maximal if, for any yxLy ≤∈ ,  implies yx = .  
 
Definition 6.2: An element Lm∈  is said to be unimaximal if xxm =  for all Lx∈ . Observe that every 
unimaximal element is maximal and also, in discrete ASL , every element is unimaximal and hence are maximal 
elements. 
  
Theorem 6.3: If x  and y  are elements of L  which are unimaximal, then we have the following:  

1. x y is unimaximal  
2. y x is unimaximal  

  
Proof: Suppose x  and y  are unimaximal elements of L . Then aax =  and aay =  for all La∈ . Now, 

aaxayxayx ==)(=)(  . Therefore yx   is unimaximal. Similarly, xy   is unimaximal. 
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It is clear that for any Lyx ∈, , yx   is a unimaximal if and only if xy   is a unimaximal. 
 
Theorem 6.4: Let M  be a maximal set in L  with unielement u . Then }  |{= LxuxM ∈  .  

  
Proof: Put }  |{= LxuxH ∈ . Now, we shall prove that HM = . Suppose M  is a maximal set with the 
unielement u . Then we have ux ≤  for all Mx∈ . Hence uxx =  for all Mx∈ . Therefore HM ⊆ . Let 

Ht∈ . Then uxt =  for some Lx∈ . Now, let Ms∈ . Then = ( ) = ( ) = ( ) =s t s x u s x u x s u       . 
( ) = ( ) = ( ) =x s u x u s x u s t s       Therefore 𝑖𝑖~𝑡𝑡 for all Ms∈ . It follows that Mt∈  since M  is a 

maximal set. Thus MH ⊆ . Hence HM = .  
  

Corollary 6.5: Let m  be a unimaximal element of L . Then the set }  |{:= LxmxM m ∈  is a maximal set in L , 
with m  as its unielement.  
 
Proof: Clearly mM  is a compatible set. Let Ly∈  be such that 𝑐𝑐~𝑥𝑥 m for all Lx∈ . In particular, 𝑐𝑐~𝑚𝑚, so that 

yymmy ==  , since m  is unimaximal. Hence mMy∈ . Thus mM  is a maximal set. Clearly m  is the 

unielement of mM .  
  

Theorem 6.6: Suppose L  has a unimaximal element. If a maximal set M  of L  is amicable, then M  has a 
unielement.  

  
Proof: Suppose M  is amicable. Let m  be a unimaximal element of L . Since )(= LALm M∈ , there exists 

Ma∈  such that mma = . Now, for any Lt∈ , 𝑎𝑎  t = a  (m  t) = (a m)
 t = m  t = t . Therefore, a  is a 

unimaximal element. Let Ms∈ . Then 𝑖𝑖~𝑎𝑎 and hence ssaas ==  . Hence as ≤  for all Ms∈ . Therefore, 
a  is a unielement of M .  

  
Lemma 6.7: Let M  be a maximal set with unielement u . If u  is a unimaximal element of L , then M  is 
amicable.  

  
Proof: Suppose M  is a maximal set with a unielement u  and suppose u  is a unimaximal element of L . Then for 
any Lt∈ , ttu = . Therefore every element in L  is M-amicable. Thus LLAM =)( . Hence M  is amicable. 
  
Now, we have the following corollary in the view of theorem 5.25..  
 
Corollary 6.8: If L  has a unimaximal element, then every maximal set can be embedded in any maximal set with 
unielement.  

 
Recall that an element La∈  is said to be minimal element of L  if ax ≤ , then ax = , for all Lx∈ . 

 
Theorem 6.9: The following are equivalent in L :  

1. a  is a minimal element of L   

2. aax =  for all Lx∈   
   

Proof: 
(1) ⇒(2): Assume (1). Let Lx∈ . Then we have aax ≤ . It follows that aax =  since a  is minimal. 
 
(2) ⇒(1): Assume (2). Suppose Ly∈  such that ay ≤ . Then aayy ==   and hence a  is minimal. 
 
Corollary 6.10: L  is discrete if and only if every element of L  is minimal.  

  
Proof: Suppose L  is a discrete ASL  and suppose La∈ . Then aax =  for all Lx∈ . Therefore by theorem 
5.35, a  is a minimal element of L . Conversely, suppose every elements of L  is minimal. Then we have aax =  
for all Lx∈  and for all La∈ . Thus L  is discrete ASL . 

 
Finally, we conclude this section with the following theorem which explains every element in L  contains a minimal 
element.  
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Theorem 6.11: If L  has minimal elements, then for each Lx∈ , there exists a minimal element Lm∈  such that 

xm ≤ .  
  

Proof: Suppose L  has a minimal element say n . Now, let Lx∈ . Put xnm = . Then for any Lt∈  with mt ≤
, we get mxnxntxntmtt ==)(=)(==  . Hence m  is a minimal element of L . Also, xxn ≤ , 
we get xm ≤ . 

  
7. ALMOST SEMILATTICE WITH ZERO 
 
In this section we introduce the concept of zero element in an Almost Semilattice analogous to that of the least element in 
a semilattice. We establish the independency of axioms in the definition. Further, we give few examples of Almost 
Semilattice with 0  and prove several properties of ASL  with 0 .  
 
Definition 7.1: Let L  be an ASL . An element L∈0  is called a elementzero   of L  if 0=0 a  for all 

La∈ .  
 
Observe that an ASL  can have at most one zero element and it will be the least element of the poset ),( ≤L . We 
always denote the zero element of L , if it exists, by ’ 0 ’. If L  has 0 , then the algebra ,0),( L  is called an ASL  
with ’ 0 ’. Now, we have the following theorem whose proof is straight forward. 
  
Theorem 7.2: Let ),(= LL  be an ASL  and 0  be any external element of L . For any {0}, ∪∈Lyx , define:  



 ∈

.Otherwise0,
.Lyifx,)  (  ,

=
Linyx

yx


                                                          (3) 

Thus .0){0},( ∪L  is an ASL  with 0 . We denote this ASL  by oL . 
According to 𝑑𝑑𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑐𝑐𝑖𝑖 7.1 , an ASL  with 0  is an algebra ,0),( L  of type (2,0)  satisfying the following 
axioms: 

1( )     ( ) = ( )AS x y z x y z          (Associative Law) 

2( )     ( ) = ( )AS x y z y x z         (Almost Commutative Law) 

3( )     =AS x x x                     (Idempotent Law) 

0( )     0 = 0AS x                     (for all x L∈ ) 
 
For brevity, in future, we will refer to this Almost Semilattice with 0  as ASL  with 0 . Now, we give examples to 
exhibit the idempotency of the axioms in the above definition. 
 
Throughout the remaining of this section, by 0L  we mean an ASL  with ,0),(  0 L  unless otherwise specified.  
 
Example 7.1: Let L  be a nonempty set. Define a binary operation   on 0L  by 

=x y x  for all 0, Lyx ∈ .  

Here, the algebra ,0),( L , satisfies the axiom of )(  ),( 31 ASAS  and )( 0AS . But, it fails to satisfy the axiom 

)( 2AS , since for any distinct three elements xzxzyxLzyx ==)(,,, 0
∈  and yzyzxy ==)(  . 

Therefore, zxyzyx  )()( ≠ .  
 
Example 7.2: Let }{0,1,2,...=0L . Define a binary operation   on oL  by 

= .x y x y  for all oLyx ∈, .  

Here, oL  satisfies the axioms of )(  ),( 21 ASAS  and )( 0AS . But, it is not satisfy the axiom )( 3AS , since 
xxxxx ≠.= , for all 𝑥𝑥(≠ 0, 1) ∈ 𝐿𝐿𝑐𝑐 .  

 
Example 7.3: Let L  be a nonempty set. Define a binary operation   on L  by 

=x y y  for all Lyx ∈, .  
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Here, the algebra ,0),( L  satisfies the axioms of )(  ),( 21 ASAS  and )( 3AS . But, it fails to satisfy the axiom 

)( 0AS , since xx ≠0=0   for all Lx∈ .  
 
Example 7.4: Let },,{0,= cbaLo . Define the binary operation   on L  as follows:  
 

    0   a   b  c  
0  0   0   0   0 
a   0   a  a   c  
b   0   c   b   a  
c   0   a   a   c  

 
Here, oL  satisfies the axioms of )(),( 32 ASAS  and )( 0AS . But, it fails to satisfy the axiom )( 1AS , since 

)(====)( cbaaaaccacba  ≠ .  
 
Example 7.5: Let },,{0,= cbaLo . Define a binary operation   as follows: 
  

    0   a   b  c  
0  0   0   0   0 
a   0   a  a   a  
b   0   a   b   c  
c   0   a   b   c  

 
It is easy to verify that ),( 

oL  is an ASL  with 0 .  
 
Example 7.6: Let L  be a nonempty set and fix Lxo ∈ . Define a binary operation   on L  by:  



 ≠

.x=ifx,

.xifx  ,
=

o

o

ox
y

yx                                                                         (4) 

Then L  is an ASL  with ox  as its zero. 
 
In the rest of this section, we prove some results in the class of ASLs  with 0 . Throughout the remaining of this 
section, by L  we mean an ASL  with 0  unless otherwise specified. Now, we prove the following.  
 
Lemma 7.3:  Let L  be an ASL  with 0 . Then, for any 0=0, aLa∈ .  

  
Proof: Suppose L  is an ASL  with 0 . Then 0=0=)(0=0)(=)(0=0 aaaaaaaa  . 
Therefore 0=0a .  

  
Lemma 7.4: For any 0=,, baLba ∈  if and only if 0=ab  .  

  
Proof: Suppose 0=ba  . Then 0=0=)(=)(=)(= aabaaabaabab  . Therefore 0=ab  . 
Similarly, the converse holds true. 
  
Now, we prove the following corollary whose proof follows by leema 7.4.  
 
Corollary 7.5: For any abbaLba  =,, ∈  whenever 0=ba    

  
Corollary 7.6: Let L be an ASL  with 0 . Then for any baLba ≤∈ ,,  implies that xbxa  ≤  and 

bxax  ≤  for all Lx∈ .  
 
Proof: Suppose L  is an ASL  with 0  and suppose ba ≤  for any Lba ∈, . Then baa = . Now, for any 

Lx∈ , (𝑥𝑥  a)


(x  b) = (a  x)


(x  b) = �(a  x)
 x�  b = �a  (x  x)�  b = (a  x)

 b = (x  a)
 b =

x  (a  b) = x  a .  Therefore bxax  ≤ . Also, (𝑎𝑎  x)  (b  x) = (x  a)  (b  x) = �(x  a)  b�  x =
�x  (a  b)�  x = (x  a)

 x = (a  x)
 x = a  (x  x) = a  x. Therefore xbxa  ≤ .   
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Since 0=0a  and 0=0 a  for all La∈ , aa  0=0 . Thus 0~𝑎𝑎. Hence we have the following theorem.  
 
Theorem 7.7: Let L  be an ASL  with 0 . Then L  is a semilattice with 0  if and only if ~ is a transitive relation on 
L .  

  
Proof: Suppose L  is a semilattice with 0  and assume that 𝑎𝑎~𝑏𝑏 and 𝑏𝑏~𝑐𝑐 for Lcba ∈,, . Then clearly 𝑎𝑎~𝑐𝑐, since 
L  is semilattice. Hence ~ is transitive. Conversely, suppose ~ is a transitive relation on L . Then for any Lba ∈, , 
we have 𝑎𝑎~0 and 0~𝑏𝑏. Thus 𝑎𝑎~𝑏𝑏, since ~ is transitive. Therefore abba  =  for any Lba ∈, . Hence L  is a 
semilattice.  
 
But, 𝑒𝑒𝑥𝑥𝑎𝑎𝑚𝑚𝑜𝑜𝑚𝑚𝑒𝑒 3.6 (with L  containing more than one element) shows that if L  does not have 0 , then the above 
theorem is not valid. 
 
Definition 7.8: If L  is a discrete ASL , then the 𝐴𝐴𝑆𝑆𝐿𝐿 (𝐿𝐿𝑐𝑐 ,  ) where {0}= ∪LLo  is called a ASLsimple  .  

  
Finally, we have the following theorem whose proof straightforward.  
 
Theorem 7.9:  let L  be an ASL  with 0 . Then the following are equivalent. 
    L  (1)   is simple 
     (2)   Every non zero element of L  is unimaximal. 
    bba =  (3)    for all 0≠a   
 
REFERENCES  

 
1. Arens, R.F. and Kaplansky, I.,Topological Representation of Algebras, Trans.Amer.Math.Soc., 63 (1948), 

457-481.  
2. Clifford A.H.: Semigroups Admitting Relative Inverses, Annals of Mathematics Vol.42, No.4, October, 1941.  
3. Maddana Swamy, U., Rao, G. C., Ravi Kumar and Pragati, Ch.,Birkhoff Center of a Poset, South Asian Bulletin 

of Mathematics 26(2002), 509-516.  
4. Maddana Swamy, U. and Rao, G. C.: Almost Distributive Lattice, J.Austral. Math.Soc.(Series A) 31(1981), 

77-91.  
5. Maddana Swamy, U., Bear-Stones Semigroups, Semigroup Forem, 19(1979), 385-386.  
6. McCoy, N.H. and Mantgomery, D., A Representation of Generalized Boolean Rings, Duke.Math.J., 3(1937), 

455-459.  
7. Mario Petrich, Pennsyvania,: On Ideals of a Semilattice, Czechoslovak Mathematical Journal, 22(97)1972, 

Praha.  
8. Ramana Murti, P.V. and Rama Rao, V.V., Characterization of Certain Classes of Pseudocomplemented 

Semilattices, Algebra Universals, 4(1974), 289-300.  
9. Subrahmanyam, N.V., Lattice Theory for Certain Classes of Rings, Math.Ann., 141(1960), 275-286.  
10. Suryanarayana Murti, G., Boolean Center of Universal Algebra, Doctoral thesis, (1980), Andhra University, 

Walteir, India.  
11. Szasz, G.: Introduction to Lattice Theory, Academic press, New York and London, 1963.  
12. Von Noumann, J., On Regular Rings, Proc.Mat.Acad.Sci., 22(1936), 707-713, U.S.A.  

 
Source of support: Nil, Conflict of interest: None Declared 

 
[Copy right © 2016. This is an Open Access article distributed under the terms of the International Journal 
of Mathematical Archive (IJMA), which permits unrestricted use, distribution, and reproduction in any 
medium, provided the original work is properly cited.] 
 

  


	ALMOST SEMILATTICE
	1. INTRODUCTION
	2. PRELIMINARIES
	3. DEFINITION AND INTERPRETATION OF THE AXIOMS
	4. PROPERTIES OF
	5. AMICABLE SETS
	6. UNIELEMENT AND UNIMAXIMAL ELEMENT
	7. ALMOST SEMILATTICE WITH ZERO

