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ABSRACT 
In this paper we introduce the concept of T-fuzzy bi-ideals using t-norm and t-norm (λ,µ)-fuzzy bi-ideals in near-ring 
and investigate some of their properties. 
 
 
1. INTRODUTION 
 
The theory of fuzzy set was first inspired by Zadeh [5]. Triangular norms were introduced by Schweizer and Sklar[3,4] 
to model the distances in probabilistic metric spaces. P.Dheena, G.Mohanraj [2] and M.Akram [1] have studied several 
properties of T-fuzzy ideals of rings and T-fuzzy ideals of near-rings. In this paper we introduce the notion of T-fuzzy 
bi-ideals using t-norm and t-norm (λ,µ)-fuzzy bi-ideals in near-ring  and  investigate some related properties. 
 
2. PRELIMINARIES 
 
Definition 2.1: A fuzzy subset µ of a near-ring N is called T- fuzzy bi-ideal if 

(1) µ(x-y) ≥ T(µ(x),µ(y)) 
(2) µ(xyz) ≥ T(µ(x),µ(z)) for all x, y, z∈N. 

 
Definition 2.2: A mapping f: N→N′ is called a near-ring homomorphism if f(x+y)=f(x)+f(y) and f(xy)=f(x)f(y) for all 
x, y∈N. 
 
Definition 2.3: a quotient nearing is a near –ring that is the quotient of a near-ring and one of its bi-ideal I, denoted N/I. 
If I is a bi-ideal of a near-ring N and a∈N, then a coset of I is a set of the form a+I = {a+s/s∈I}.The set of all coset is 
denoted by N/I. 
 
Theorem 2.4: If I is a bi-ideal of a near-ring N, the set N/I is a near-ring under the operations (a+I)+(b+I) = (a+b)+I 
and (a+I).(b+I)= (a.b)+I. 
 
Lemma 2.5:.If µ is a fuzzy bi-ideal of N, then µ(0) ≥ µ(x) for all x∈N. 
 
Definition 2.6.[3]: A t-norm is a function T:[0,1]x[0,1]→[0,1] that satisfies the following conditions for all x, y, 
z∈[0,1], 

(1) T(x,1) =x, 
(2) T(x, y) =T(y, x), 
(3) T(x, T(y, z)) = T(T(x, y), z), 
(4) T(x, y) ≤ T(x, z) whenever y ≤ z. 

 
A simple example of such defined t-norm is a function T(x, y) = min(x, y). In general case, T(x, y) ≤ min(x, y) and  
T(x, 0) = 0 for all x, y∈[0,1]. 
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Definition 2.7: A subgroup B of N is said to be bi-ideal if BNB ⊆ B. 
 
Definition 2.8: A fuzzy subset µ of a near-ring N is called fuzzy bi-ideal if 

(1) µ(x-y) ≥ min{µ(x),µ(y)} 
(2) µ(xyz) ≥ min{µ(x),µ(z)} for all x, y, z∈N. 

 
Definition 2.9: A fuzzy bi-ideal µ of a near-ring N is said to be normal if µ(0)=1. 
 
Definition 2.10:.Let N and N′ be two near-rings and ‘f ’a function of N into N′. 

(i) If λ is a fuzzy set in N′ , then the preimage of λ under ‘f‘ is the fuzzy set in N defined by  
µ(x) = (λοf)(x)=λ(f(x))  for each x∈N, 

(ii) If µ is a fuzzy set of N, then the image of µ  under f is the fuzzy set in N′ defined by  
 

       f(µ)(y)   =
𝑠𝑠𝑠𝑠𝑠𝑠

      x ∈f−1(y)µ(x)       if  f-1(y) ≠φ,  

                               0                          otherwise      for each y∈N′. 
 
Definition 2.11: Let µ and  λ be a T-fuzzy bi-ideal of a Near-ring N. Then the direct product of T-fuzzy bi-ideal is 
defined by (µ×λ)(x, y)=T(µ(x), λ(y))  for all x, y∈N. 
 
3. THE QUOTIENT NEAR-RINGS VIA T-FUZZY BI-IDEALS  
 
Theorem 3.1: Let I be a bi-ideal of a near-ring N. If µ is a T-fuzzy bi-ideal of N, then the fuzzy set µ� of N/I defined by 
µ�(a+I) = 𝑠𝑠𝑠𝑠𝑠𝑠𝑥𝑥 ∈ 𝐼𝐼µ(a+x) is a T-fuzzy bi-ideal of the quotient near-ring  N/I with respect to I. 
 
Proof: Let N be a near-ring and µ be a T-fuzzy bi-ideal of N. 
 
Let a, b∈N such that a+I=b+I. Then b= a+y for some y∈I. 
 
Thus µ�(b+I) = 𝑠𝑠𝑠𝑠𝑠𝑠𝑥𝑥 ∈ 𝐼𝐼µ(b+x) = 𝑠𝑠𝑠𝑠𝑠𝑠

𝑥𝑥 ∈ 𝐼𝐼 µ(a+y+x) = 
𝑠𝑠𝑠𝑠𝑠𝑠

𝑧𝑧 = 𝑥𝑥 + 𝑦𝑦∈𝐼𝐼 µ(a+z)=µ�(a+I). Hence µ� is well defined. 
 
Let x+I, y+I∈ N/I,  
 µ� ((x+I)-(y+I)) = µ�((x-y)+I) 
                         = 𝑠𝑠𝑠𝑠𝑠𝑠𝑧𝑧∈𝐼𝐼µ((x-y)+z) 

                         = 𝑠𝑠𝑠𝑠𝑠𝑠
𝑧𝑧 = 𝑢𝑢 − 𝑣𝑣 ∈ 𝐼𝐼µ((x-y)+(u-v)) 

                         = 𝑠𝑠𝑠𝑠𝑠𝑠
𝑧𝑧 = 𝑢𝑢 − 𝑣𝑣 ∈ 𝐼𝐼µ((x+u)-(y+v)) 

                         ≥ 
𝑠𝑠𝑠𝑠𝑠𝑠

𝑢𝑢, 𝑣𝑣 ∈ 𝐼𝐼T(µ(x+u) , µ(y+v)) 

                         = T{ 𝑠𝑠𝑠𝑠𝑠𝑠𝑢𝑢 ∈ 𝐼𝐼µ(x+u),  𝑠𝑠𝑠𝑠𝑠𝑠𝑣𝑣 ∈ 𝐼𝐼 µ(y+v)} 
                         = T(µ�(x+I),µ�(y+I)) 
 
Therefore  µ� ((x+I)-(y+I)) ≥ T(µ�(x+I), µ�(y+I)). 
 
For x+I, y+I, z+I∈N/I,   
µ� ((x+I)(y+I)(z+I)) = µ�((xyz)+I) 
                                = 𝑠𝑠𝑠𝑠𝑠𝑠

𝑢𝑢 ∈ 𝐼𝐼µ(xyz+u) 

                                = 𝑠𝑠𝑠𝑠𝑠𝑠𝑢𝑢 ∈ 𝐼𝐼µ((x+u)(y+u)(z+u)) 

                                ≥ 𝑠𝑠𝑠𝑠𝑠𝑠𝑢𝑢 ∈ 𝐼𝐼T(µ(x+u)  ,µ(z+u)) 

                                = T{ 𝑠𝑠𝑠𝑠𝑠𝑠𝑢𝑢 ∈ 𝐼𝐼µ(x+u),  𝑠𝑠𝑠𝑠𝑠𝑠𝑢𝑢 ∈ 𝐼𝐼 µ(z+u)} 
                                = T(µ�(x+I), µ�(z+I)). 
 
Therefore  µ� ((x+I)(y+I)(z+I)) ≥ T(µ�(x+I), µ�(z+I)). 
 
Thus µ� is a T-fuzzy bi-ideal of N/I. 
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Theorem 3.2: Let I be a bi-ideal of near-ring N. Then there is one-to-one correspondence between the set of T-fuzzy 
bi-ideals µ of N such that µ(0) =µ(s) for all s∈I and the set of all T-fuzzy bi-ideals µ� of N/I. 

 
Proof: Let I be a bi-ideal of a near-ring N. Let µ be T-fuzzy bi-ideal of a near-ring N. Using theorem 3.1, we prove that  
µ� defined by µ�(a+I) = 𝑠𝑠𝑠𝑠𝑠𝑠𝑥𝑥 ∈ 𝐼𝐼µ(a+x) is a T-fuzzy bi-ideal of N/I. Since µ(0) =µ(s) for all s∈I, µ(a+s) ≥ T(µ(a),             
µ(s)) = µ(a). Again, µ(a)=µ(a+s-s) ≥ T(µ(a+s), µ(s))=µ(a+s).Thus µ(a+s) =µ(a) for all s∈I, that is,  µ�(a+I) = µ(a). 
Hence the correspondence µ ↦ µ� is one-to-one. Let µ� be a T-fuzzy bi-ideal of N/I and defined fuzzy set µ in N by µ(a) 
=µ�(a + I) for all a∈I. 
 
For any x, y∈N, 
µ(x-y) = µ�((x-y) +I) = µ�((x+I) –(y+I)) 
                                 ≥ T(µ�(x + I), µ�( y + I)) 
                                 = T(µ(x), µ(y)) 

 
Therefore µ(x-y) ≥ T(µ(x), µ(y)). 

 
For any x, y, z∈N, we have 
µ(xyz) = µ�((xyz) +I) = µ�((x + I)(y + I)(z+I)) 
           ≥ T(µ�(x + I), µ�( z + I)) 
           = T(µ(x), µ(z)). 

 
Therefore µ(xyz) ≥ T(µ(x), µ(z)). 

 
Thus µ is a T-fuzzy bi-ideal of N. Note that µ(z) = µ�(z + I) = µ�(I) for all z∈I, which shows that µ(z) =µ(0) for all z∈I. 

 
Theorem 3.3: Let T be t-norm and I be a bi-ideal of a near-ring N. Then for all  α∈[0,1], there exists a T-fuzzy bi-ideal  
µ of N such that µ(0) = α and U(µ ; α) = I. 

 
Proof: Let µ : N→[0,1] be a fuzzy subset of N defined by µ(x) =� 𝛼𝛼 𝑖𝑖𝑖𝑖 𝑥𝑥𝑥𝑥𝑥𝑥

0 𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
�Where α is a fixed number in 

[0,1].clearly U(µ ; α)= I and µ(0)=𝛼𝛼. Let x, y∈N, then a routine calculation shows that µ is a T-fuzzy bi-ideal of N.  
 

Theorem 3.4: Let µ be a T-fuzzy bi-ideal of a near-ring N and let µ(0)=𝛼𝛼. Then the fuzzy subset µ* of the quotient 
near-ring N / 𝑈𝑈(µ;𝛼𝛼) defined by µ*(x+ 𝑈𝑈(µ;𝛼𝛼)) = µ(x) for all x∈N is a T-fuzzy bi-ideal of N/ 𝑈𝑈(µ;𝛼𝛼). 

 
Proof: The proof is straightforward. 

 
Theorem 3.5: Let I be a bi-ideal of a near-ring N and φ be a T-fuzzy bi-ideal of N/I such that φ(x+I)=φ(x) only if x∈I. 
Then there exists a T-fuzzy bi-ideal of N such that𝑈𝑈(µ ;𝛼𝛼)=I, 𝛼𝛼 = 𝜇𝜇(0) ,and  φ=µ*. 

 
Proof: Let φ be a T-fuzzy bi-ideal of N/I. Define a T-fuzzy bi-ideal µ of N by µ(x)= φ(x+I) for all x∈N. 
 
For x, y∈N, µ(x-y)=φ((x-y)+I) ≥ T(φ(x+I), φ(y+I)) =T(µ(x), µ(y)) 
 
For x, y, z∈N, µ(xyz)=φ(xyz+I) ≥T(φ(x+I),  φ(z+I))=T(µ(x), µ(z)). Therefore µ is a T-fuzzy bi-ideal of N.  
 
Next, we prove that 
𝑈𝑈(µ;𝛼𝛼) =I.Let x∈ U(µ; α)⇔µ(x)≥𝛼𝛼 = µ(0)⇔µ(x)≥µ(0)⇔µ(x)= µ(0)⇔φ(x+I)= φ(0+I) )⇔φ(x+I) = φ(I)⇔ x∈I.  
 
Hence U(µ ; α)=I. Finally, we prove that µ* = φ, Now, µ*(x+I) =µ*(x+ 𝑈𝑈(µ;𝛼𝛼)) = µ(x)= φ(x+I). Therefore µ*= φ. 
 
Theorem 3.6: An onto homomorphic image of a T-fuzzy bi-ideal with sup property is a T-fuzzy bi-ideal.  
 
Proof: Let N and N′ be two near-rings. Let f: N→N ′be an epimorphism and µ be a T-fuzzy bi-ideal of N with sup 
property and λ be the image of µ under f. 
 

Let f(x), f(y), f(z)∈f(N) and let x0∈f -1(f(x)), y0∈f -1(f(y)), z0∈f -1(f(z)) such that µ(x0) = 
𝑠𝑠𝑠𝑠𝑠𝑠

𝑡𝑡 ∈ 𝑓𝑓−1
µ(𝑡𝑡)

(𝑓𝑓(𝑥𝑥)), 

µ(y0) = 
𝑠𝑠𝑠𝑠𝑠𝑠

𝑡𝑡 ∈ 𝑓𝑓−1
µ(𝑡𝑡)

(𝑓𝑓(𝑦𝑦)), µ(z0) = 
𝑠𝑠𝑠𝑠𝑠𝑠

𝑡𝑡 ∈ 𝑓𝑓−1
µ(𝑡𝑡)

(𝑓𝑓(𝑧𝑧)). 
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Now, 

(i) λ(f(x)-f(y)) = 
𝑠𝑠𝑠𝑠𝑠𝑠

𝑡𝑡 ∈ 𝑓𝑓−1
µ(𝑡𝑡)

(𝑓𝑓(𝑥𝑥) − 𝑓𝑓(𝑦𝑦)) 

                                         ≥ µ(x0-y0) 
                                         ≥ T{µ(x0) , µ(y0)} 

                                         = T{ 
𝑠𝑠𝑠𝑠𝑠𝑠

𝑡𝑡 ∈ 𝑓𝑓−1
µ(𝑡𝑡)

(𝑓𝑓(𝑥𝑥)),    
𝑠𝑠𝑠𝑠𝑠𝑠

𝑡𝑡 ∈ 𝑓𝑓−1(
µ(𝑡𝑡)
𝑓𝑓(𝑦𝑦))  } 

                                         = T{λ(f(x)), λ(f(y))}                                             
       Therefore λ(f(x)-f(y)) ≥T {λ(f(x)), λ(f(y))}. 
 

(ii) λ(f(x)f(y)f(z))  = λ(f(xyz)) 

                                       = 
𝑠𝑠𝑠𝑠𝑠𝑠

𝑡𝑡 ∈ 𝑓𝑓−1
µ(𝑡𝑡)

(𝑓𝑓(𝑥𝑥𝑥𝑥𝑥𝑥)) 

                                              ≥ µ(x0y0z0) 
                                              ≥ T{µ(x0),  µ(z0)} 

                                              = T{ 
𝑠𝑠𝑠𝑠𝑠𝑠

𝑡𝑡 ∈ 𝑓𝑓−1
µ(𝑡𝑡)
�𝑓𝑓(𝑥𝑥)�,    

𝑠𝑠𝑠𝑠𝑠𝑠
𝑡𝑡 ∈ 𝑓𝑓−1

µ(𝑡𝑡)
(𝑓𝑓(𝑧𝑧))  } 

                                              = T{λ(f(x))  ,λ(f(z))} 
Therefore   λ(f(x)f(y)f(z)) ≥ T{λ(f(x)), λ(f(z))}. Hence λ is a T-fuzzy bi-ideal of N′. 
 

Theorem 3.7: An onto homomorphic pre-image of a T-fuzzy bi-ideal of near-ring is a T-fuzzy bi-ideal.  
 

Proof: Let N and N′ be two near-rings. Let f: N→N′be an epimorphism. 
 
Let x, y∈N, 

(i) µ(x-y) =  (λοf)(x-y) 
           = λ(f(x-y)) 
           = λ((f(x)-f(y)) 
           ≥ T{λ(f(x)),  λ(f(y))} 
           = T{(λοf)(x),  (λοf)(y)} 
           = T{µ(x) , µ(y)} 
Therefore µ(x-y) ≥ T(µ(x), µ(y)). 

 
Similarly we can prove that µ(xyz) ≥T(µ(x), µ(z)) for all x, y, z∈N. Hence µ is a T-fuzzy bi-ideal of N. 
 
Theorem 3.8: Let N and N′ be two near-rings. If µ and λ are T-fuzzy bi-ideals of N and N′ respectively, then µxλ is a 
T-fuzzy bi-ideal of the direct product NxN′. 
 
Proof: Let (x1, y1), (x2, y2) ∈ N x N′. 
 
Now,       (µ x λ) ((x1,y1)-(x2,y2)) = (µ x λ)(x1-x2, y1-y2) 
                                                     = T[µ(x1-x2), λ(y1-y2)] 
                                                     ≥ T[T(µ(x1), µ(x2)), T(λ(y1), λ(y2))]     
                                                     = T(T[T(µ(x1), µ(x2)), λ(y1)], λ(y2)) 
                                                     = T[T(λ(y1), T(µ(x1), µ(x2))), λ(y2)] 
                                                     = T(T[T(λ(y1), (µ(x1)), µ(x2)], λ(y2)) 
                                                     = T[T(µ(x1), (λ(y1)), T(µ(x2), λ(y2))] 
                                                     = T[(µ x λ)(x1, y1), (µ x λ)(x2,y2)] 
 
Therefore  (µ x λ)((x1, y1) - (x2, y2)) ≥ T((µ x λ)(x1, y1), (µ x λ)(x2, y2)). 
 
Let (x1, y1), (x2, y2), (x3, y3) ∈ N x N′, 
 
Now, (µ x λ) ((x1, y1)(x2, y2)(x3, y3)) = (µ x λ)(x1x2x3, y1y2y3) 
                                                           = T(µ(x1x2x3), λ(y1y2y3)) 
                                                           ≥ T[T(µ(x1), µ(x3)), T(λ(y1), λ(y3))] 
                                                           = T(T[T(µ(x1), µ(x3)), λ(y1)], λ(y3)) 
                                                           = T[T(λ(y1), T(µ(x1), µ(x3))), λ(y3)] 
                                                           = T(T[T(λ(y1), (µ(x1)), µ(x3)], λ(y3)) 
                                                           = T[T(µ(x1), (λ(y1)), T(µ(x3), λ(y3))] 
                                                           = T[(µ x λ)(x1, y1),  (µ x λ)(x3, y3)] 
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Therefore  (µ x λ)((x1, y1)(x2, y2)(x3, y3)) ≥ T((µ x λ)(x1, y1), (µ x λ) (x3, y3)). 
 
Hence µ x λ is a T-fuzzy bi-ideal of the direct product NxN′. 
 
Theorem 3.9: Let µ be a T-fuzzy bi-ideal of N. If µ(x+y) = µ(0), then µ(x) = µ(y). 
 
Proof: Assume that µ(x+y) = µ(0) for all x, y∈N. 
            Then µ(x) = µ((x+y)-y) 
                             ≥ T(µ(x+y), µ(y)) 
                             = T(µ(0), µ(y)) 
                             = µ(y) 
            Therefore µ(x) ≥ µ(y). 
             
            Now,    µ(y) = µ((x+y)-x) 
                                 ≥ T(µ(x+y), µ(x)) 
                                 = T(µ(0), µ(x)) 
                                 = µ(x) 
            Therefore µ(y) ≥ µ(x).Hence µ(x)=µ(y). 
 
Theorem 3.10:. Let N be a near-ring and µ be a T-fuzzy bi-ideal of N. Then the set Nµ ={x∈N/ µ(0)= µ(x)} is a bi-
ideal of N. 
 
Proof: Let µ be a T-fuzzy bi-ideal of N. Let x, y∈Nµ⇒µ(x) = µ(y) = µ(0). Consider µ(x-y) ≥ T(µ(x), µ(y)) ≥ T(µ(0), 
µ(0)) ≥ µ(0) and so µ(x -y) = µ(0) ⇒ x-y∈Nµ and hence Nµ is a subgroup of N. Let x, z∈Nµ and y∈N. Then              
µ(x) = µ(z) = µ(0). Now µ(xyz) ≥ T(µ(x), µ(z))  ≥ T(µ(0), µ(0)) = µ(0) and so µ(xyz) = µ(0) ⇒ xyz∈Nµ. Hence Nµ is a 
bi-ideal of N. 
 
Theorem 3.11: If {µi / i∈∧} is a family of T-fuzzy bi-ideals of a near-ring N, then ∨

  i∈∧µi is also a T-fuzzy bi-ideal of 

N where ∨
  i∈∧µi is defined  by ( ∨

  i∈∧µi)(x) = sup{µi(x) / i ∈∧} for all x∈N. 
 
Proof: Let {µi/i∈∧} be a family of T-fuzzy bi-ideals of N and x, y, z∈N. Then we have that 
                                ( ∨

  i∈∧µi)(x-y)  = sup{µi (x-y)/i∈∧} 
                                                       ≥ sup{T(µi(x), µi(y)) / i ∈∧}  
                                                       = T({sup{µi(x)/i∈∧}, sup {µi(y) / i ∈∧}) 
                                                       = T(( ∨

 i∈∧µi)(x), ( ∨
  i∈∧µi)(y)) 

 
Therefore   ( ∨

  i∈∧µi)(x-y)  ≥ T(( ∨
  i∈∧µi)(x),  ( ∨

  i∈∧µi)(y)). 

Now,            ( ∨
  i∈∧µi )(xyz)  = sup{µi (xyz) / i∈∧} 

                                              ≥ sup{T(µi(x), µi(z)) / i ∈∧}  
                                              = T(sup{µi(x)/i∈∧}, sup{µi(z) / i ∈∧}) 
                                              = T(( ∨

  i∈∧µi )(x), ( ∨
  i∈∧µi )(z)) 

 
Therefore  ( ∨

  i∈∧µi )(xyz) ≥ T(( ∨
  i∈∧µi)(x),  ( ∨

  i∈∧µi)(z)). Hence ∨
  i∈∧µi  is a T-fuzzy bi-ideal of N. 

 
Theorem 3.12: Let µ be a T-fuzzy bi-ideal of a near-ring N and µ be a fuzzy subset in N defined by 𝜇̂𝜇(𝑥𝑥) = 1

µ(0)
µ(x) for 

all x∈N. Then 𝜇̂𝜇 is a normal T-fuzzy bi-ideal of N. 
 
Proof: Let µ be a T-fuzzy bi-ideal of a near-ring N. Clearly, 𝜇̂𝜇(0)= 1

µ(0)
µ(0) = 1,  𝜇̂𝜇   is normal. 

 
For any x, y∈N, 
                             Then 𝜇̂𝜇 (x-y) = 1

µ(0)
µ(x-y) 

                                                  ≥ 1
µ(0)

min{µ(x) ,µ(y)} 

                                                  = min{𝜇𝜇(𝑥𝑥)
𝜇𝜇 (0)

, 𝜇𝜇(𝑦𝑦)
𝜇𝜇(0)

} 
                                           = min{𝜇̂𝜇(𝑥𝑥), 𝜇̂𝜇(𝑦𝑦)} 
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Therefore 𝜇̂𝜇(x-y) ≥ min{𝜇̂𝜇(𝑥𝑥), 𝜇̂𝜇(𝑦𝑦)}. Similarly 𝜇̂𝜇(xyz) ≥ min{𝜇̂𝜇(𝑥𝑥), 𝜇̂𝜇(𝑧𝑧)} for all x, y, z∈N. Hence  𝜇̂𝜇  is a normal T-
fuzzy bi-ideal of N and obviously µ⊆𝜇̂𝜇. 

 
Corollary 3.13: If µ is a T-fuzzy bi-ideal of a near-ring N satisfying 𝜇̂𝜇 (x) = 0 for some x∈N, then µ(x)= 0 also. 

 
4. t-NORM (λ, µ)-FUZZY bi-IDEALS 
 
Definition 4.1: Let A be a fuzzy subset of N. Then A is called a t-norm (λ  µ)-fuzzy bi-ideal of N if for all x, y, z∈N, 

(i) A(x-y)∨ λ ≥ t(t(A(x), A(y)), µ) 
(ii) A(xyz)∨ λ ≥ t(t(A(x), A(z)), µ). 

 
Theorem 4.2: Let A be a fuzzy subset of N. Then A is a t-norm (λ,µ)-fuzzy bi-ideal of N iff Aα is a bi-ideal of N for all 
α∈(λ,µ). 

 
Proof: Let A be a t-norm (λ, µ)-fuzzy bi-ideal of N. Let x, y ∈ Aα⇒ A(x) ≥ α, A(y) ≥ α. Consider A(x-y)∨λ≥ t(t(A(x), 
A(y)), µ) ≥ t(t(α, α), µ)=α (since α>λ). That is A(x-y)∨λ≥α⇒A(x-y)≥α⇒ x-y∈Aα. Hence Aα is a subgroup of N. Let 
x, z∈Aα ⇒ A(x) ≥ α, A(z) ≥ α and y∈N. Then A(x-y)∨λ≥ t(t(A(x), A(z)), µ)≥ t(t(α, α), µ)=α (since α>λ). That is 
A(xyz)∨λ≥α⇒A(xyz)≥α⇒ xyz∈Aα.  Hence Aα is a bi-ideal of N. 
        
Conversely suppose that Aα is a bi-ideal of N for all α∈(λ, µ). Suppose A(x-y)∨λ< t(t(A(x), A(y)), µ) = α. Then                                                                             
A(x-y)∨λ< α⇒A(x-y)<α (since α>λ)⇒ x-y∉Aα, a contradiction to Aα is a bi-ideal of N. Hence A(x-y)∨λ≥ t(t(A(x),             
A(y)), µ). Similarly we can prove that A(xyz)∨λ≥ t(t(A(x), A(z)), µ). Hence A is a t-norm (λ, µ)-fuzzy bi-ideal of N. 

 
Theorem 4.3: Let f: N1→N2 be a onto homomorphism of a near-ring N and let A be a t-norm (λ, µ)-fuzzy bi-ideal of 
N1. Then f(A) is a t-norm (λ, µ)-fuzzy bi-ideal of N2 where f(A)(y) = sup{A(x) / f(x) = y} for all y∈N2. 

 
Proof: Let f: N1→N2 be a onto homomorphism of a near-ring N and let A be a t-norm (λ, µ)-fuzzy bi-ideal of N1. 
 
For any y1, y2∈N2, we have 
 
(i) f(A)(y1-y2)∨λ = sup{A(x1-x2) / f(x1-x2) = y1-y2}∨λ 

                    = sup{A(x1-x2) ∨λ / f(x1-x2) = y1-y2} 
                    ≥ sup(t(t(A(x1), A(x2)), µ) / f(x1) = y1, f(x2) = y2) 
                    = t(t(sup{A(x1) / f(x1) = y1}, sup{A(x2) / f(x2) = y2)}), µ) 
                    = t(t(f(A)(y1), f(A)(y2)), µ) 
 

Therefore  f(A)(y1-y2)∨λ ≥ t(t(f(A)(y1), f(A)(y2)), µ). 
 
Similarly we can prove that f(A)(y1y2y3)∨λ ≥ t(t(f(A)(y1), f(A)(y3)), µ). Hence f(A) is a t-norm (λ,µ)-fuzzy bi-ideal of 
N2. 

 
Theorem 4.4: Let f: N1→N2 be a onto homomorphism of a near-ring N and let B be a t-norm (λ,µ)-fuzzy bi-ideal of 
N2. Then f -1(B) is a t-norm (λ,µ)-fuzzy bi-ideal of N1, where f -1(B) (x) = B(f(x)) for all x∈N1. 

 
Proof: For any x1, x2∈N1, 

     f -1(B)(x1- x2)∨λ= B(f(x1 - x2))∨λ 
         = B(f(x1) –f(x2))∨λ 
         ≥ t( t(B(f(x1), B(f(x2)), µ) 
         = t(t(f -1(B)(x1), f -1(B)(x2)), µ) 

Therefore f -1(B)(x1- x2)∨λ≥ t(t(f -1(B)(x1), f -1(B)(x2)), µ). Similarly we can prove that  f -1(B)(x1x2x3)∨λ≥ t(t(f -1(B)(x1), 
f -1(B)(x3)), µ). Hence f -1(B) is a t-norm (λ, µ)-fuzzy bi-ideal of N1.     
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