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ABSTRACT 
The out binary neighborhood graph ( )ndB H+  of a directed graph ( ),H V E=  is the undirected graph with 

vertex set V S +
 where S + is the set of all open out neighborhood sets of H in which two vertex vu,  are adjacent 

if ,u v S +∈ and φ≠vu  or u V∈ and v  is the out open neighborhood set of u .Similarly we can define the in 
open binary neighborhood graph. In this paper some properties of these new graphs are discussed.   
 
Keywords: Neighborhood set, In and out binary neighborhood graph, connected graph, Eulerian. 
    
 
1. INTRODUCTION 
 
We are considering only finite, simple, directed or undirected graphs. Consider a graph ( )EVG ,=  and a vertex v  
inV . Then the open neighborhood set of v  is the set }:{)( EuvVuvN ∈∈= . The idea of neighborhood graph 

was introduced by Kulli in [1] and according to him for a graph ( )EVG ,=  the neighborhood graph of G is the 
graph with vertex set SV  where S is the set of all open neighborhood sets of vertices of G in which two vertex 

vu,  are adjacent if Svu ∈, and φ≠vu or Vu∈ and v  is an open neighborhood set containing u . 
 
Let ( ),H V E=  be a directed graph and v  be a vertex inV . Then the out open neighborhood set of v is the set 

( ) { : }N v u V vu E− = ∈ ∈  and the in open neighborhood set of v is ( ) { : }N v u V uv E− = ∈ ∈ . We devote this 
paper to introduce a new type of graph using these definitions. 
 
2. OUT AND IN BINARY NEIGHBORHOOD GRAPHS 
 
Definition 2.1 Out binary neighborhood graph: The out binary neighborhood graph ( )ndB H−  of a directed graph 

( ),H V E=  is the undirected graph with vertex set V S −
 ,where S + is the set of all non-empty out open 

neighborhood sets of vertices of H , in which two vertex vu,  are adjacent if ,u v S −∈ and φ≠vu or 
u V∈ and v  is the out open neighborhood set of u . 
 
Definition 2.2 In binary neighborhood graph: The in binary neighborhood graph ( )ndB H+  of a directed graph 

( ),H V E=  is the undirected graph with vertex set V S +
 ,where S + is the set of all non-empty in open 

neighborhood sets of vertices of H , in which two vertex vu,  are adjacent ,u v S +∈ and φ≠vu or u V∈  
and the in open neighborhood set of u . 
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Example 2.3: In figure 1, 2 and 3 a directed graph H and its ( )ndB H−   and ( )ndB H+ are given. For H in figure 1 

the out open neighborhood sets of H are ( ) ( ) ( ) ( ){ }, { , }, { }, { }N A C N B C D N C D N D ϕ− − − −= = = =  and 

the in open neighborhood sets of H are ( ) { ]N A B+ = , ( ) ( ) ( ), { , }, { , }N B N C A B N D B Cϕ+ + += = = . 
 

          
Figure-1: H                       Figure-2: ( )ndB H−                        Figure-3: ( )ndB H+  

                                                                        
Where the vertices E, F, G, H, I & J represents,  

( )N A− , ( )N B− , ( )N C− , ( )N D− , ( )N A+ , ( )N B+ , ( )N C+ & ( )N D+  respectively. 
 
Result 2.4: For any directed graph H , if a vertex v  in H  isolated then it remains isolated in both ( )ndB H+ and 

( )ndB H− . 
 
Definition 2.5 Source, sink vertex [2]: A vertex v of a directed graph H is said to be a sink vertex if 

( )N v ϕ− = and is said to be a source vertex if ( )N v ϕ+ = . 
 
Theorem 2.6: 
a. A vertex v  in H is isolated in ( )ndB H−  iff it is sink vertex in H  

b. A vertex v  in H is isolated in ( )ndB H+  iff it is source in H   
 
Proof: 
a. A vertex v  in H is isolated in ( )ndB H−   iff ( )N v ϕ− =  iff v  is sink vertex in H . 

b. A vertex v  in H is isolated in ( )ndB H+   iff ( )N v ϕ+ =  iff it is a source in H .  
 
Result 2.7 
a. If v is a vertex of the directed graph H , then the degree of v  in ( )ndB H−  is equal to 0 if v is a sink in H  

and equal to 1 if v is not a sink in H . 
b. If v is a vertex of the directed graph H , then the degree of v in ( )ndB H+  is equal to 0 if v is a source in H  

and equal to 1 if v is not a source in H . 
 
Remark 2.8: Result 2.7 is the reason behind the name “in / out binary neighborhood graph”. 
 
Definition 2.9 I-sequence collection: Let },...,,{ 21 nSSS=ℑ  be a collection of non-empty sets. Then we call 

ℑ an I-sequence collection if there exist a sequential arrangement 
mkkk SSS ,...,,

21
of elements of ℑ such that it 

contains all elements of ℑ at least once and for all t, nt ≤≤1 , there exist at least one td <  with φ≠
dt kk SS  . 

 
Lemma 2.10: For any directed graph ( ),H V E= , the out binary neighborhood graph ( )ndB H− {or ( )ndB H+ } is 

connected then degree each out open neighborhood { respectively in open neighborhood} of vertices of H  has 
degree at least 2 in ( )ndB H−  {or ( )ndB H+ }. 
 
Proof: follows from the connectedness of the graph and by result 2.7. 
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Theorem 2.11: 
a. For any directed graph ( ),H V E= , if the out binary neighborhood graph ( )ndB H−  is connected then S − , 

the set of all non-empty out open neighborhood sets of vertices of H , is an I-sequence collection and 
( )N v ϕ− ≠ for all v  in V . 

b. For any directed graph ( ),H V E= , if the in binary neighborhood graph ( )ndB H+ is connected then S + ,the 

set of all non-empty in open neighborhood sets of vertices of H , is an I-sequence collection and ( )N v ϕ+ ≠   

for all v  in V . 
 
Proof:                                                                                            
a. Let ( )ndB H−  is connected. Then clearly ( )N v ϕ− ≠ for all v  in V. We need only to prove S −  is an 

I-sequence collection. For let nvvv ,..., 21 be the vertices of H and ( )1kN v−  be the out open neighborhood set 

of some vertex
1kv of V. Then by lemma 2.10, there must exist another out open neighborhood set ( )2kN v−  of 

some vertex 
12 kk vv ≠ of V, such that ( )1kN v−  and ( )2kN v−  are adjacent in ( )ndB H+ .Then by 

definition ( ) ( )1 2
.k kN v N v ϕ− − ≠  

Now suppose we have an I-sequence collection ( ) ( ) ( )1 2 }
{ , ,..., }

tk k kN v N v N v− − −  for nt <≤1 .Our aim is 

find a ( )1tkN v
+

−  such that ( ) ( ) ( ) ( )1 2 } 1
{ , ,..., , }

t tk k k kN v N v N v N v
+

− − − − is I-sequence collection .If 

possible no such ( )1tkN v
+

−  exist. But that means none of the remaining out open neighborhood sets is adjacent 

to any of the sets in ( ) ( ) ( )1 2 }
{ , ,..., }

tk k kN v N v N v− − − . But then by connectedness of ( )ndB H−  at least one 

vertex in V has degree greater than 1. This is a contradiction. Hence by mathematical induction, the result follows. 
 

b. Similar proof follows 
 
The following theorem is useful, 
 
Theorem 2.12: A connected graph G is Eulerian[3] if and only if every vertex of G has even degree. 
 
Theorem 2.13: For any directed graph ( ),H V E= , the out binary neighborhood graph ( )ndB H+  or the in binary 

neighborhood graph ( )ndB H−  are never Eulerian 
 
Proof: follows from theorem 2.12 and result 2.7. 
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