ON OUT AND IN BINARY NEIGHBORHOOD GRAPHS

VAISAKH VENU*

Asst. professor, Dept. of Mathematics,
Christ College of Engineering, Irinjalakkuda, Kerala, India-680125.

(Received On: 27-02-16; Revised & Accepted On: 16-03-16)

ABSTRACT

The out binary neighborhood graph \(B^{-}_{md}(H) \) of a directed graph \(H = (V,E) \) is the undirected graph with vertex set \(V \cup S^{-} \) where \(S^{-} \) is the set of all non-empty out open neighborhood sets of \(H \) in which two vertex \(u,v \) are adjacent if \(u,v \in S^{-} \) and \(u \cap v \neq \phi \) or \(u \in V \) and \(v \) is the out open neighborhood set of \(u \). Similarly we can define the in open binary neighborhood graph. In this paper some properties of these new graphs are discussed.

Keywords: Neighborhood set, In and out binary neighborhood graph, connected graph, Eulerian.

1. INTRODUCTION

We are considering only finite, simple, directed or undirected graphs. Consider a graph \(G = (V,E) \) and a vertex \(v \) in \(V \). Then the open neighborhood set of \(v \) is the set \(N(v) = \{ u \in V : uv \in E \} \). The idea of neighborhood graph was introduced by Kulli in [1] and according to him for a graph \(G = (V,E) \) the neighborhood graph of \(G \) is the graph with vertex set \(V \cup S \) where \(S \) is the set of all open neighborhood sets of vertices of \(G \) in which two vertex \(u,v \) are adjacent if \(u,v \in S \) and \(u \cap v \neq \phi \) or \(u \in V \) and \(v \) is an open neighborhood set containing \(u \).

Let \(H = (V,E) \) be a directed graph and \(v \) be a vertex in \(V \). Then the open neighborhood set of \(v \) is the set \(N^{-}(v) = \{ u \in V : vu \in E \} \) and the in open neighborhood set of \(v \) is \(N^{+}(v) = \{ u \in V : uv \in E \} \). We devote this paper to introduce a new type of graph using these definitions.

2. OUT AND IN BINARY NEIGHBORHOOD GRAPHS

Definition 2.1 Out binary neighborhood graph: The out binary neighborhood graph \(B^{-}_{md}(H) \) of a directed graph \(H = (V,E) \) is the undirected graph with vertex set \(V \cup S^{-} \) where \(S^{-} \) is the set of all non-empty out open neighborhood sets of vertices of \(H \), in which two vertex \(u,v \) are adjacent if \(u,v \in S^{-} \) and \(u \cap v \neq \phi \) or \(u \in V \) and \(v \) is the out open neighborhood set of \(u \).

Definition 2.2 In binary neighborhood graph: The in binary neighborhood graph \(B^{+}_{md}(H) \) of a directed graph \(H = (V,E) \) is the undirected graph with vertex set \(V \cup S^{+} \), where \(S^{+} \) is the set of all non-empty in open neighborhood sets of vertices of \(H \), in which two vertex \(u,v \) are adjacent if \(u,v \in S^{+} \) and \(u \cap v \neq \phi \) or \(u \in V \) and the in open neighborhood set of \(u \).

Corresponding Author: Vaisakh Venu, Asst. professor, Dept. of Mathematics, Christ College of Engineering, Irinjalakkuda, Kerala, India-680125.
Example 2.3: In figure 1, 2 and 3 a directed graph H and its $B_{nd}^-(H)$ and $B_{nd}^+(H)$ are given. For H in figure 1 the out open neighborhood sets of H are $N^-(A) = \{C\}, N^-(B) = \{C, D\}, N^-(C) = \{D\}, N^-(D) = \{\varphi\}$ and the in open neighborhood sets of H are $N^+(A) = \{B\}, N^+(B) = \varphi, N^+(C) = \{A, B\}, N^+(D) = \{B, C\}$.

Result 2.4: For any directed graph H, if a vertex v in H isolated then it remains isolated in both $B_{nd}^+(H)$ and $B_{nd}^-(H)$.

Definition 2.5 Source, sink vertex [2]: A vertex v of a directed graph H is said to be a sink vertex if $N^-(v) = \varphi$ and is said to be a source vertex if $N^+(v) = \varphi$.

Theorem 2.6:

a. A vertex v in H is isolated in $B_{nd}^-(H)$ iff it is sink vertex in H

b. A vertex v in H is isolated in $B_{nd}^+(H)$ iff it is source in H

Proof:

a. A vertex v in H is isolated in $B_{nd}^-(H)$ iff $N^-(v) = \varphi$ iff v is sink vertex in H.

b. A vertex v in H is isolated in $B_{nd}^+(H)$ iff $N^+(v) = \varphi$ iff it is a source in H.

Result 2.7

a. If v is a vertex of the directed graph H, then the degree of v in $B_{nd}^-(H)$ is equal to 0 if v is a sink in H and equal to 1 if v is not a sink in H.

b. If v is a vertex of the directed graph H, then the degree of v in $B_{nd}^+(H)$ is equal to 0 if v is a source in H and equal to 1 if v is not a source in H.

Remark 2.8: Result 2.7 is the reason behind the name “in / out binary neighborhood graph”.

Definition 2.9 I-sequence collection: Let $\mathcal{S} = \{S_1, S_2, \ldots, S_n\}$ be a collection of non-empty sets. Then we call \mathcal{S} an I-sequence collection if there exist a sequential arrangement $S_{k_1}, S_{k_2}, \ldots, S_{k_n}$ of elements of \mathcal{S} such that it contains all elements of \mathcal{S} at least once and for all $t, 1 \leq t \leq n$, there exist at least one $d < t$ with $S_{k_d} \cap S_{k_t} \neq \varphi$.

Lemma 2.10: For any directed graph $H = (V, E)$, the out binary neighborhood graph $B_{nd}^-(H) \{or\ B_{nd}^+(H)\}$ is connected then degree each out open neighborhood \{ respectively in open neighborhood\} of vertices of H has degree at least 2 in $B_{nd}^-(H)$ \{or $B_{nd}^+(H)$\}.

Proof: follows from the connectedness of the graph and by result 2.7.
Theorem 2.11:

a. For any directed graph $H = (V, E)$, if the out binary neighborhood graph $B^-_n(H)$ is connected then S^-, the set of all non-empty out open neighborhood sets of vertices of H, is an I-sequence collection and $N^-(v) \neq \emptyset$ for all v in V.

b. For any directed graph $H = (V, E)$, if the in binary neighborhood graph $B^+_n(H)$ is connected then S^+, the set of all non-empty in open neighborhood sets of vertices of H, is an I-sequence collection and $N^+(v) \neq \emptyset$ for all v in V.

Proof:

a. Let $B^-_n(H)$ is connected. Then clearly $N^-(v) \neq \emptyset$ for all v in V. We need only to prove S^- is an I-sequence collection. For let $v_1, v_2, ..., v_n$ be the vertices of H and $N^-(v_i)$ be the out open neighborhood set of some vertex v_i of V. Then by lemma 2.10, there must exist another out open neighborhood set $N^-(v_j)$ of some vertex $v_j \neq v_i$ of V, such that $N^-(v_i)$ and $N^-(v_j)$ are adjacent in $B^-_n(H)$. Then by definition $N^-(v_i) \cap N^-(v_j) \neq \emptyset$.

Now suppose we have an I-sequence collection $\{N^-(v_{k1}), N^-(v_{k2}), ..., N^-(v_{kt})\}$ for $1 \leq t < n$. Our aim is find a $N^-(v_{k,t+1})$ such that $\{N^-(v_{k1}), N^-(v_{k2}), ..., N^-(v_{kt}), N^-(v_{k,t+1})\}$ is I-sequence collection. If possible no such $N^-(v_{k,t+1})$ exist. But that means none of the remaining out open neighborhood sets is adjacent to any of the sets in $\{N^-(v_{k1}), N^-(v_{k2}), ..., N^-(v_{kt})\}$. But then by connectedness of $B^-_n(H)$ at least one vertex in V has degree greater than 1. This is a contradiction. Hence by mathematical induction, the result follows.

b. Similar proof follows

The following theorem is useful,

Theorem 2.12: A connected graph G is Eulerian\cite{3} if and only if every vertex of G has even degree.

Theorem 2.13: For any directed graph $H = (V, E)$, the out binary neighborhood graph $B^-_n(H)$ or the in binary neighborhood graph $B^+_n(H)$ are never Eulerian

Proof: follows from theorem 2.12 and result 2.7.

REFERENCES

Source of support: Nil, Conflict of interest: None Declared

[Copy right © 2016. This is an Open Access article distributed under the terms of the International Journal of Mathematical Archive (IJMA), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.]