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ABSTRACT 
Let G = (V, E) be a simple graph. A surjective function f: V(G) →{0, 1, 2} is said to be a 1-Near Mean Cordial 
Labeling if for each edge uv, the induced map 

f*(uv) = �0     𝑖𝑖𝑖𝑖     𝑓𝑓  (𝑢𝑢)+𝑓𝑓  (𝑣𝑣) 
2

𝑖𝑖𝑖𝑖 𝑎𝑎𝑎𝑎 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
1                                    𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

 � 

 
Satisfies the condition |ef (0) − ef (1)| ≤ 1 where ef (0) is the number of edges with 0 label and ef (1) is the number of 
edges with 1 label. 
 
G is said to be a 1-Near Mean Cordial Graph if it has a 1- Near Mean Cordial Labeling. In this paper ,we proved that 
wheel, complete bipartite, helm, closed helm, flower, sunflower, and S(K1,n) are 1- Near Mean Cordial Graphs. 
 
Keywords: 1-Near Mean Cordial Labeling, 1-Near Mean Cordial Graph. 
 
 
1.  INTRODUCTION 

 
All graphs considered here are finite, simple and undirected. Gallian [2] has given a dynamic survey of labeling. For 
graph theoretic terminologies and notations we follow Harary [3].The concept of mean cordial labeling was introduced 
by Raja Ponraj, Muthirulan Sivakumar and Murugesan Sundaram in the year 2012 [1,4,5,7]. Let f be a function from    
V (G) to {0, 1, 2}. For each edge uv of G, assign the label� �f(u)+f(v) 

2
��. f is called a mean cordial labeling of G if            

|vf (0) − vf (1) | ≤ 1 and | ef (0) − ef (1) | ≤ 1,  i, j∈{0,1,2}  where vf (x) and ef (x) denote the number of vertices and 
edges labeled with x(x=0,1,2) respectively. A graph with a mean cordial labeling is called Mean Graph. K.Palani, 
J.Rejila Jeya Surya [6] introduced a new concept called 1-Near Mean Cordial Labeling and investigated some standard 
graphs. 
 
2.  PRELIMINARIES 
 
We define the concept of 1-Near Mean Cordial Labeling as follows, 
 
Let G = (V, E) be a simple graph. A surjective function f: V(G) → {0, 1, 2} said to be a 1-Near Mean Cordial Labeling 
if for each edge uv, the induced map 

f*(uv) = �0     𝑖𝑖𝑖𝑖     f (u)+f (v) 
2

𝑖𝑖𝑖𝑖 𝑎𝑎𝑎𝑎 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
1                                    𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

 � 

 
Satisfies the condition |ef (0) − ef (1)| ≤ 1 where ef (0) is the number of edges with 0 label and ef (1) is the number of 
edges with 1 label. 
 
G is said to be a 1-Near Mean Cordial Graph if it has a 1- Near Mean Cordial Labeling. we proved that wheel, complete 
bipartite, helm, closed helm, flower, sunflower, and S(K1,n) are 1- Near Mean Cordial Graphs. 
 
Definition 2.1: A graph Cn+K1 is called a wheel with n spokes and is denoted by Wn. 
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Definition 2.2: A graph G is called a complete bipartite graph Km,n with bipartition V (G) = V1∪ V2 where              
V1 = {x1, x2, ..., xm} and V2 = {y1, y2, ..., yn} and all vertices in V1 are adjacent to all vertices in V2 but no vertices in   
V1 and V2. 
 
Definition 2.3: The helm Hn, is the graph obtained from a wheel by attaching a pendant edge at each vertex of the      
n- cycle. 
 
Definition 2.4: A closed helm CHn, is a graph obtained from a helm by joining each pendent vertex to the central 
vertex of the helm. 
 
Definition 2.5: A flower Fln, is the graph obtained from a helm graph by joining each pendant vertex to the central 
vertex of the helm graph. 
 
Definition 2.6: The sunflower graph v[n, s, t] is the resultant graph obtained from the flower graph of wheels Wn by 
adding n-1 pendant edges to the central vertex. 
 
Definition 2.7: For each vertex v of a graph G take a new vertex v0. join v0 to all the vertices of G adjacent to v. The 
graph S(G) thus obtained is called splitting graph of G. 
 
3.  MAIN RESULTS 
 
Theorem 3.1: The wheel Wn is a 1-Near Mean Cordial Graph. 
 
Proof: Let G = (V, E) be a simple graph. 
 
Let G be Wn. 
 
Let V (G) = {u, vi: 1 ≤ i ≤ n} and E(G) = {[(uvi) : 1  ≤  i  ≤  n] ∪ [(vivi+1) : 1 ≤  i  ≤  n − 1] ∪ [vnv1]} 
 
Define f: V (G) → {0, 1, 2} by 
f(u) = 1 
f(vi) =  � 0     𝑖𝑖 ≡ 1 𝑚𝑚𝑚𝑚𝑚𝑚 2

2     𝑖𝑖 ≡ 0 𝑚𝑚𝑚𝑚𝑚𝑚 2
�       1 ≤ i ≤ n  

 
The induced edge labeling are 
f*(uvi)=1,         1≤ i ≤ n 
f*(vivi+1) = 0,    1 ≤ i ≤ n − 1 
f*(vnv1)=0 
 
Here, ef (0) = ef (1) = n 
 
Hence the graph satisfies the condition | ef (0) − ef (1) | ≤ 1 
 
Therefore, the wheel Wn is a 1-near mean cordial graph. 
 
Illustration 1: The 1- near mean cordial graph of W5 is shown in the figure 1 
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Theorem 3.2: The complete bipartite graph, Km,n is a 1-Near Mean Cordial Graph. 
 
Proof: Let G = (V, E) be a simple graph. 
 
Let G be Km,n 
 
Let V (G) = {ui : 1  ≤  i  ≤  m,  vj : 1 ≤  j  ≤  n} and E(G)={(uivj : 1 ≤  i ≤  m, 1 ≤  j ≤  n} 
 
Define f: V (G) → {0, 1, 2} by 
 

f(ui) =  � 
0        𝑖𝑖 ≡ 1 𝑚𝑚𝑚𝑚𝑚𝑚 4
1         𝑖𝑖 ≡ 0,2 𝑚𝑚𝑚𝑚𝑚𝑚 4

2       𝑖𝑖 ≡ 3 𝑚𝑚𝑚𝑚𝑚𝑚 4
�   1 ≤  i ≤  m,  

 
f(vj) = � 0     𝑖𝑖 ≡ 0 𝑚𝑚𝑚𝑚𝑚𝑚 2

1     𝑖𝑖 ≡ 1 𝑚𝑚𝑚𝑚𝑚𝑚 2
�           1 ≤  j ≤  n, 

 
The induced edge labeling are 
 
Case-(i): when m is even and n is even or odd 

f*(u2i−1vj) =   � 0     𝑗𝑗 ≡ 0 𝑚𝑚𝑚𝑚𝑚𝑚 2
1     𝑗𝑗 ≡ 1 𝑚𝑚𝑚𝑚𝑚𝑚 2

�    1 ≤  i ≤  𝑚𝑚
2

, 1 ≤  j ≤  n 

 

f*(u2ivj) =   � 0     𝑗𝑗 ≡ 1 𝑚𝑚𝑚𝑚𝑚𝑚 2
1     𝑗𝑗 ≡ 0 𝑚𝑚𝑚𝑚𝑚𝑚 2

�       1 ≤  i ≤  𝑚𝑚
2

, 1 ≤  j ≤  n 

 
Here, ef (0) = ef (1) = mn 
 
Case-(ii): when m is odd and n is even or odd 

f*(u2i−1vj) =  � 0     𝑗𝑗 ≡ 0 𝑚𝑚𝑚𝑚𝑚𝑚 2
1     𝑗𝑗 ≡ 1 𝑚𝑚𝑚𝑚𝑚𝑚 2

�     1 ≤  i ≤  𝑚𝑚+1
2

,  1 ≤  j ≤  n 

 

f*(u2ivj) =  � 0     𝑗𝑗 ≡ 1 𝑚𝑚𝑚𝑚𝑚𝑚 2
1     𝑗𝑗 ≡ 0 𝑚𝑚𝑚𝑚𝑚𝑚 2

�       1 ≤  i <  𝑚𝑚+1
2

,  1 ≤  j ≤  n 

 

Here, ef(0)=  � 
𝑚𝑚𝑚𝑚−1

2
      𝑛𝑛 𝑖𝑖𝑖𝑖 𝑜𝑜𝑜𝑜𝑜𝑜

𝑚𝑚𝑚𝑚
2

     𝑛𝑛 𝑖𝑖𝑖𝑖 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
�    

 

          ef(1) = � 
𝑚𝑚𝑚𝑚+1

2
      𝑛𝑛 𝑖𝑖𝑖𝑖 𝑜𝑜𝑜𝑜𝑜𝑜

𝑚𝑚𝑚𝑚
2

     𝑛𝑛 𝑖𝑖𝑖𝑖 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
�    

 
Hence the graph satisfies the condition | ef (0) − ef (1) | ≤ 1 
 
Therefore, the complete bipartite graph, Km,n , is a 1-near mean cordial graph. 
 
Illustration 2: The 1-near mean cordial graph of K4,3 and K3,3 are shown in the figure 2(a) and figure 2(b) 
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Theorem 3.3: The helm Hn is a 1-Near Mean Cordial Graph. 
 
Proof: Let G= (V, E) be a simple graph. 
 
Let G be Hn. 
 
Let V (G) = {u, vi: 1 ≤ i ≤ n, wi : 1 ≤  i ≤  n} and 
 
E(G) = {[(uvi), (wivi) : 1 ≤ i ≤  n] ∪ [(vivi+1) : 1 ≤  i  ≤  n − 1] ∪ [vnv1]} 
 
Define f : V (G) → {0, 1, 2} by 
 
f(u) = 1 
 
f(vi) = � 0     𝑖𝑖 ≡ 1 𝑚𝑚𝑚𝑚𝑚𝑚 2

2     𝑖𝑖 ≡ 0 𝑚𝑚𝑚𝑚𝑚𝑚 2
�       1 ≤ i ≤ n 

 
f(wi) = � 1     𝑖𝑖 ≡ 0 𝑚𝑚𝑚𝑚𝑚𝑚 2

2     𝑖𝑖 ≡ 1 𝑚𝑚𝑚𝑚𝑚𝑚 2
�       1 ≤ i ≤ n 

 
The induced edge labeling are 
f*(uvi) = 1,         1 ≤ i ≤ n 
 
f*(vivi+1) = 0,     1 ≤ i ≤ n – 1 
 
f*(vnv1) = 0 
 
f*(wivi)= � 0     𝑖𝑖 ≡ 1 𝑚𝑚𝑚𝑚𝑚𝑚 2

1     𝑖𝑖 ≡ 0 𝑚𝑚𝑚𝑚𝑚𝑚 2
�       1 ≤ i ≤ n 

 

Here, ef(0) =  � 
3𝑛𝑛+1

2
      𝑛𝑛 𝑖𝑖𝑖𝑖 𝑜𝑜𝑜𝑜𝑜𝑜

3𝑛𝑛
2

     𝑛𝑛 𝑖𝑖𝑖𝑖 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
� 

           

           ef (1) =  � 
3𝑛𝑛−1

2
      𝑛𝑛 𝑖𝑖𝑖𝑖 𝑜𝑜𝑜𝑜𝑜𝑜

3𝑛𝑛
2

     𝑛𝑛 𝑖𝑖𝑖𝑖 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
� 

 
Hence the graph satisfies the condition | ef (0) − ef (1) | ≤ 1 
 
Therefore, the helm Hn is a 1-near mean cordial graph. 
 
Illustration 3: The 1-near mean cordial graph of H5 is shown in the figure 3 
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Theorem 3.4: A closed helm CHn is a 1-Near Mean Cordial Graph. 
 
Proof: Let G = (V, E) be a simple graph. 
 
Let G be CHn. 
 
Let V (G) = {u, vi: 1 ≤  i  ≤  n, wi : 1  ≤  i ≤  n} and 
 
E(G) = {[(uvi), (wivi) : 1 ≤  i ≤  n] ∪ [(vivi+1), (wiwi+1) : 1 ≤  i ≤  n − 1] ∪ [(vnv1), (wnw1)]} 
 
Define f: V (G) → {0, 1, 2} by 
 
f(u) = 1 
 
f(vi)= � 0     𝑖𝑖 ≡ 1 𝑚𝑚𝑚𝑚𝑚𝑚 2

2     𝑖𝑖 ≡ 0 𝑚𝑚𝑚𝑚𝑚𝑚 2
�            1 ≤ i ≤ n 

 
f(wi) = 1,    1  ≤  i ≤  n 
 
The induced edge labeling are 
f*(uvi) = 1,          1 ≤ i ≤ n 
f*(viwi) = 1,         1 ≤ i ≤ n 
f*(vivi+1) = 0,       1 ≤ i ≤ n − 1 
f*(wiwi+1) = 0,     1 ≤ i ≤ n − 1 
f*(vnv1) = 0 
f*(wnw1) = 0 
 
Here, ef (0) = ef (1) = 2n 
 
Hence the graph satisfies the condition | ef (0) − ef (1) | ≤ 1 
 
Therefore, the closed helm CHn is a 1-near mean cordial graph. 
 
Illustration 4: The 1-near mean cordial graph of CH4 is shown in the figure 4, 

 
 
Theorem 3.5: A flower graph Fln is a 1- Near Mean Cordial Graph. 
 
Proof: Let G = (V, E) be a simple graph. 
 
Let G be Fln. 
 
Let V (G) = {u, vi: 1 ≤ i ≤ n, wi : 1 ≤  i ≤  n} and 
 
E(G) = {[(uvi), (uwi), (wivi) : 1 ≤ i ≤ n] ∪ [(vivi+1) : 1 ≤  i ≤  n − 1] ∪ (vnv1)} 



A. Raja Rajeswari*1, S. Saravana Kumar2 /  
Some New Results on 1-Near Mean Cordial Labeling of Graphs / IJMA- 7(3), March-2016. 

© 2016, IJMA. All Rights Reserved                                                                                                                                                                      162   

  
Define f : V (G) → {0, 1, 2} by 
 
f(u) = 1 
 
f(vi) =  � 0     𝑖𝑖 ≡ 1 𝑚𝑚𝑚𝑚𝑚𝑚 2

2     𝑖𝑖 ≡ 0 𝑚𝑚𝑚𝑚𝑚𝑚 2
�    1 ≤ i ≤ n 

 
f(wi)= � 1     𝑖𝑖 ≡ 0 𝑚𝑚𝑚𝑚𝑚𝑚 2

2     𝑖𝑖 ≡ 1 𝑚𝑚𝑚𝑚𝑚𝑚 2
�      1 ≤ i ≤ n 

 
The edge induced labeling are, 
f*(uvi) = 1,          1 ≤ i ≤ n 
 
f*(vivi+1) = 0,      1 ≤ i ≤ n – 1 
 
f*(vnv1) = 0, 
 
f*(uwi)= � 0     𝑖𝑖 ≡ 0 𝑚𝑚𝑚𝑚𝑚𝑚 2

1     𝑖𝑖 ≡ 1 𝑚𝑚𝑚𝑚𝑚𝑚 2
�         1 ≤ i ≤ n 

 
f*(wivi)= � 0     𝑖𝑖 ≡ 1 𝑚𝑚𝑚𝑚𝑚𝑚 2

1     𝑖𝑖 ≡ 0 𝑚𝑚𝑚𝑚𝑚𝑚 2
�        1 ≤ i ≤ n 

 
Here, ef (0) = ef (1) = 2n 
 
Hence the graph satisfies the condition | ef (0) − ef (1) | ≤ 1 
 
Therefore, a flower graph Fln is a 1-near mean cordial graph. 
 
Illustration 5: The 1-near mean cordial graph of Fl5 is shown in the figure 5,   

 
 
Theorem 3.6: The sunflower graph Sn is a 1-Near Mean Cordial Graph. 
 
Proof: Let G = (V, E) be a simple graph. 
 
Let G be Sn. 
 
Let V (G) = {u, vi : 1 ≤  i ≤  n, wi : 1 ≤  i ≤  n, xi : 1 ≤  i ≤  n} and 
 
E(G) = {[(uvi), (uwi), (uxi), (wivi) : 1 ≤ i ≤ n] ∪ [(vivi+1) : 1 ≤  i ≤ n − 1] ∪ (vnv1)} 
 
Define f : V (G) → {0, 1, 2} by 
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f(u) = 1 
 
f(vi) =  � 0     𝑖𝑖 ≡ 1 𝑚𝑚𝑚𝑚𝑚𝑚 2

2     𝑖𝑖 ≡ 0 𝑚𝑚𝑚𝑚𝑚𝑚 2
�         1 ≤  i  ≤  n 

 
f(wi) =  � 1     𝑖𝑖 ≡ 0 𝑚𝑚𝑚𝑚𝑚𝑚 2

2     𝑖𝑖 ≡ 1 𝑚𝑚𝑚𝑚𝑚𝑚 2
�        1 ≤  i ≤  n 

 
f(xi) =  � 0     𝑖𝑖 ≡ 0 𝑚𝑚𝑚𝑚𝑚𝑚 2

1     𝑖𝑖 ≡ 1 𝑚𝑚𝑚𝑚𝑚𝑚 2
�         1 ≤  i ≤  n 

 
The edge induced labeling are, 
 
f*(uvi) = 1,           1 ≤ i ≤ n 
 
f*(vivi+1) = 0,        1 ≤ i ≤ n – 1 
 
f*(vnv1) = 0, 
 
f*(uwi) = � 0     𝑖𝑖 ≡ 0 𝑚𝑚𝑚𝑚𝑚𝑚 2

1     𝑖𝑖 ≡ 1 𝑚𝑚𝑚𝑚𝑚𝑚 2
�       1 ≤ i ≤ n 

 
f*(wivi) =  � 0     𝑖𝑖 ≡ 1 𝑚𝑚𝑚𝑚𝑚𝑚 2

1     𝑖𝑖 ≡ 0 𝑚𝑚𝑚𝑚𝑚𝑚 2
�     1 ≤ i ≤ n 

 
f*(uxi) =  � 0     𝑖𝑖 ≡ 1 𝑚𝑚𝑚𝑚𝑚𝑚 2

1     𝑖𝑖 ≡ 0 𝑚𝑚𝑚𝑚𝑚𝑚 2
�       1 ≤ i ≤ n 

 

Here, ef (0) = � 
5𝑛𝑛+1

2
      𝑛𝑛 𝑖𝑖𝑖𝑖 𝑜𝑜𝑜𝑜𝑜𝑜

5𝑛𝑛
2

     𝑛𝑛 𝑖𝑖𝑖𝑖 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
� 

 

          ef (1)= � 
5𝑛𝑛−1

2
      𝑛𝑛 𝑖𝑖𝑖𝑖 𝑜𝑜𝑜𝑜𝑜𝑜

5𝑛𝑛
2

     𝑛𝑛 𝑖𝑖𝑖𝑖 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
� 

 
Hence the graph satisfies the condition | ef (0) − ef (1) | ≤ 1 
 
Therefore, the sunflower graph Sn is a 1-near mean cordial graph. 
 
Illustration 6: The 1-near mean cordial graph of S4 is shown in the figure 6 
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Theorem 3.7: The splitting graph S(K1,n) is a 1- Near Mean Cordial Graph 
. 
Proof: Let G = (V, E) be a simple graph. 
 
Let G be S(K1,n). 
 
Let V (G) = {u, v, ui : 1 ≤  i ≤  n, vi : 1 ≤  i ≤  n} and E(G) = {(uui), (uvi), (vui) : 1 ≤ i ≤ n} 
 
Define f: V (G) → {0, 1, 2} by 
 
f(u) = 1 
 
f(v) = 0 
 

f(ui) = � 
0     𝑖𝑖 ≡ 0 𝑚𝑚𝑚𝑚𝑚𝑚 3
1     𝑖𝑖 ≡ 1 𝑚𝑚𝑚𝑚𝑚𝑚 3
2     𝑖𝑖 ≡ 2 𝑚𝑚𝑚𝑚𝑚𝑚 3

�       1 ≤ i ≤ n 

 
f(vi) = � 0     𝑖𝑖 ≡ 0 𝑚𝑚𝑚𝑚𝑚𝑚 2

1     𝑖𝑖 ≡ 1 𝑚𝑚𝑚𝑚𝑚𝑚 2
�       1 ≤ i ≤ n 

 
The edge induced labeling are, 
 

f*(uui)= � 0     𝑖𝑖 ≡ 1 𝑚𝑚𝑚𝑚𝑚𝑚 3
1     𝑖𝑖 ≡ 0,2 𝑚𝑚𝑚𝑚𝑚𝑚 3

�        1 ≤ i ≤ n 
 
f*(vui) = � 0     𝑖𝑖 ≡ 0,2 𝑚𝑚𝑚𝑚𝑚𝑚 3

1     𝑖𝑖 ≡ 1 𝑚𝑚𝑚𝑚𝑚𝑚 3
�       1 ≤ i ≤ n 

 
f*(uvi) = � 0     𝑖𝑖 ≡ 1 𝑚𝑚𝑚𝑚𝑚𝑚 2

1     𝑖𝑖 ≡ 0 𝑚𝑚𝑚𝑚𝑚𝑚 2
�          1 ≤ i ≤ n 

 

Here, ef (0) = � 
3𝑛𝑛+1

2
      𝑛𝑛 𝑖𝑖𝑖𝑖 𝑜𝑜𝑜𝑜𝑜𝑜

3𝑛𝑛
2

     𝑛𝑛 𝑖𝑖𝑖𝑖 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
� 

           ef (1) = � 
3𝑛𝑛−1

2
      𝑛𝑛 𝑖𝑖𝑖𝑖 𝑜𝑜𝑜𝑜𝑜𝑜

3𝑛𝑛
2

     𝑛𝑛 𝑖𝑖𝑖𝑖 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
� 

 
Hence the graph satisfies the condition | ef (0) − ef (1) | ≤ 1 
 
Therefore, the splitting graph S(K1,n) is a 1-near mean cordial graph. 
 
Illustration 7: The 1- near mean cordial graph of S(K1,4) is shown in the figure 7, 
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