SOME NEW RESULTS ON 1-NEAR MEAN CORDIAL LABELING OF GRAPHS

A. RAJA RAJESWARI*1, S. SARAVANA KUMAR2

1M.Phil Scholar, Department of Mathematics, Sri S. R. N. M. College, Sattur, (T.N.), India.
2Department of Mathematics, Sri. S. R. N. M. College, Sattur, (T.N.), India.

(Received On: 09-03-16; Revised & Accepted On: 29-03-16)

ABSTRACT

Let G = (V, E) be a simple graph. A surjective function \(f: V(G) \rightarrow \{0, 1, 2\} \) is said to be a 1-Near Mean Cordial Labeling if for each edge uv, the induced map

\[
\ell*(uv) = \begin{cases}
0 & \text{if } \frac{f(u)+f(v)}{2} \text{ is an integer} \\
1 & \text{otherwise}
\end{cases}
\]

Satisfies the condition \(|e_f(0) - e_f(1)| \leq 1 \) where \(e_f(0) \) is the number of edges with 0 label and \(e_f(1) \) is the number of edges with 1 label.

G is said to be a 1-Near Mean Cordial Graph if it has a 1- Near Mean Cordial Labeling. In this paper, we proved that wheel, complete bipartite, helm, closed helm, flower, sunflower, and \(S(K_{1,n}) \) are 1- Near Mean Cordial Graphs.

Keywords: 1-Near Mean Cordial Labeling, 1-Near Mean Cordial Graph.

1. INTRODUCTION

All graphs considered here are finite, simple and undirected. Gallian [2] has given a dynamic survey of labeling. For graph theoretic terminologies and notations we follow Harary [3]. The concept of mean cordial labeling was introduced by Raja Ponraj, Muthirulan Sivakumar and Murugesan Sundaram in the year 2012 [1,4,5,7]. Let \(f \) be a function from \(V(G) \) to \{0, 1, 2\}. For each edge uv of G, assign the label \(\frac{f(u) + f(v)}{2} \). \(f \) is called a mean cordial labeling of G if \(|v_f(0) - v_f(1)| \leq 1 \) and \(|e_f(0) - e_f(1)| \leq 1 \), i, j \(\in \{0,1,2\} \) where \(v_f(x) \) and \(e_f(x) \) denote the number of vertices and edges labeled with \(x \) (\(x = 0, 1, 2 \)) respectively. A graph with a mean cordial labeling is called Mean Graph. K.Palani, J.Rejila Jeya Surya [6] introduced a new concept called 1-Near Mean Cordial Labeling and investigated some standard graphs.

2. PRELIMINARIES

We define the concept of 1-Near Mean Cordial Labeling as follows,

Let G = (V, E) be a simple graph. A surjective function \(f: V(G) \rightarrow \{0, 1, 2\} \) said to be a 1-Near Mean Cordial Labeling if for each edge uv, the induced map

\[
\ell*(uv) = \begin{cases}
0 & \text{if } \frac{f(u)+f(v)}{2} \text{ is an integer} \\
1 & \text{otherwise}
\end{cases}
\]

Satisfies the condition \(|e_f(0) - e_f(1)| \leq 1 \) where \(e_f(0) \) is the number of edges with 0 label and \(e_f(1) \) is the number of edges with 1 label.

G is said to be a 1-Near Mean Cordial Graph if it has a 1- Near Mean Cordial Labeling. We proved that wheel, complete bipartite, helm, closed helm, flower, sunflower, and \(S(K_{1,n}) \) are 1- Near Mean Cordial Graphs.

Definition 2.1: A graph \(C_n+K_1 \) is called a wheel with n spokes and is denoted by \(W_n \).
Definition 2.2: A graph G is called a complete bipartite graph $K_{m,n}$ with bipartition $V(G) = V_1 \cup V_2$ where $V_1 = \{x_1, x_2, ..., x_m\}$ and $V_2 = \{y_1, y_2, ..., y_n\}$ and all vertices in V_1 are adjacent to all vertices in V_2 but no vertices in V_1 and V_2.

Definition 2.3: The helm H_n, is the graph obtained from a wheel by attaching a pendant edge at each vertex of the n-cycle.

Definition 2.4: A closed helm CH_n, is a graph obtained from a helm by joining each pendant vertex to the central vertex of the helm.

Definition 2.5: A flower Fl_n, is the graph obtained from a helm graph by joining each pendant vertex to the central vertex of the helm graph.

Definition 2.6: The sunflower graph $v[n, s, t]$ is the resultant graph obtained from the flower graph of wheels W_n by adding n-1 pendant edges to the central vertex.

Definition 2.7: For each vertex v of a graph G take a new vertex v_0. Join v_0 to all the vertices of G adjacent to v. The graph $S(G)$ thus obtained is called splitting graph of G.

3. MAIN RESULTS

Theorem 3.1: The wheel W_n is a 1-Near Mean Cordial Graph.

Proof: Let $G = (V, E)$ be a simple graph.

Let G be W_n.

Let $V(G) = \{u, v_i: 1 \leq i \leq n\}$ and $E(G) = \{(uv_i): 1 \leq i \leq n\} \cup \{(v_i, v_{i+1}): 1 \leq i \leq n - 1\} \cup \{v_nv_1\}$

Define $f: V(G) \rightarrow \{0, 1, 2\}$ by

$f(u) = 1$

$f(v_i) = \begin{cases}
0 & i \equiv 1 \mod 2 \\
2 & i \equiv 0 \mod 2
\end{cases} \quad 1 \leq i \leq n$

The induced edge labeling are

$f^*(uv_i) = 1, \quad 1 \leq i \leq n$

$f^*(v_iv_{i+1}) = 0, \quad 1 \leq i \leq n - 1$

$f^*(v_nv_1) = 0$

Here, $e_1(0) = e_1(1) = n$

Hence the graph satisfies the condition $|e_1(0) - e_1(1)| \leq 1$

Therefore, the wheel W_n is a 1-near mean cordial graph.

Illustration 1: The 1- near mean cordial graph of W_5 is shown in the figure 1
Theorem 3.2: The complete bipartite graph, \(K_{m,n} \) is a 1-Near Mean Cordial Graph.

Proof: Let \(G = (V, E) \) be a simple graph.

Let \(G \) be \(K_{m,n} \)

Let \(V(G) = \{u_i: 1 \leq i \leq m, v_j: 1 \leq j \leq n\} \) and \(E(G) = \{(u_i v_j : 1 \leq i \leq m, 1 \leq j \leq n}\} \)

Define \(f: V(G) \rightarrow \{0, 1, 2\} \) by

\[
\begin{cases}
0 & i \equiv 1 \mod 4 \\
1 & i \equiv 0,2 \mod 4, 1 \leq i \leq m,
1 \equiv 3 \mod 4 \\
2 & i \equiv 1 \mod 2, 1 \leq j \leq n,
\end{cases}
\]

The induced edge labeling are

Case-(i): when \(m \) is even and \(n \) is even or odd

\[
f^*(u_{2i-1}v_j) = \begin{cases}
0 & j \equiv 0 \mod 2 \\
1 & j \equiv 1 \mod 2, 1 \leq j \leq n
\end{cases}
\]

\[
f^*(u_{2i}v_j) = \begin{cases}
0 & j \equiv 1 \mod 2 \\
1 & j \equiv 0 \mod 2, 1 \leq j \leq n
\end{cases}
\]

Here, \(e_f(0) = e_f(1) = mn \)

Case-(ii): when \(m \) is odd and \(n \) is even or odd

\[
f^*(u_{2i-1}v_j) = \begin{cases}
0 & j \equiv 0 \mod 2 \\
1 & j \equiv 1 \mod 2, \frac{m+1}{2} \leq j \leq n
\end{cases}
\]

\[
f^*(u_{2i}v_j) = \begin{cases}
0 & j \equiv 1 \mod 2 \\
1 & j \equiv 0 \mod 2, \frac{m+1}{2} \leq j \leq n
\end{cases}
\]

Here, \(e_f(0) = \frac{mn}{2} \) \(n \) is odd \(e_f(1) = \frac{mn}{2} \) \(n \) is even

Hence the graph satisfies the condition \(|e_f(0) - e_f(1)| \leq 1 \)

Therefore, the complete bipartite graph, \(K_{m,n} \) is a 1-near mean cordial graph.

Illustration 2: The 1-near mean cordial graph of \(K_{4,3} \) and \(K_{3,3} \) are shown in the figure 2(a) and figure 2(b)
Theorem 3.3: The helm H_n is a 1-Near Mean Cordial Graph.

Proof: Let $G = (V, E)$ be a simple graph.

Let G be H_n.

Let $V(G) = \{u, v_i: 1 \leq i \leq n, w_i: 1 \leq i \leq n\}$ and

$E(G) = \{(uv_i), (wv_i): 1 \leq i \leq n\} \cup \{(v_iv_{i+1}): 1 \leq i \leq n - 1\} \cup \{v_nv_1\}$

Define $f: V(G) \rightarrow \{0, 1, 2\}$ by

$f(u) = 0$

$f(v_i) = \begin{cases} 0 & i \equiv 1 \mod 2 \\ 2 & i \equiv 0 \mod 2 \end{cases} \quad 1 \leq i \leq n$

$f(w_i) = \begin{cases} 1 & i \equiv 0 \mod 2 \\ 2 & i \equiv 1 \mod 2 \end{cases} \quad 1 \leq i \leq n$

The induced edge labeling are

$f^*(uv_i) = 1, \quad 1 \leq i \leq n$

$f^*(v_iv_{i+1}) = 0, \quad 1 \leq i \leq n - 1$

$f^*(v_nv_1) = 0$

$f^*(wv_i) = \begin{cases} 0 & i \equiv 1 \mod 2 \\ 1 & i \equiv 0 \mod 2 \end{cases} \quad 1 \leq i \leq n$

Here, $e_f(0) = \begin{cases} \frac{3n+1}{2} & n \text{ is odd} \\ \frac{3n}{2} & n \text{ is even} \end{cases}$

$e_f(1) = \begin{cases} \frac{3n-1}{2} & n \text{ is odd} \\ \frac{3n}{2} & n \text{ is even} \end{cases}$

Hence the graph satisfies the condition $|e_f(0) - e_f(1)| \leq 1$

Therefore, the helm H_n is a 1-near mean cordial graph.

Illustration 3: The 1-near mean cordial graph of H_5 is shown in the figure 3.
Theorem 3.4: A closed helm CH_n is a 1-Near Mean Cordial Graph.

Proof: Let $G = (V, E)$ be a simple graph.

Let G be CH_n.

Let $V(G) = \{u, v_i : 1 \leq i \leq n, w_i : 1 \leq i \leq n\}$ and

$E(G) = \{(uv_i), (w_iw_i) : 1 \leq i \leq n\} \cup \{(v_iv_{i+1}), (w_iw_{i+1}) : 1 \leq i \leq n - 1\} \cup \{(v_nv_1), (w_rw_1)\}$

Define $f : V(G) \to \{0, 1, 2\}$ by

$$
f(u) = 1,
\begin{align*}
f(v_i) &= 0, & i &\equiv 1 \mod 2 \\
f(v_i) &= 2, & i &\equiv 0 \mod 2
\end{align*}
$$ \hspace{1cm} 1 \leq i \leq n

$f(w_i) = 1$, \hspace{1cm} 1 \leq i \leq n

The induced edge labeling are

$f^*(uv_i) = 1$, \hspace{1cm} 1 \leq i \leq n
\begin{align*}
f^*(v_iv_{i+1}) &= 0, & 1 \leq i \leq n - 1 \\
f^*(w_iw_{i+1}) &= 0, & 1 \leq i \leq n - 1
\end{align*}

Here, $e_t(0) = e_t(1) = 2n$

Hence the graph satisfies the condition $|e_t(0) - e_t(1)| \leq 1$

Therefore, the closed helm CH_n is a 1-near mean cordial graph.

Illustration 4: The 1-near mean cordial graph of CH_4 is shown in the figure 4,

![Figure 4: CH4](image)

Theorem 3.5: A flower graph Fl_n is a 1-Near Mean Cordial Graph.

Proof: Let $G = (V, E)$ be a simple graph.

Let G be Fl_n.

Let $V(G) = \{u, v_i : 1 \leq i \leq n, w_i : 1 \leq i \leq n\}$ and

$E(G) = \{(uv_i), (u_iw_i), (w_iw_i) : 1 \leq i \leq n\} \cup \{(v_iv_{i+1}) : 1 \leq i \leq n - 1\} \cup \{(v_nv_1)\}$
Define $f : V(G) \rightarrow \{0, 1, 2\}$ by

$$f(u) = 1$$

$$f(v_i) = \begin{cases} 0 & i \equiv 1 \mod 2 \\ 2 & i \equiv 0 \mod 2 \end{cases} \quad 1 \leq i \leq n$$

$$f(w_i) = \begin{cases} 1 & i \equiv 0 \mod 2 \\ 2 & i \equiv 1 \mod 2 \end{cases} \quad 1 \leq i \leq n$$

The edge induced labeling are,

$$f^*(uvi) = 1, \quad 1 \leq i \leq n$$

$$f^*(vivi+1) = 0, \quad 1 \leq i \leq n - 1$$

$$f^*(vnv1) = 0,$$

$$f^*(uwi) = \begin{cases} 0 & i \equiv 0 \mod 2 \\ 1 & i \equiv 1 \mod 2 \end{cases} \quad 1 \leq i \leq n$$

$$f^*(wivi) = \begin{cases} 1 & i \equiv 0 \mod 2 \\ 0 & i \equiv 1 \mod 2 \end{cases} \quad 1 \leq i \leq n$$

Here, $e_1(0) = e_1(1) = 2n$

Hence the graph satisfies the condition $|e_1(0) - e_1(1)| \leq 1$

Therefore, a flower graph F_l_n is a 1-near mean cordial graph.

Illustration 5: The 1-near mean cordial graph of F_3 is shown in the figure 5.

![Figure 5: F_3](image)

Theorem 3.6: The sunflower graph S_n is a 1-Near Mean Cordial Graph.

Proof: Let $G = (V, E)$ be a simple graph.

Let G be S_n.

Let $V(G) = \{u, v_i : 1 \leq i \leq n, w_i : 1 \leq i \leq n, x_i : 1 \leq i \leq n\}$ and

$$E(G) = \{(uv_i), (uw_i), (ux_i), (wivi) : 1 \leq i \leq n\} \cup \{(vivi+1) : 1 \leq i \leq n - 1\} \cup (vavn1)$$

Define $f : V(G) \rightarrow \{0, 1, 2\}$ by
\[f(u) = 1 \]
\[f(v) = \begin{cases} 0 & \text{if } i \equiv 1 \mod 2 \\ 2 & \text{if } i \equiv 0 \mod 2 \end{cases} \quad 1 \leq i \leq n \]
\[f(w) = \begin{cases} 1 & \text{if } i \equiv 0 \mod 2 \\ 2 & \text{if } i \equiv 1 \mod 2 \end{cases} \quad 1 \leq i \leq n \]
\[f(x) = \begin{cases} 0 & \text{if } i \equiv 1 \mod 2 \\ 1 & \text{if } i \equiv 0 \mod 2 \end{cases} \quad 1 \leq i \leq n \]

The edge induced labeling are,
\[f^*(uvi) = 1, \quad 1 \leq i \leq n \]
\[f^*(vivi+1) = 0, \quad 1 \leq i \leq n-1 \]
\[f^*(v_nv1) = 0, \]
\[f^*(uw) = \begin{cases} 0 & \text{if } i \equiv 0 \mod 2 \\ 1 & \text{if } i \equiv 1 \mod 2 \end{cases} \quad 1 \leq i \leq n \]
\[f^*(wv) = \begin{cases} 0 & \text{if } i \equiv 1 \mod 2 \\ 1 & \text{if } i \equiv 0 \mod 2 \end{cases} \quad 1 \leq i \leq n \]
\[f^*(ux) = \begin{cases} 0 & \text{if } i \equiv 1 \mod 2 \\ 1 & \text{if } i \equiv 0 \mod 2 \end{cases} \quad 1 \leq i \leq n \]

Here, \(e_f(0) = \begin{cases} \frac{5n+1}{2} & \text{if } n \text{ is odd} \\ \frac{5n}{2} & \text{if } n \text{ is even} \end{cases} \)
\[e_f(1) = \begin{cases} \frac{5n-1}{2} & \text{if } n \text{ is odd} \\ \frac{5n}{2} & \text{if } n \text{ is even} \end{cases} \]

Hence the graph satisfies the condition \(|e_f(0) - e_f(1)| \leq 1 \)

Therefore, the sunflower graph \(S_n \) is a 1-near mean cordial graph.

Illustration 6: The 1-near mean cordial graph of \(S_4 \) is shown in the figure 6
Theorem 3.7: The splitting graph $S(K_{1,n})$ is a 1-Near Mean Cordial Graph.

Proof: Let $G = (V, E)$ be a simple graph.

Let G be $S(K_{1,n})$.

Let $V(G) = \{u, v, u_i : 1 \leq i \leq n, v_i : 1 \leq i \leq n\}$ and $E(G) = \{(uu_i), (uv_i), (vu_i) : 1 \leq i \leq n\}$

Define $f: V(G) \to \{0, 1, 2\}$ by

$f(u) = 1$

$f(v) = 0$

$f(u_i) = \begin{cases} 0 & i \equiv 0 \mod 3 \\ 1 & i \equiv 1 \mod 3 \\ 2 & i \equiv 2 \mod 3 \end{cases} \quad 1 \leq i \leq n$

$f(v_i) = \begin{cases} 0 & i \equiv 0 \mod 2 \\ 1 & i \equiv 1 \mod 2 \end{cases} \quad 1 \leq i \leq n$

The edge induced labeling are,

$f^*(uu_i) = \begin{cases} 0 & i \equiv 1 \mod 3 \\ 1 & i \equiv 0, 2 \mod 3 \end{cases} \quad 1 \leq i \leq n$

$f^*(vu_i) = \begin{cases} 0 & i \equiv 0, 2 \mod 3 \\ 1 & i \equiv 1 \mod 3 \end{cases} \quad 1 \leq i \leq n$

$f^*(uv_i) = \begin{cases} 0 & i \equiv 1 \mod 2 \\ 1 & i \equiv 0 \mod 2 \end{cases} \quad 1 \leq i \leq n$

Here, $e_t(0) = \begin{cases} \frac{3n+1}{2} & n \text{ is odd} \\ \frac{3n}{2} & n \text{ is even} \end{cases}$

$e_t(1) = \begin{cases} \frac{3n-1}{2} & n \text{ is odd} \\ \frac{3n}{2} & n \text{ is even} \end{cases}$

Hence the graph satisfies the condition $|e_t(0) - e_t(1)| \leq 1$

Therefore, the splitting graph $S(K_{1,n})$ is a 1-near mean cordial graph.

Illustration 7: The 1-near mean cordial graph of $S(K_{1,4})$ is shown in the figure 7,
REFERENCES

Source of support: Nil, Conflict of interest: None Declared

[Copy right © 2016. This is an Open Access article distributed under the terms of the International Journal of Mathematical Archive (IJMA), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.]