μ – Best One-Sided Approximation of Unbounded Functions in the Space $L_{p,\mu}(X)$

SAHEB KAL-SAIDY1, NAGHAM ALI HUSSEN*2

1Al-Mustansiriya University, College of Science, Department of Mathematics, Baghdad, Iraq.
2Tikrit University, College of Education, Department of Mathematics, Tikrit, Iraq.

(Received On: 17-03-16; Revised & Accepted On: 12-04-16)

ABSTRACT

The aim of this paper is to study the μ-best one-sided approximation of unbounded functions in the space $L_{p,\mu}[a,b]$, $(1 \leq p < \infty)$ by Spline polynomials. We consider the point wise estimates in terms of Dititzan-Totic modulus of smoothness are true for spline approximation in the space $L_{p,\mu}[a,b]$.

1. INTRODUCTION

Let $X = [a, b]$, Consider the space

$$
P_n = \{ p(x): p(x) = \sum_{i=0}^{n} c_i x^{i-1}, c_1, c_2, ..., c_n \text{ are reals} \}
$$

of polynomials of order n which has the attractive features [6].

Let $a = x_0 < x_1 < \cdots < x_k < x_{k+1} = b$ and write $\Delta = \{ x_i \}_{0}^{k+1}$. The Δ partitions of the interval $[a, b]$ into $k+1$ subintervals $I_i = [x_i, x_{i+1}], i = 0, 1, ..., k - 1$ and $l_k = [x_k, x_{k+1}]$.

Let

$$
P_n(\Delta) = \left\{ f: \text{there exist polynomials } p_0, p_1, ..., p_k \text{ in } P \text{ with } f(x) = p_i(x) \text{ for } x \in I_i, i = 0, 1, ..., k \right\}
$$

(1.1)

We call $P_n(\Delta)$ the space of piecewise polynomials of order n with knots $x_1, x_2, ..., x_k$. The terminology in (1.1) is perfectly descriptive-an element $f \in P_n(\Delta)$ consists of $k+1$ polynomial pieces [9].

Let Δ be a partition of the interval $[a, b]$ as in (1.1) and let n be a positive integer.

Let $S_n(\Delta) = P_n(\Delta) \cap C^\infty[a, b]$. We call $S_n(\Delta)$ the space of polynomial splines of order n with simple knots at the points $x_1, x_2, ..., x_k$.

Let $L_\infty(X), (1 \leq p < \infty)$ be the space of all bounded measurable functions with usual norm [8].

$$
\| f \|_{L_\infty} = \| f \|_{\infty} = \sup \{|f(x)|, x \in X\} \leq \infty,
$$

(1.2)

$L_p(X)$ be the space of all of bounded measurable function f on X, for which [3]

$$
\| f \|_{L_p} = \| f \|_p = \left(\int_X f(x)^p \, dx \right)^\frac{1}{p} < \infty,
$$

(1.3)

the locally global norm for $\delta > 0$ and $(1 \leq p < \infty)$ of f is defined by

$$
\| f \|_{\delta,p} = \left(\int_X (\sup \{|f(y)|, y \in \left[x - \frac{\delta}{2}, x + \frac{\delta}{2}\right]})^p \, dy \right)^\frac{1}{p},
$$

(1.4)

Let $L_{p,\mu}(X), (1 \leq p < \infty)$ be the space of all bounded μ-measurable functions f on X, for which [1]

$$
\| f \|_{L_{p,\mu}} = \| f \|_{P,\mu} = \left(\int_X f(x)^p \, d\mu(x) \right)^\frac{1}{p} < \infty,
$$

(1.5)

where μ is the non-negative measurable function on set X.

For $\delta > 0$, the modulus of continuity of the function f on X [10] is defined by

$$
\omega(f, \delta) = \sup \{|f(x_1) - f(x_2)|: |x_1 - x_2| < \delta, x_1, x_2 \in X\}
$$

(1.6)

Corresponding Author: Nagham Ali Hussen*2

Tikrit University, College of Education, Department of Mathematics, Tikrit, Iraq.
The moduli of smoothness form a natural generalization of the modulus of continuity.

For every function \(f \) we define the \(k \)th difference with step \(h \) at a point \(x \) as follows:
\[
\Delta_h^k f(x) = \sum_{i=0}^{k} (-1)^{k+i} \binom{k}{i} f(x + ih), \quad x, x + ih \in X
\]
(1.7)

For \(\delta > 0 \), the modulus of smoothness of order \(k \) of function it following function [10]
\[
\omega_k(f, \delta) = \sup_{|h| < \delta} \left\{ \| \Delta_h^k f(x) \|, \ x, x + kh \in X \right\}
\]
(1.8)

The \(k \)th ordinary modulus of continuity for \(f \in L_p(X) \) and \(f \in L_{p, \mu}(X) \) respectively by
\[
\omega_k(f, \delta)_p = \sup_{|h| < \delta} \left\{ \| \Delta_h^k f(.) \|_p, \delta > 0 \right\}
\]
(1.9)

\[
\omega_k(f, \delta)_{p, \mu} = \sup_{|h| < \delta} \left\{ \| \Delta_h^k f(.) \|_{p, \mu}, \delta > 0 \right\}
\]
(1.10)

The local modulus of smoothness of function \(f \) of order \(k \) at a point \(x \in X \) is following function of \(\delta > 0 \) [10]
\[
\omega_k(f, x, \delta) = \sup \left\{ \| \Delta_h^k f(t) \|, \ t, t + kh \in \left[x - \frac{\delta}{2}, x + \frac{\delta}{2} \right] \cap X \right\}
\]
(1.11)

The \(k \)th averaged modulus of smoothness of function \(f \) of order \(k \) (or \(\tau \)-modulus) of the function \(f \in L_p(X) \) is following function of \(\delta > 0 \) is given by [11]:
\[
\tau_k(f, \delta)_p = \| \omega_k(f, . , \delta) \|_p = \left(\int_X \| \omega_k(f, x, \delta) \|^p \, dx \right)^\frac{1}{p}
\]
(1.12)

Further the \(k \)th averaged modulus of smoothness for \(f \in L_{p, \mu}(X) \) is given by
\[
\tau_k(f, \delta)_{p, \mu} = \| \omega_k(f, . , \delta) \|_{p, \mu}
\]
(1.13)

The \(K \)-functional for \(f \in X_0 \) and \(g \in X_1 \) is given by
\[
K(f, \delta) = K(f, \delta, X_0, X_1) = \inf_{g \in X_1} \left\{ \| f - g \|_{X_0} + \delta \| g \|_{X_1}, \delta > 0 \right\}
\]
(1.14)

Where \(X_0 \) and \(X_1 \) be two Banach spaces with \(X_1 \subset X_0 \). [6]

The inequality \(K(f, \delta) < \epsilon \) for some \(\delta > 0 \), \(\epsilon \) is a positive real number, implies that \(f \) has approximated with error \(\| f - g \| < \epsilon \) in \(X_0 \) by an element \(g \in X_1 \), whose norm is not too large (\(\| g \|_{X_1} < \epsilon \delta^{-1} \)).

The \(K \)-functional in \(L_p(X) \) space is given by [6]
\[
K_r(f, \delta^*)_p = \inf_{g \in W^{r}_{p}} \left\{ \| f - g \|_p + \delta^* \| g \|_{W^r_p}, \delta > 0 \right\}
\]
(1.15)

Where \(X_0 = L_p(X) \) and \(X_1 = W^{r}_{p} \) and \(X_1 \subset X_0 \).

Now, we introduce \(K \)-functional of a function \(f \in L_{p, \mu}(X) \) such that [2]
\[
K_r(f, \delta^*)_{p, \mu} = \inf_{g \in W^{r}_{p}} \left\{ \| f - g \|_{p, \mu} + \delta^* \| g \|_{W^r_p}, \delta > 0 \right\}
\]
(1.16)

The Ditzian-Totic modulus of smoothness for \(f \in L_p(X) \) as [4]
\[
\omega_k^p (f, \delta)_p = \sup_{|h| < \delta} \| \Delta_h^k f(.) \|_p
\]
(1.17)

Where
\[
\Delta_h^k f(x) = \left\{ \begin{array}{ll}
\sum_{i=0}^{k} (-1)^{k+i} \binom{k}{i} f(x + ih), x + ih \in X \\
0 & \text{otherwise}
\end{array} \right.
\]

Also, the locally \(\mu \)- Ditzian-Totic modulus of smoothness for \(f \in L_{p, \mu}(X) \) is defined by
\[
\omega_k^p (f, \delta)_{p, \mu} = \sup_{|h| < \delta} \| \Delta_h^k f(.) \|_{p, \mu}, \ where \ \mu(x) = (1 - x^2)^{\frac{1}{2}}
\]
(1.18)

The degree of best approximation to a given continuous function with respect to a polynomial spline on interval \(X \) is given by [5]:
\[
E_{\mu}(f)_{\infty} = \inf \{ \| f - s \|_{\infty}; s \in S_{\mu}(\Delta) \}
\]
(1.19)
While the degree of best approximation of a function \(f \in L_p(X) \) with respect to a polynomial spline of degree \(\leq n \) on \(X \) is given by
\[
E_n(f)_p = \inf \{ \| f - s \|_p; \ s \in S_n(\Delta) \}.
\] (1.20)

Also, the degree of \(\mu \)-best approximation to a given function \(f \in L_{p,\mu}(X) \) with respect to polynomial spline of degree \(\leq n \) on \(X \) is defined by
\[
E_n(f)_{p,\mu} = \inf \{ \| f - s \|_{p,\mu}; \ s \in S_n(\Delta) \}.
\] (1.21)

The degree of best one-sided approximation of function \(f \in L_p(X) \) with respect to polynomial spline of degree \(\leq n \) on interval \(X \) is given by
\[
\tilde{E}_n(f)_p = \inf \{ \| \tilde{s} - \tilde{f} \|_p; \ \tilde{s}, \tilde{f} \in S_n(\Delta) \text{ and } \tilde{s}(x) \leq f(x) \leq \tilde{f}(x) \}.
\] (2.1)

The degree of \(\mu \)-best one-sided approximation of function \(f \in L_{p,\mu}(X) \) with respect to polynomial spline of degree \(\leq n \) on interval \(X \) is given by
\[
\tilde{E}_n(f)_{p,\mu} = \inf \{ \| \tilde{s} - \tilde{f} \|_{p,\mu}; \ s, \tilde{f} \in S_n(\Delta) \text{ and } \tilde{s}(x) \leq f(x) \leq \tilde{f}(x) \}.
\] (2.2)

2. AUXILIARY LEMMAS

Lemma I [7]: For \(f \in L_p(X), (0 < p \leq \infty) \), we have
\[
\omega_k(f, \delta)_p \leq c(p)\omega_k^\mu(f, \delta)_p
\] (2.1)

where \(c \) is constant depending on \(p \).

Lemma II [7]: For \(f \in L_p(X), (0 < p \leq \infty) \), we have
\[
\omega_k(f, \delta)_p \leq \omega_k(f, \delta)_\infty, \ \ \ \delta > 0.
\] (2.2)

Lemma III [9]: If \(f \) is a bounded measurable function on the interval \([a,b], \ a, b \in \mathbb{R} \), then
\[
\int_a^b f(x) \, dx \leq \frac{b-a}{n} \sum_{i=1}^n f(x_i)
\] (2.3)

where
\[
x_i = a + \frac{(b-a)(i-1)}{2n}.
\]

Lemma IV [1]: Let \(f \) be a bounded \(\mu \)-measurable function and \((1 \leq p \leq \infty) \), then we have
\[
\| f \|_p \leq c(p)\| f \|_{p,\mu}
\] (2.4)

3. MAIN RESULTS

In this section, we will get an estimation for \(\tilde{E}_n(f)_{p,\mu} \). The estimation will be given in terms of \(k^{th} \) local modulus of continuity and Ditzian-Totic modulus of smoothness.

Now, we need the following lemmas:

Lemma 1: Let \(f \in L_{p,\mu}(X), (1 \leq p < \infty) \) Then
\[
\omega_k(f, \delta)_{\omega,\mu} \leq c(p)\omega_k^\mu(f, \delta)_{p,\mu}.
\] (3.1)

Proof: From (2.3) and (2.1)
\[
\omega_k(f, \delta)_{\omega,\mu} = \sup_{|h| < \delta} \| \Delta_k^h f(.) \|_{\omega,\mu} = \sup_{|h| < \delta} \| \Delta_k^h f(.) \, d\mu(.) \|_\infty
\]
\[
= \sup_{|h| < \delta} \{ \sup_{x \in X} | \Delta_k^h f(x) \, d\mu(x) | \}_p
\]
\[
\leq \frac{1}{n} \sum_{i=1}^n | \Delta_k^h f(x_i) \, d\mu(x_i) |_p
\]
\[
= \int_X | \Delta_k^h f(x) |_p \, d\mu(x)
\]

Implies that
\[
\omega_k(f, \delta)_{\omega,\mu} \leq (\int_X | \Delta_k^h f(x_i) |_p^p \, d\mu(x_i))^{\frac{1}{p}}
\]
\[
= \| \Delta_k^h f(.) \, d\mu(.) \|_p \leq \sup \| \Delta_k^h f(.) \, d\mu(.) \|_p = \omega_k(f \, d\mu, \delta)_p
\]
\[
\leq c(p) \omega_k^\mu(f \, d\mu, \delta)_p = c(p) \omega_k^\mu(f, \delta)_{p,\mu}.
\]
Theorem 1: Let $f \in L_{p,\mu}(X)$, ($1 \leq p < \infty$). Then
$$E_n(f)_{p,\mu} \leq c(p)\omega_k(f, \delta)_{p,\mu}. \quad (3.2)$$

Proof: Consider $s \in S_\mu(\Delta)$ is a best approximation of a function f.

From (1.21), we have
$$E_n(f)_{p,\mu} = \|f - s\|_{p,\mu} \leq \left(\int_X |f - s(x)|^p \, d\mu(x) \right)^{\frac{1}{p}} \leq \left(\int_X \sup |f(x) - s(x)|^p \, d\mu(x) \right)^{\frac{1}{p}} \leq c(p)\sup \left(\int_X |f(x) - s(x)|^p \, d\mu(x) \right)^{\frac{1}{p}} = c(p)\left(\int_X |\Delta_k f(x)|^p \, d\mu(x) \right)^{\frac{1}{p}} = c(p)\omega_k(f)_{p,\mu}.$$

Now, we want to find a relation between μ-best approximation and μ-best one-sided approximation.

Theorem 2: Let $f \in L_{p,\mu}(X)$, ($1 \leq p < \infty$) and $\Delta = \{0 = x_0 < x_1 < \cdots < x_n = 1\}$. Then
$$E_n(f)_{p,\mu} \leq c(p)\tilde{E}_n(f)_{p,\mu} \leq c(p)E_n(f)_{p,\mu} \quad (3.3)$$
where c constant depending on p.

Proof: Consider $s \in S_\mu(\Delta)$ is the best approximation of $f \in L_{p,\mu}(X)$ and $\bar{s}, \tilde{s} \in S_\mu(\Delta)$ are the best one-sided approximation of $f \in L_{p,\mu}(X)$ such that $\bar{s}(x) \leq f(x) \leq \tilde{s}(x)$; $x \in X$

We want to prove
$$E_n(f)_{p,\mu} \leq c(p)\tilde{E}_n(f)_{p,\mu} \leq c(p)\tilde{E}_n(f)_{p,\mu}.$$

Now to prove
$$\tilde{E}_n(f)_{p,\mu} \leq c(p)\tilde{E}_n(f)_{p,\mu}.$$

Hence
$$E_n(f)_{p,\mu} \leq c(p)\tilde{E}_n(f)_{p,\mu}.$$
Then we get

\[E_n(f)_{p,\mu} \leq c(p) \overline{E}_n(f)_{p,\mu} \leq c(p) E_n(f)_{p,\mu} \]

Theorem 3: If \(f \in L_{p,\mu}(X), (1 \leq p < \infty) \), then

\[\overline{E}_n(f)_{p,\mu} \leq \tau_k(f, \Delta_n)_{p,\mu}. \]

Proof: Let \(\Delta = \{0 = x_0 < x_1 < \cdots < x_n = 1\}, \Delta_n = \max |x_i - x_{i-1}|, i = 0,1, \ldots, n \)

Set \(\overline{s}_k(x) = \sup f(t), x \in [x_{i-1}, x_i], t \in [x_{i-1}, x_i] \)

\(\underline{s}_k(x) = \inf f(t), x \in [x_{i-1}, x_i], t \in [x_{i-1}, x_i] \)

and \(\overline{S}(f, x, \delta) = \sup f(t) \) where \(|t - x| \leq \delta/2 \)

\(\underline{S}(f, x, \delta) = \inf f(t) \) where \(|t - x| \leq \delta/2 \)

then, \(\overline{S}(f, x, \delta) \leq \overline{s}(x) \leq \underline{S}(f, x, \delta) \)

we have

\[\overline{E}_n(f)_{p,\mu} = \| \overline{s}_k - \underline{s}_k \|_{p,\mu} = \left(\int_X (|\overline{x}_k - \underline{x}_k|(x))^p \mu(x) \right)^{1/p} \]

\[\leq \left(\int_X |\overline{s}(f, x, \delta) - \underline{S}(f, x, \delta)|^p \mu(x) \right)^{1/p} \]

\[\leq \sup \left(\int_X |\overline{s}(f, x, \delta) - \underline{S}(f, x, \delta)|^p \mu(x) \right)^{1/p} \]

\[= \tau_k(f, \Delta_n)_{p,\mu}. \]

Theorem 4: Let \(f \in L_{p,\mu}(X), (1 \leq p < \infty) \). Then

\[\overline{E}_n(f)_{p,\mu} \leq c(p) \omega_k^p(f, \delta)_{p,\mu}. \]

Proof: By using (2.1), (2.2), (3.1), (2.4) and (3.2) we get

\[\overline{E}_n, k(f)_{p,\mu} = \inf \| \overline{x} - \underline{x} \|_{p,\mu} \]

\[\leq \inf \| \overline{s} - \underline{s} \|_{p,\mu} \]

\[= \overline{E}_n(f)_{p,\mu} \]

\[\leq \omega_k^p(f, \delta)_{p,\mu} \]

\[= \sup \| \Delta_k \nu f(\cdot) \|_{p,\mu} \]

\[\leq c(p) \sup \| \Delta_k \nu f(\cdot) \|_{p,\mu} \]

\[= c(p) \omega_k^p(f, \delta)_{p,\mu}. \]

REFERENCES

Source of support: Nil, Conflict of interest: None Declared

[Copy right © 2016. This is an Open Access article distributed under the terms of the International Journal of Mathematical Archive (IJMA), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.]