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ABSTRACT

The aim of this paper is to study the p-best one-sided approximation of unbounded functions in the space L, ,[a, b],
(1 <p <) by Spline polynomials ,we consider the point wise estimes in terms of Ditzian-Totic modulus of
smoothness are true for spline approximation in the space L, ,[a, b].

1. INTRODUCTION

Let X= [a, b], Consider the space
P, = {p(x):p(x) = Yycix'™L, ¢, ¢y, ., ¢, arereals}
of polynomials of order n which has the attractive features [6]

Let a=xy <x; < <x <Xxpy1 =b and write A= {x;}k™1. The A partitions of the interval [a, b] into k+1
subintervals I; = [x;,x;41], i =0,1,...,k — 1and I, = [xp, xj41]-
Let

f:there exist polynomials py, py, ---, pr in P with } (11)

P, (D) ={ fx)=p) for xe I, i=01,..,k

We call B,(A) the space of piecewise polynomials of order n with knots x4, x5, ..., x; . The termmology in (1.1) is
perfectly descriptive-an element f € B, (A) consists of k+1 polynomial pieces [9].

Let A be a partition of the interval [a, b] as in (1.1) and let n be a positive integer.

Let S, (A) = P,(A) NnC"2[a, b]. We call S, (A) the space of polynomial splines of order n with simple knots at the
points x;, X3, ..., Xj.

Let L,(X), (1 < p < o) be the space of all bounded measurable functions with usual norm [8].

Il = flle = sup{lf (x|, x € X} < oo, (1.2)
L, (X) be the space of all of all bounded measurable function f on X, for which [3]
1
171, = Il = {( 1 GOP dxyr < o), (L3)
the locally global norm for ¢ > 0 and (1 < p < o) of f is defined by
1
1fllsp = CyGup{lfOIIP:y € [x =2,x +5[dyy (1.4)

Let L, ,(X), (1 < p < ) be the space of all bounded p-measurable functions f on X, for which [1 ]

£l = Wl = {(LIFCOP du@) < oo}, (19)

where [ is the non-negative measureable function on set X.

For ¢ > 0, the modulus of continuity of the function f on X [10] is defined by
w(f,8) = sup{lf(x;)) — FO): [y — x| < 6,x1, %, € X} (1.6)
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The moduli of smoothness form a natural generalization of the modulus of continuity.

For every function f we define the k™ difference with step h at a point x as follows:

A = T (~1)k+ (’l‘) FOx +ih),x,x + ih € X L7
For ¢ > 0, the modulus of smoothness of order k of function it following function [10]
wi (f,8) = sup {|A§‘1f(x)|, x,x + kh € X} (1.8)
|h|<8

The k t* ordinary modulus of continuity for f € L,(X) and f € L, , (X) respectively by

o (f,8), = sup {8k Ol }. 8> 0 (L9)
|h|<8
O (f, 8y = sup {[IEF O} 6 >0 (1.10)
|h|<8

The local modulus of smoothness of function f of order k at a point x € X is following function of ¢ > 0 [10]
w(f %, 8) = sup {|akfF(©)], tt+khe[x—3x+3]nx} (1.11)

The k' averaged modulus of smoothness of function f of order k (or T-modulus) of the function f € L, (X) is
following function of 6 > 0 is given by [11]:

1
% (f,8)p = Nl (f,, Ol = ([ lwk(f,x, 8)IP dx)p (1.12)
Further the k™ averaged modulus of smoothness for f € L, . (X) is given by
Tk(f'5)p,u = ||wk(f"'5)”p,u (113)
The K-functional for f € X, and g € X, is given by
K(f,8) = K(f,6,Xo, X)) = inf {IIf = glix, + 6llglly,, & > 0} (1.14)
geX1

Where X, and X; be two Banach spaces with X; c X,. [6]

The inequality K(f,8) < e for some § > 0, € is a positive real number, implies that f has approximated with error
If — gll < €in X, by an element g € X;, whose norm is not too large (|lgllx, < €571).

The K-functional in L, (X) space is given by [6]
K (f,87), = inf {IIf = gll, +67|g®|| 6> 0} (1.15)

gEW,
Where X, = L,(X)and X; = W, and X; c X,

Now, we introduce K -functional of a function f € L, , (X) such that [2]
K (f,8 ) = inf {IIf = gllpu + 69|, 8> 0} (L16)

-
gEWp

The Ditzian-Totic modulus of smoothness for f € L, (X) as [4]

|h|<8
Where A]ﬁq) fx) = {2511(—1)]‘“ (I:) f(x+iph),x+ ph € X}
0 otherwise

Also, the locally p- Ditzian-Totic modulus of smoothness for f € L, (X) is defined by
1

wf (f-8)y, = sup |k, f(.)||w, where ¢(x) = (1 —x?)2 (1.18)
|h|<6

The degree of best approximation to a given continuous function with respect to a polynomial spline on interval X is
given by [5]:
En(fe = inf{llf —slle; s € S, ()} (1.19)
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While the degree of best approximation of a function f € L, (X) with respect to a polynomial spline of degree < non
X is given by
E.(f)p = inf{llf =sll,; s € S,(8)}. (1.20)

Also, the degree of p- best approximation to a given function f € L, , (X) with respect to polynomial spline of degree
< non X is defined by

E, (f)p,u = lnf{”f - S”p,p; SES, (A)} (121)

The degree of best one-sided approximation of function f € L, (X)with respect to polynomial spline of degree < n on
interval X is given by

E.()y = inf{”§ = 5lly; 5,5 € S,(8) and}

5(x) < f(x) <5(x) (1.22)

The degree of p-best one-sided approximation of function f € L, ,(X) with respect to polynomial spline of degree <
n on interval X is given by

Bu(y = inf |

5 =5, 5,5 €8,(8) and} (1.23)

5(x) < f(x) = 5(x)
2. AUXILIARY LEMMAS

Lemma I [7]: For f € L,(X), (0 < p < ), we have

wi (f, 8), < c(p)wy (. 8), (2.)
where c is constant depending on p.

Lemma Il [7]: For f € L,(X), (0 < p < o), we have

wp(f,8)p < W (f,8)e, 6 >0. (2.2)
Lemma I11 [9]: If f is a bounded measurable function on the interval [a,b], a,pe R, then
b b—a <n
fa f(x)dx ~ —, &i=1 f(x:) (2.3)
where X =a+ (b_a;# .

Lemma IV [1]: Let f be a bounded u —measurable function and (1 < p < =), then we have

Ifll, < c@Ifllp . (2.4)

3. MAIN RESULTS

In this section, we will get an estimation for En(f)w. The estimation will be given in terms of k™ local modulus of
continuity and Ditzian-Totic modulus of smoothness.

Now, we need the following lemmas:

Lemmal:Let f € L,,(X), (1 <p <o) Then
0 (f, 8oy < (@) W (f, )y - 3.1)
Proof: From (2.3) and (2.1)
0 (f, )y = suppi<s [BEF O, = suppi<s [| AF OanOIL,
supji<s {sup|Aff)dn)|", x € X}
% ?:1' Aﬁf(xl-)du(xi)|p
Sy 185 G| ()

IA I

IR

Implies that

@i (f ooy < ([ ] AR F D] dn(x))”
= || Ak OanO|l < supl|akfOdrO|) = wi(fdu 8),
<c(p) wf (fdu,8), =c(p) @ 6y, -
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Theorem 1: Let f € L, ,(X), (1 <p < o). Then
En(fpy <= c@)wi(f,6)p - (3.2)

Proof: Consider s € §,,(A) is a best approximation of a function f .

From (1.21), we have

En(Fpy = If = sl 1
= ([l F =)@ du(x)?
< (f, supl(f = )@)IP du(x))%
< c@)sup(J| f(x) — () IP dhlm)%
= c) sw(f |k F@I du))
= c@swl[Aff Ol = c@@r (S, Oy

Now, we want to find a relation between p-best approximation and p-best one-sided approximation.

Theorem 2: Let f €L, ,(X),(1<p<o)and A={0 =x, <x; < <x, =1} Then
En(Fpy < cCOE.(Fpy < c®) Ea(fpy 3.3)

where ¢ constant depending on p.

Proof: Consider s € §,(A) is the best approximation of f € L, ,(X) and 5,5 € §,(A) are the best one-sided
approximation of f € L, ,(X) such that 5(x) < f(x) < §(x);x € X

We want to prove

Ey(Npy < c@E(Ppu
En(f)p,u = ”f - S”p,u .
= (f,| f =)@ Pdu))?
= ([If @) = s@IPdu))?
= ([If () = 5(x) + 5(x) — s(x) +500) — s()IP du(x))"

< (flf e - S(x)lpdu(x))" + ([ I5¢0) — S(X)I’”du(X))" + (1500 - S(x)l’”du(x))”
If =Sl + 115 =5l 0 + IS = sllp,.

S Nf = sllpy + ) En(Hypa

= E,(fpyu+c®) E. (N

< Ev(Npu +¢ O Ex(Npa

=cC (p) En (f)p,u

Hence Ex(Fpp < c@En(py

Nowtoprove  E,(f),, < c(®) E.(f)py

B (Ppy= 5 = 8l = (1G5 = HEOP duGo)?
= (f,15¢0) = 5GP dn()) 1
< (fls@) + (FG) = s(0))) = (5 = (Fx) = s@ID[” du(x))?
= ([ lF @) = 25() + FEDIP du(x))5
=2(J,If () —s@)IP du(x))’%
< c@f =sllpp = @) Ex(Fppe

Hence En(Fpu < ¢®) Ea(Fp
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Then we get

En(Fpy < cE(Fpy < ) Ea(fpy

Theorem 3: If f €L, ,(X), (1 <p < ), then

En (f)p,u < Tk(f' An)p,ﬂ'

Proof: LetA={0 = xy < %y < - < x,, = 1}, A,= max|x; —x;_¢|, i=0,1,..,n

Set  5.(x) = supf(t), x € [x;_1,x;), t € [x;_1, %]

Sc(x) =inf f(t), x € [x;_1, %), t € [x;_1, %]

and S(f,x,6) =supf(t) where|t—x|<6/2

3

(f,x,8) =inf f(t) where |t — x| < 6/2

then, S (f,x,6) <35(x) <5(x) < S(f,x,6)

we have

En(f)p,u = ”§k - §k”p,u = (fxl(gk - §k)(x)|p dll(x));
= (1 = 50@P du) )’
< (IS¢ %) -5 (.20 duw)

< sup (fX|§(f, x,8) — S (f, x, 6)|p du(x));
= Tk(f' An)p,ﬂ'

1
P

Theorem 4: Let f € L, ,(X), (1 < p < ). Then

E.(fpu < c@wy (f-8)p,y-

Proof: By using (2.1), (2.2), (3.1), (2.4) and (3.2) we get

En,k (f)p,u = inf”§ - §||p,u
< inf|| 5 - 5,

=E. (),

< wf (f-6),

~ suplla, 1O,

< csupliat, O,
=cay (f- )y
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