International Journal of Mathematical Archive-7(4), 2016, 58-62
@ IMA Available online through www.ijma.info ISSN 2229 - 5046

ON THE TOPOLOGICAL INDICES OF THORNY-STAR GRAPHS
SHIGEHALLI V. S.1, SHANMUKH KUCHABAL*2

1Professor, Department of Mathematics,
Rani Channamma University, Vidya Sangama, Belagavi- 591 156, India.

2Research Scholar, Department of Mathematics,
Rani Channamma University, Vidya Sangama, Belagavi- 591 156, India.

(Received On: 13-03-16; Revised & Accepted On: 13-04-16)

ABSTRACT
Let G be the connected graph. The Wiener index W (G) is the sum of all distances between vertices of G, whereas the
hyper-Wiener index WW (G) is defined as WW (G) = W(G) +%Z{ulv}gv{(;}d(u, v)2. In this paper we prove some
general results on the topological indices of thorny-star graphs and some bounds on it.
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1. INTRODUCTION

In mathematical terms a graph is represented as G = (V, E) where V is the set of vertices and E is the set of edges. Let
G be an undirected connected graph without loops or multiple edges with n vertices, denoted by 1,2,...,n. The
topological distance between the vertices u and v of V(G) is denoted by d(u, v) or d,,, and it is defined as the number
of edges in a minimal path connecting the vertices u and v.

The Wiener index W (G) of a connected graph G is defined as the sum the distances between all unordered pairs of
vertices of G. It was put forward by Harold Wiener. The Wiener index is a graph invariant intensively studied both in
mathematics and chemical literature, see for details[1,6,7,8,10 and 12 — 14].

The hyper-Wiener index was proposed by Randic [11] for a tree and extended by Klein et al.. [2] to a connected graph.
It is used to predict physicochemical properties of organic compounds. The hyper-Wiener index defined as,

dy, +1

1
;) = WO + 5 Zmer A vy

Ww(G) = Z{u,v}QV(G)(
The hyper-Wiener index is studied both from a theoretical point of view and applications. We encourage the reader to
consult [4,5,10 and 12 — 15] for further readings. The hyper-Wiener index of complete graph-K,,, path graph-F,, star
graph-K; ,_1) and cycle graph C, is given by the expressions

n(n—1) n*+2n3-n2-2n

1
WW(K,) = =5= WW (R) = —————, WW(Kju-1)) =5 (n =~ 1)(3n - 4)
And
2
) L (n+:;(n+2), if nis even
ww(C,) = -
)43 if nis odd
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2. MAIN RESULTS
2.1 Wiener and hyper-Wiener indices of Thorny-star graphs in terms of number of vertices in a graph:
Theorem 1: Let H be the star graph on t vertices. The graph G obtained by attaching s-number of pendent vertices to

any one pendent vertices of graph H with common vertex then its Wiener and hyper-Wiener indices given by

1
W(G):E{t(2t+35—3)+S(3t+25—5)+2—3s—t}

1
wWw(e) = E{t(3t +65s—5)+s(6t+3s—11) +4 — 8s — 2t}

where ‘n’ be the number of vertices in G and ‘s’ be the number of pendent vertices. The Schematic representation of G
is shown as in below,

Proof: Let us consider the vertex labeled graph,

nbz b
1 G
G2
bg ¢ E3'5 /:
* b4

To find Wiener index of the graph,
w(G) = % i=1 2j=1d (U, )

W(G) =5{d(al 6) + XTIt d(b; 1 6) + X5, d(g | 6)}

W) =1 ZiZtd(alb) +¥_d(alg)}+ @ =2){1+XiFd(by | b)) + i ipeec d(br | 6 )}
2[+{X5 d(bs | c;) +1 +Z§;§ d(bs | b; N+s{1+Xd(c o) +Z§ﬁ;b5ea d(c | b; )}

1)><1+s><2}+(t—2){1+(t—2)><2+s><3}+{s><1+1+(t—2)><2}]

1 [{(e -
W(G)—E[ +s{l+sx2+4(t—2)x3}

Whered(alb;)=1; d(alc)=2; d(bylby)=2; d(bylci)=3;
d(bs | ¢;)=1;d(bs | by) =2; d(cylc;)=2; d(cy |1 by)=3.

W(G)=§[t—1+2s+(t—2)(2t+3s—3)+(2t+s—3)+s(3t+25—5)]
W(G)=%[t—1+2$+t(2t+3s—3)—4t—6s+6+2t+s—3+s(3t+25—5)]

W(G)=§{t(2t+3s—3)+5(3t+25—5)+2—3s—t}

© 2016, IJMA. All Rights Reserved 59



Shigehalli V. .}, Shanmukh Kuchabal # / On the Topological Indices of Thorny-Star graphs / IIMA- 7(4), April-2016.
To find hyper-Wiener index of the graph,
WW(G) =330y 37y d(uy,)?
WW(G) =2{d(a | G)+XZ d(b 1 6)? +X_,d(g | 6)?)

[ {Bictdca b + 55 d(al 6) =2 {1+ B2 d(by 15,)? + e d(by 1 6 )')

WW(G) =1
2|+ {Bd(bs 1) + 1+ 5523 d(bs | )} + s {1+ 80 d(e 1 e )2 + 5 e d(e | B)°)
D x14+sx33+E-2){1+(t—2)x3+sx6)+{sx1+1+(t—2)x3}
WW(G)—E[ ts{l4sx3+(t—2) X 6} ]

Whered(a|b1)2=1, d(a|C1)2=3; d(b1|b2)2=3, d(b1|C1)2=6;
d(bs | c;)?=1;d(bs | by)* =3; d(cy 1 ¢;)*=3; d(c; | by)* =6.

WW(G)=%{(t—1+3s)+(t—2)(1+3t—6+6s)+(s+1+3t—6)+s(1+35+6t—12)}

WW(G)=%{t+3s—1+(t—2)(3t+6s—5)+s(6t+3s—11)+3t+s—5}

WW(G) = %{t(3t +65s—5)+s(6t+3s—11) +4—8s — 2t}

Example: The molecular graph representing the chemical compound in figure below is 1, 2-Butadiene isomorphic to

S31. Where S5 ; is the carbon skeleton of 1, 2-Butadiene.
1

t=3,5 =1,W(G) = 10, and WW (G) = 15.

Theorem 2: (Dendrimers) Let H be the star graph on t vertices. The graph G obtained by attaching s-number of
pendent vertices to each pendent vertex of H with common vertex then its Wiener and hyper-Wiener index given by

W(G) =35 {t—1+2p + (t — 1)(2t + 3p — 7s — 3 + 3st + 4sp — 25%)}

WW(G) =2{3p+t—1+ (t—1)(3t + 6p — 165 — 5 + 65t + 10sp — 752}

Proof: The Schematic representation of G is shown as in below,
s

The Proof is similar to above theorem.
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Theorem 3: (Dendrimers) Let H be the star graph on t vertices (t — 1 is even). The graph G obtained by attaching
s-number of pendent vertices to alternative pendent vertex of graph H with common vertex then its Wiener and hyper-

Wiener index given by
1.t-1

W(G) =E{T(4t+6p—3s—5)+4p2+3pt—2ps—3p+t—1}
WW(G) =%{?(6t+12p—6s—9)+1Op2 +6pt—Tps—8p+t—1}

Proof: The Schematic representation of G is shown as in below,

\7

K4

4

-

The Proof is similar to above theorem 1.
2.2 Bounds for Wiener and hyper-Wiener indices of acyclic molecular graphs:

Lemma 4: For acyclic molecular graphs following inequalities holds good,
1. (). W(T) = %{t(Zt +35s—3)+SBt+25s—5)+2—-3s—t}
(b).WW (T) = >{t(3t + 65 — 5) + 5(6t + 35 — 11) + 4 — 85 — 2t}
2.(a). W(G) = 5{t — 1+ 2p + (t — 1)(2t + 3p — 75 — 3 + 3st + 4sp — 25%)}
(b). WW(G) = 5{3p +t — 1+ (t — 1)(3t + 6p — 165 — 5 + 65t + 105p — 757}
3.(a). W(G) = 5 {5~ (4t + 6p — 35 — 5) + 4p? + 3pt — 2ps — 3p + t — 1}

(b). WW (G) = 5 {5~ (6t + 12p — 65 — 9) + 10p* + 6pt — Tps — 8p + t — 1}

Proof: To prove, assertion 1. a. We know that among all acyclic graphs, the star K; .1, has a minimum Wiener index

and path graph P, has a maximum Wiener index. So, we can get extreme class of graphs in acyclic molecular trees.
Therefore symbolically represented as follows,
W (K -1)) S W(G) S W(F)

In the assertion a. Graph under consideration is a star, so above inequality holds good.
W(T) 2 5{t(2t + 35 —3) + S(3t + 25— 5) +2 — 35 — t}

To prove, assertion 1. b. We know that among all acyclic graphs, the star K; ._;y has a minimum hyper-Wiener index
and path graph B, has a maximum hyper-Wiener index. So, we can get extreme class of graphs in acyclic molecular
trees. Therefore symbolically represented as follows,

WW (Ky —1y) < WW(G) < WW (B,)

In the assertion b. Graph under consideration is a star, so above inequality holds good.
WW (T) > %{t(3t +65—5)+s(6t+3s—11) + 4 — 85 — 2t}

Proofs for results 2 and 3 are similar to 1. a. and 1. b.

We end the paper with the following simple but elegant lemma.
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Lemma5: Let T;, T, and T; are the thorny-star graphs then following inequalities holds good.

a.
b.
c.
Where

W(T,) < W(T3) < W(T2)
WW (T,) < WW(T5) < WW(T,)
W(T,) < WW(T;), Where i = 1,2,3.

W(T}) = >{t(2t + 35 —3) + S(3t + 25— 5) + 2 — 35 — t}

WW(T,) = %{t(3t +65—5) +5s(6t +3s —11) + 4 — 8s — 2t}

W(T;) = 5{t —1+2p + (t — 1)(2t + 3p — 75 — 3 + 35t + 4sp — 25)}

1

WW(T,) =-{3p+t—1+(t—1)(3t+ 6p — 16s — 5+ 65t + 10sp — 7s?}

T2

1t—-1
W(T3)=E{T(4t+6p—35—5)+4p2+3pt—2ps—3p+t—1}

WW(T3) = 3 {

= {5 (6t + 12p — 65 — 9) + 10p? + 6pt — 7ps — 8p + t — 1}

The proof is straightforward and omitted.
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