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ABSTRACT 
In this paper, we introduce a new class of sets, namely fuzzy α*-open sets and fuzzy α*-closed sets. Further we define 
fuzzy α*-interior and fuzzy α*-closure and discuss their properties. Finally, we relate fuzzy α*-open sets and fuzzy     
α*-closed sets with some other sets in fuzzy topological spaces. 
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1 INTRODUCTION 
 
Zadeh, in [7] introduced the concept of fuzzy sets. The study of fuzzy topology was introduced by Chang [4]. In 1991, 
A.S.Bin shahna [3] introduced α-open sets in fuzzy topological spaces. After Bin shahna’s work, many mathematicians 
turned their attention to generalizing various concepts in fuzzy topology by considering fuzzy α-open sets instead of 
fuzzy open sets. The concept of fuzzy generalized closed sets was introduced by S.S.Thakur [6]. In this paper, we 
define a new class of sets, namely fuzzy α*-open sets and fuzzy α*-closed sets. Further we define fuzzy α*-interior and 
fuzzy α*-closure and discuss their properties. Finally, we relate fuzzy α*-open sets and fuzzy α*-closed sets with some 
other sets in fuzzy topological spaces. 
 
2. PRELIMINARIES 
 
Throughout this paper X and Y denote fuzzy topological spaces (X, τ) and (Y, σ) on which no separation axioms are 
assumed. Let A be a subset of a space X. The closure of A and the interior of A are denoted by Cl(A) and Int(A) 
respectively. The following concepts are used in the sequel.  
 
Definition 2.1: [3] A subset A of a fuzzy topological space (X, τ) is said to be a fuzzy pre-open if A ≤ Int(Cl(A)) and a 
fuzzy pre-closed if Cl(Int(A)) ≤ A.  
 
Definition 2.2: [1] A subset A of a fuzzy topological space (X, τ) is said to be a fuzzy semi-open if A ≤ Cl(Int(A)) and 
a fuzzy semi-closed if Int(Cl(A)) ≤ A. 
 
Definition 2.3: [3] A subset A of a fuzzy topological space (X, τ) is said to be a fuzzy α-open if A ≤ Int(Cl(Int(A))) 
and a fuzzy α-closed if Cl(Int(Cl(A))) ≤ A. 
 
Definition 2.4: [6] A subset A of a fuzzy topological space (X, τ) is said to be fuzzy generalized closed (briefly         
g-closed) if Cl(A) ≤ U whenever A ≤ U and U is fuzzy open in X. 
 
Definition 2.5: [6] A subset A of a fuzzy topological space (X, τ) is said to be fuzzy generalized open (briefly g-open) 
if its complement is g-closed in X. 
 
Definition 2.6: [2] Let A be a subset of a fuzzy topological space (X, τ), then the fuzzy generalized closure of A is 
defined as the intersection of all fuzzy g-closed sets in X containing A and is denoted by Cl*(A). 
 
Definition 2.7: [2] Let A be a subset of a fuzzy topological space (X, τ), then the fuzzy generalized interior of A is 
defined as the union of all fuzzy g-open sets in X that are contained A and is denoted by Int*(A). 
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Definition 2.8: [5] A subset A of a fuzzy topological space (X, τ) is said to be fuzzy generalized α-closed if αCl(A) ≤ U 
whenever A ≤ U and U is fuzzy α-open in (X, τ). 
 
Definition 2.9: [5] A subset A of a fuzzy topological space (X, τ) is said to be fuzzy α-generalized closed if αCl(A) ≤ U 
whenever A ≤ U and U is fuzzy open in (X, τ). 
 
The fuzzy α-interior [3] of a subset A of a fuzzy topological space (X, τ) is the union of all fuzzy open sets contained 
in A and is denoted by αInt(A). The fuzzy semi-interior [1] of A and fuzzy pre-interior [3] of A are analogously 
defined and that are respectively denoted by sInt(A) and pInt(A).  
 
The fuzzy α-closure [3] of a subset A of a fuzzy topological space (X, τ) is the intersection of all fuzzy closed sets 
containing A and is denoted by αCl(A). The fuzzy semi-closure [1] of A and fuzzy pre-closure [3] of A are 
analogously defined and that are respectively denoted by sCl(A) and pCl(A). 
       
3. FUZZY α*-OPEN SETS 
 
Definition 3.1: A subset A of a fuzzy topological space (X, τ) is called fuzzy α*-open set if A ≤ Int*(Cl(Int*(A))). The 
collection of all fuzzy α*-open sets in (X, τ) is denoted by α*O(X, τ). 
 
Lemma 3.2: If there exists fuzzy g-open set V such that V ≤ A ≤ Int*(Cl(V)), then A is fuzzy α*-open. 
 
Proof: Since V is fuzzy g-open, Int*(V) = V. Therefore, A ≤ Int*(Cl(V)) = Int*(Cl(Int*(V))) ≤ Int*(Cl(Int*(A))). 
Hence A is fuzzy α*-open. 
 
Theorem 3.3: Every fuzzy open set is fuzzy α*-open. 
 
Proof: Let A be a fuzzy open set in X. Every fuzzy open set is fuzzy α-open. Then  
A ≤ Int(Cl(Int(A))) ≤ Int*(Cl(Int*(A))). Hence A is fuzzy α*-open. 
 
Remark 3.4: The converse of the above theorem need not be true as seen from the following example. 
 
Example 3.5: Let X = {a, b} and τ = {0, 1, α1}. The fuzzy sets are defined as α1(a) = 0.5, α1(b) = 0.4, α2(a) = 0.5,    
α2(b) = 0.6, α3(a) = 0.5, α3(b) = 0.5. Clearly α3 is fuzzy α*-open but not fuzzy open. 
 
Theorem 3.6: Let {Aα} be a collection of fuzzy α*-open sets in a fuzzy topological space X. Then ∨Aα is fuzzy       
α*-open. 
 
Proof: Since Aα is fuzzy α*-open for each α. Then Aα ≤ Int*(Cl(Int*(Aα))). This implies ∨Aα ≤ ∨(Int*(Cl(Int*(Aα)))) 
≤ (Int*(∨Cl(Int*(Aα)))) ≤ (Int*(Cl(∨Int*(Aα)))) ≤ (Int*(Cl(Int*(∨Aα)))). Hence ∨Aα is fuzzy α*-open. 
 
Remark 3.7: The intersection of two fuzzy α*-open sets need not be fuzzy α*-open is shown in the following example. 
 
Example 3.8: Let X = {a, b} and τ = {0, 1, α1}. The fuzzy sets are defined as α1(a) = 0.5, α1(b) = 0.4, α2(a) = 0.4,    
α2(b) = 0.6, α3(a) = 0.5, α3(b) = 0.6, α4(a) = 0.6, α4(b)=0.4, α5(a) = 0.4, α5(b) = 0.4. Clearly α1and α2 are fuzzy α*-open 
sets but α1 ∧ α2 = α5 is not fuzzy α*-open. 
 
Theorem 3.9: Every fuzzy α-open set is fuzzy α*-open. 
 
Proof: Let A be a fuzzy α-open set. Then A ≤ Int(Cl(Int(A))) ≤ Int*(Cl(Int*(A))). Hence A is fuzzy α*-open. 
 
Remark 3.10: The converse of the above theorem need not be true as seen from the following example. 
 
Example 3.11: Let X = {a, b} and τ = {0, 1, α1}. The fuzzy sets are defined as α1(a) = 0.5, α1(b) = 0.4, α2(a) = 0.5, 
α2(b) = 0.6, α3(a) = 0.5, α3(b) = 0.5. Clearly α3 is fuzzy α*-open but not fuzzy α-open. 
 
Theorem 3.12: Every fuzzy g-open set is fuzzy α*-open. 
 
Proof: Let A be a fuzzy g-open set. Then Int*(A) = A. Therefore Int*(A) ≤ Cl(Int*(A)).  
 
Then Int*(Int*(A)) ≤ Int*(Cl(Int*(A))) ⇒  Int*(A) ≤ Int*(Cl(Int*(A))) ⇒ Int*(A) = A ≤ Int*(Cl(Int*(A))). Hence A is 
fuzzy α*-open. 
 
Remark 3.13: The converse of the above theorem need not be true as seen from the following example. 
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Example 3.14: Let X = {a, b} and τ = {0, 1, α1} The fuzzy sets are defined as α1(a) = 0.4, α1(b) = 0.6, α2(a) = 0.5,  
α2(b) = 0.6 and α3(a) = 0.6, α3(b) = 0.4. Clearly α2 is fuzzy α*-open but not fuzzy g-open. 
 
Theorem 3.15: If a subset A is fuzzy α*-open and B is fuzzy open, then A∨B is fuzzy α*-open. 
 
Proof: Proof follows from theorem 3.3 and theorem 3.6. 
 
Theorem 3.16: If a subset A is fuzzy α*-open and B is fuzzy α-open, then A ∨ B is fuzzy α*-open. 
 
Proof: Proof follows from theorem 3.9 and theorem 3.6. 
 
Theorem 3.17: If a subset A is fuzzy α*-open and B is fuzzy g-open, then A ∨ B is fuzzy α*-open. 
 
Proof: Proof follows from theorem 3.12 and theorem 3.6. 
 
Remark 3.18: The concept of fuzzy α*-open sets and fuzzy semi-open sets are independent as shown in the following 
examples. 
 
Example 3.19: Let X = {a, b} and τ = {0, 1, α2}. The fuzzy sets are defined as α1(a) = 0.4, α1(b) = 0.6, α2(a) = 0.5, 
α2(b) = 0.6, α3(a) = 0.6, α3(b) = 0.4. Clearly α1 is fuzzy α*-open but not fuzzy semi-open. 
 
Example 3.20: Let X = {a, b} and τ = {0, 1, α1} The fuzzy sets are defined as α1(a) = 0.5, α1(b) = 0.4, α2(a) = 0.5, α2(b) 
= 0.6, α3(a) = 0.5, α3(b) = 0.5. Clearly α2 is fuzzy semi open but not fuzzy α*-open. 
 
Remark 3.21: The concept of fuzzy α*-open sets and fuzzy α-generalized open sets are independent as shown in the 
following examples. 
 
Example 3.22: Let X = {a, b} and τ = {0, 1, α2}. The fuzzy sets are defined as α1(a) = 0.4, α1(b) = 0.6, α2(a) = 0.5, 
α2(b) = 0.6, α3(a) = 0.6, α3(b) = 0.4. Clearly α2 is fuzzy α*-open but not fuzzy α-generalized open. 
 
Example 3.23: Let X = {a, b} and τ = {0, 1, α2}. The fuzzy sets are defined as α1(a) = 0.3, α1(b) = 0.4, α1(c) = 0.4,  
α2(a) = 0.3, α2(b) = 0.6, α2(c) = 0.4, α3(a) = 0.7, α3(b) = 0.6, α3(c) = 0.6. Clearly α3 is fuzzy α-generalized open but not 
fuzzy α*-open. 
 
Remark 3.24: The concept of fuzzy α*-open sets and fuzzy generalized α-open sets are independent as shown in the 
following examples. 
 
Example 3.25: Let X = {a, b} and τ = {0, 1, α2} The fuzzy sets are defined as α1(a) = 0.4, α1(b) = 0.6, α2(a) = 0.5,  
α2(b) = 0.6, α3(a) = 0.6, α3(b) = 0.4. Clearly α2 is fuzzy α*-open but not fuzzy generalized α-open. 
 
Example 3.26: Let X = {a, b} and τ = {0, 1, α2} The fuzzy sets are defined as α1(a) = 0.3, α1(b) = 0.4, α1(c) = 0.4,   
α2(a) = 0.3, α2(b) = 0.6, α2(c) = 0.4, α3(a) = 0.7, α3(b) = 0.6, α3(c) = 0.6. Clearly α3 is fuzzy generalized α-open but not 
fuzzy α*-open. 
 
Remark 3.27: From the above theorems and remarks, we have the following implication diagram. 
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Definition 3.28: Let A be a subset of a fuzzy topological space (X, τ), then fuzzy α*-interior of A is defined as the 
union of all fuzzy α*-open sets in X that are contained in A and is denoted by α*Int(A). 
 
Theorem 3.29: If A is any subset of a fuzzy topological space (X, τ), α*Int(A) is fuzzy α*-open. Infact, α*Int(A) is the 
largest fuzzy α*-open set contained in A. 
 
Proof: Proof follows from the definition 3.28 and theorem 3.3. 
 
Theorem 3.30: Let A be a subset of a fuzzy topological space (X, τ). Then A is fuzzy α*-open if and only if  
α*Int(A) = A. 
 
Proof: If A is fuzzy α*-open then α*Int(A) = A. Conversely, let α*Int(A) = A, by theorem 3.29, α*Int(A) is fuzzy      
α*-open. Hence A is fuzzy α*-open. 
 
Theorem 3.31: Let A and B are subsets of a fuzzy topological space (X, τ), then the following conditions are hold: 

a) α*Int(φ) = φ 
b) α*Int(X) = X 
c) α*Int(A) ≤ A 
d) If A ≤ B, then α*Int(A) ≤ α*Int(B) 
e) A ≤ Int(A) ≤ αInt(A) ≤ α*Int(A) 
f) α*Int(A) ∨ α*Int(B) ≤ α*Int(A ∨ B) 
g) α*Int(A) ∧ α*Int(B) ≥ α*Int(A ∧ B) 

 
Proof: a), b), c), d) follows from the definition 3.28 and e) follows from theorem 3.9. From d) α*Int(A) ≤ α*Int(A∨B) 
and α*Int(B) ≤ α*Int(A∨B).  
 
⇒  α*Int(A) ∨ α*Int(B) ≤ α*Int(A ∨ B). Hence f) follows. 
 
Again from d) α*Int(A) ≥ α*Int(A ∧ B) and α*Int(B) ≥ α*Int(A ∧ B).  
 
⇒ α*Int(A) ∧ α*Int(B) ≥ α*Int(A ∧ B). Hence g) follows. 
 
4. α *-CLOSED SETS 
 
Definition 4.1: A subset A of a fuzzy topological space (X, τ) is called fuzzy α*-closed set if its complement is        
α*-open. The collection of all fuzzy α*-closed sets in (X, τ) is denoted by α*C(X, τ). 
 
Lemma 4.2: If there exists an fuzzy g-closed set F such that Cl*(Int(F)) ≤ A ≤ F, then A is fuzzy α*-closed. 
 
Proof: Since F is fuzzy g-closed, Cl*(F) = F. Therefore, Cl*(Int(Cl*(A))) ≤ Cl*(Int(Cl*(F))) = Cl*(Int(F)) ≤ A. Hence 
A is fuzzy α*-closed. 
 
Theorem 4.3: A subset A of a fuzzy topological space (X, τ ) is fuzzy α*-closed if and only if Cl*(Int(Cl*(A))) ≤ A. 
 
Proof: Let A be a fuzzy α*-closed set. Then 1−A is fuzzy α_-open. By definition 1 − A ≤ Int*(Cl(Int*(1 − A))). That is 
1 − A ≤ 1 – Cl*(Int(Cl*(A))). Hence Cl*(Int(Cl*(A))) ≤ A. Conversely, suppose Cl*(Int(Cl*(A))) ≤ A.  
 
Then 1 − A ≤ 1 – Cl*(Int(Cl*(A))). That is 1 − A ≤ Int*(Cl(Int*(1 − A))). This shows that 1 − A is fuzzy α*-open. Then 
A is fuzzy    α*-closed. 
 
Theorem 4:4. If {Aα} is a collection of fuzzy α*-closed sets in fuzzy topological space (X, τ), then ∧Aα is fuzzy       
α*-closed. 
 
Proof: Let Aα be a fuzzy α*-closed in X ⇒  1 − Aα is fuzzy α*-open in X ⇒  By theorem 3.6, ∨(1 − Aα) is fuzzy    
α*-open in X ⇒  1 − ∧Aα is fuzzy α*-open in X. Hence ∧Aα is fuzzy α*-closed. 
 
Remark 4.5: The union of fuzzy α*-closed sets need not be α*-closed as seen from the following example. 
 
Example 4.6: Let X = {a, b} and τ = {0, 1, α2, α5, α6}. The fuzzy sets are defined as  α1(a) = 0.3, α1(b) = 0.6,           
α2(a) = 0.4, α2(b) = 0.5, α3(a) = 0.6, α3(b) = 0.5, α4(a) = 0.6, α4(b) = 0.6, α5(a) = 0.6, α5(b) = 0.7, α6(a) = 0.6, α6(b) = 0.4.  
 
Clearly α1 and α3 are fuzzy α*-closed sets but α1 ∨ α3 = α4 is not fuzzy α*-closed. 
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Theorem 4.7: Every fuzzy closed set is fuzzy α*-closed 
 
Proof: Let A be a fuzzy closed set in X. Then 1 − A is fuzzy open in X. By theorem 3.3, 1 − A is fuzzy α*-open  
 
⇒A is fuzzy α*-closed. 
 
Remark 4.8: The converse of the above theorem need not be true as seen from the following example. 
 
Example 4.9: Let X = {a, b} and τ = {0, 1, α2} The fuzzy sets are defined as α1(a) = 0.3, α1(b) = 0.4, α2(a) = 0.6,     
α2(b) = 0.5. Clearly α1 is fuzzy α*-closed but not fuzzy closed. 
 
Theorem 4.10: If a subset A of a fuzzy topological space X is fuzzy α*-closed and B is fuzzy closed then A ∧ B is 
fuzzy α*-closed. 
 
Proof: Proof follows from theorem 4.7 and theorem 4.4 
 
Theorem 4.11: Every fuzzy α-closed set is fuzzy α*-closed. 
 
Proof: Let A be a fuzzy α-closed. Then 1−A is fuzzy α-open. By theorem 3.9, 1 − A is fuzzy α*-open. Hence A is 
fuzzy α*-closed. 
 
Remark 4.12: The converse of the above theorem need not be true as seen from the following example. 
 
Example 4.13: Let X = {a, b} and τ = {0, 1, α1} The fuzzy sets are defined as α1(a) = 0.6, α1(b) = 0.5, α2(a) = 0.7,  
α2(b) = 0.8. Clearly α2 is fuzzy α*-closed but not fuzzy α-closed. 
 
Theorem 4.14: Every fuzzy g-closed set is fuzzy α*-closed. 
 
Proof: Let A be a fuzzy g-closed set. Then 1−A is fuzzy g-open set. By theorem 3.12, 1 − A is fuzzy α*-open  
 
⇒  A is fuzzy α*-closed. 
 
Remark 4.15: The converse of the above theorem need not be true as seen from the following example. 
 
Example 4.16: Let X = {a, b} and τ = {0, 1, α3} The fuzzy sets are defined as α1(a) = 0.4, α1(b) = 0.6, α2(a) = 0.6,  
α2(b) = 0.5, α3(a) = 0.4, α3(b) = 0.5. Clearly α3 is fuzzy α*-closed but not fuzzy g-closed. 
 
Theorem 4.17: If a subset A of a fuzzy topological space X is fuzzy α*-closed and B is fuzzy α-closed, then A ∧ B is 
fuzzy α*-closed. 
 
Proof: Proof follows from theorem 4.11 and theorem 4.4 . 
 
Theorem 4.18: If a subset A of a fuzzy topological space X is fuzzy α*-closed and B is fuzzy g-closed, then A ∧ B is 
fuzzy α*-closed. 
 
Proof: Proof follows from theorem 4.14 and theorem 4.4 . 
 
Remark 4.19: The concept of fuzzy α*-closed sets and fuzzy semi-closed sets are independent as shown in the 
following examples. 
 
Example 4.20: Let X = {a, b} and τ = {0, 1, α1} The fuzzy sets are defined as α1(a) = 0.4, α1(b) = 0.4, α2(a) = 0.1,  
α2(b) = 0.9. Clearly α2 is fuzzy α*-closed but  not fuzzy semi-closed. 
 
Example 4.21: Let X = {a, b} and τ = {0, 1, α1} The fuzzy sets are defined as α1(a) = 0.4, α1(b) = 0.4, α2(a) = 0.1,  
α2(b) = 0.9. Clearly α1 is fuzzy semi closed but  not fuzzy α*-closed. 
 
Remark 4.22: The concept of fuzzy α*-closed sets and fuzzy α-generalized closed sets are independent as shown in the 
following examples. 
 
Example 4.23: Let X = {a, b} and τ = {0, 1, α1} The fuzzy sets are defined as α1(a) = 0.4, α1(b) = 0.5, α1(c) = 0.6,    
α2(a) = 0.3, α2(b) = 0.3, α2(c) = 0.5, α3(a) = 0.7, α3(b) = 0.5, α3(c) = 0.5. Clearly α2 is fuzzy α*-closed but not fuzzy α-
generalized closed. 
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Example 4.24: Let X = {a, b} and τ = {0, 1, α2} The fuzzy sets are defined as α1(a) = 0.3, α1(b) = 0.4, α1(c) = 0.4,   
α2(a) = 0.3, α2(b) = 0.6, α2(c) = 0.4, α3(a) = 0.7, α3(b) = 0.6, α3(c) = 0.6. Clearly α1 is fuzzy α- generalized closed but not 
fuzzy α*-closed. 
 
Remark 4.25: The concept of fuzzy α*-closed sets and fuzzy generalized α- closed sets are independent as shown in 
the following examples. 
 
Example 4.26: Let X = {a, b} and τ = {0, 1, α1} The fuzzy sets are defined as α1(a) = 0.6, α1(b) = 0.5, α2(a) = 0.7,  
α2(b) = 0.8. Clearly α2 is fuzzy α*-closed but not fuzzy generalized α-closed. 
 
Example 4.27: Let X = {a, b} and τ = {0, 1, α2} The fuzzy sets are defined as α1(a) = 0.3, α1(b) = 0.4, α1(c) = 0.4,   
α2(a) = 0.3, α2(b) = 0.6, α2(c) = 0.4, α3(a) = 0.7, α3(b) = 0.6, α3(c) = 0.6. Clearly α1 is fuzzy generalized α-closed but not 
fuzzy α*-closed. 
 
Remark 4.28: From the above theorems and remarks, we have the following implication diagram. 
 

 
 
Definition 4.29: Let A be a subset of a fuzzy topological space (X, τ). Then fuzzy α*-closure of A is defined as the 
intersection of all fuzzy α*-closed sets containing A and denoted by α*Cl(A). 
 
Theorem 4.30: Let A be a subset of a fuzzy topological space (X, τ). Then A is fuzzy α*-closed if and only if α*Cl(A) 
= A. 
 
Proof: Suppose A is fuzzy α*-closed. Then by definition 4.29, α*Cl(A) = A. Conversely, suppose α*Cl(A) = A. Then 
by theorem 4.4, A is fuzzy α*-closed. 
 
Theorem 4.31: Let A and B are subsets of a fuzzy topological space (X, τ), then the following conditions are hold: 

a) α*Cl(φ) = φ 
b) α*Cl(X) = X 
c) A ≤ α*Cl(A) 
d) If A ≤ B, then α*Cl(A) ≤ α*Cl(B) 
e) A ≤ α*Cl(A) ≤ αCl(A) ≤ Cl(A) 
f) α*Cl(A) ∨ α*Cl(B) ≤ α*Cl(A ∨ B) 
g) α*Cl(A) ∧ α*Cl(B) ≥ α*Cl(A ∧ B) 

 
Proof: a), b), c), d) follows from the definition 4.29 and e) follows from theorem 4.7. 
 
From d) α*Cl(A) ≤ α*Cl(A ∨ B) and α*Cl(B) ≤ α*Cl(A ∨ B)  
 
⇒  α*Cl(A) ∨ α*Cl(B) ≤ α*Cl(A ∨ B). Hence f) follows. 
 
Again from d) α*Cl(A) ≥ α*Cl(A ∧ B) and α*Cl(B) ≥ α*Cl(A ∧ B)  
 
⇒  α*Cl(A) ∧ α*Cl(B) ≥ α*Cl(A ∧ B). Hence g) follows. 
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