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ABSTRACT 
In this paper we have mainly focused on some theorems related to commutativity of associative and non associative 
rings. We prove that if R is an associative ring with unity satisfying (x, y2) - (y2, x). ∀ x, y ϵ R, n ≥2 and  xy3=y2xy              
∀ x, y ϵ R, n ≥2.  Then R is commutative ring and also I have mainly obtained two principles for a non associative ring 
to be a commutative ring. 
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INTRODUCTION 
 
The object of this note to investigate the commutativity of the associative and non associative rings satisfying  
condition ‘.’ Such that y(yx) = y(xy)  ∀ x, y ϵ R and (yx)x = (xy)x ∀ x, y ϵ R, 
   
PRELIMINARIES 
 
Definition: 

(i) A non empty set R together with two binary operations + and .  is said to be a ring (Associative ring) if (R, +)  
is an abelian group and (R, .) is a semi group  satisfying  distributive laws. 

(ii) In a ring R if there exists an element ‘1’ in R such that a.1=1.a = a for all a ϵR then R is said to be a ring with 
unity. 

 
Theorem 1: R is an Associative Ring with unity 1 then R is Commutative such that (x, y2) - (y2, x) belongs to z(R). 

 
Proof: Given that xy2 = y2x 

Replacing y by y+1, 
x(y+1)2 = (y+1)2xϵZ(R) 
x(y2+2y+1) = (y2+2y+1)x ϵZ(R) 
xy2+2xy+x = y2x+2yx+x  ϵZ(R) 
2xy = 2yx ∀ x, y, ϵZ(R) 
yx = xy ∀ x, y, ϵR 
Hence R is Commutative ring.                                                                                                                                                                           

 
Theorem 2: Let R is an Associative Ring with unity and R is Commutative then xy3 = y2xy. 
 
Proof: Given that xy3=y2xy 

Replacing y by y+1, x(y+1)3 = (y+1)2 x (y+1) ϵZ(R) 
x(y+1)(y2+2y+1) = (y2+2y+1)(xy+x) 
(xy+x)(y2+2y+1) = y2xy+2yxy+xy ϵZ(R) 
xy3+2xy2+xy+xy2+2xy+x = y2xy+2yxy+xy ϵZ(R) 
2xy = 2yx   [from 1, xy2=y2x] 
yx = xy ∀ x, y, ϵR 
Hence R is Commutative ring. 
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Theorem 3: Let R be a prime ring with yx2y = xy2x in Z(R) for every x, y in R. Then R is a commutative ring. 
 
Proof: Given that, yx2y = xy2x 

Replacing x by x+1, 
y(x+1)2y = (x+1)(y2)(x+1) ϵZ(R) 
y(x2+2x+1)y = (xy2+y2)(x+1) ϵZ(R) 
yx2y+2yxy+y2 = xy2x+xy2+y2x+y2 

2yxy = xy2+y2x 
(From the theorem ynx = yn-1 xy) 
yxy = xy2 ϵZ(R) 
Replacing y by y+1, 
(y+1)(xy+x) = x(y2+2y+1) 
We get, 
yxy+yx+xy+x = xy2+2xy+x 
yx = xy ∀ x, y, ϵR 
Hence R is Commutative ring. 

 
Theorem 4: If R is an Associative Ring with unity 1 then R is Commutative if and only if x3yx = x4y for all x, y 
belongs to R. 
 
Proof: Given that ,  x3yx  =  x4y 

Replacing x by x+1, 
(x+1)3y(x+1) = (x+1)4y ϵZ(R) 
(x+1)(x+1)(x+1) y (x+1) = (x+1)2(x+1)2yϵZ(R) 
(x2+2x+1)(xy+y) (x+1) = (x2+2x+1) (x2+2x+1)y ϵZ(R) 
(x3y+x2y+2x2y+2xy+xy+y) (x+1) = (x2+2x+1) (x2y+2xy+y 
3x2yx+3xyx+yx = 3x2y+3x3y+xy 
[by the theorem, xny = xn-1yx] 
yx = xy ∀ x, y, ϵR 
Hence R is Commutative ring. 

 
Theorem 5: If R is ring with unity 1 satisfying [(xy)2 - xy, x]=0 then R is commutative.      
 
Proof: Given that, [(xy)2-xy, x] = 0 

[(xy)2-xy]x = x[(xy)2-xy] 
 
Replacing x by x+1, [(x+1) y]2 - (x+1) y](x+1) = (x+1) [ ((x+1)y)2-(x+1)y] ϵZ(R) 

[(xy+y)2 - (xy+y)](x+1) = (x+1) [(xy+y)2 – (xy+y) ] 
[(xy+y) (xy+y)-(xy+y)] (x+1) = (x+1) [(xy+y) (xy+y) - (xy+y)] 
(xy)(yx) + y(xy)x-yx = x(xy)y + (xy) (xy)-xy ϵZ(R) 

 
Replacing x by x+1, 

[(x+1)y] [y(x+1)]+y((x+1)yx+1)-y(x+1) = (x+1) ((x+1)y)y+((x+1)y)((x+1)y-(x+1)y 
(xy+y)(yx+y)+(yxy+y2)(x+1)-yx-y = (x+1) (xy+y)y+(xy+y) (xy+y) – xy-y 
Y(yx)+yxy = (xy)y+y(xy) 

 
By replacing y by y+1, we get (yx)y = (xy) y ϵZ(R) 

yx = xy ∀ x, y, ϵR 
Hence R is Commutative ring 

 
Theorem 6: If R be a non-associative ring with unity 1 satisfying y(yx)=y(xy) for all x,y belongs to R then R is 
commutative.                                                                                                                                                                                                      
 
Proof: Given that, y(yx) = y(xy) 

Replacing y by y+1, (y+1) [yx+x] = (y+1) [xy+x] ϵZ(R) 
y(yx)+yx+yx+x = y(xy)+yx+xy+x 
yx = xy ∀ x, y, ϵR 
Hence R is Commutative ring 

 
Theorem 7: If R be a non-associative ring with unity 1 satisfying (yx)x = (xy)x  for all x,y belongs to R then R is 
commutative.                                                                                                                                                                                                 
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Proof: Given that, (yx)x = (xy)x 

Replacing x by x+1, [y(x+1)] (x+1) = [(x+1)y](x+1) ϵZ(R) 
(yx+y) (x+1) = (xy+y) (x+1) ϵZ(R) 
(yx)x+yx+yx+y) = (xy)x+xy+yx+y ϵZ(R) 
yx = xy ∀ x, y, ϵR 
Hence R is Commutative ring 
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