
International Journal of Mathematical Archive-7(5), 2016, 18-21 
 Available online through www.ijma.info ISSN 2229 – 5046 

International Journal of Mathematical Archive- 7(5), May – 2016                                                                                                                18 

 
CURVATURE RELATED PROBLEMS FROM COMBINATORIAL VIEW POINT 

 
T. VENKATESH* 

Professor of Mathematics, 
Rani Channamma University, Belgavi Karnataka State, India. 

 
A. M. SANGOGI 

Associate professor of Mathematics, 
KLEDr M.S.S.CET, Belgavi Karnataka State, India. 

 
BHASKAR A. MUNDEWADI 

Assistant Professor of Mathematics, 
S. S. Govt. First Grade College, Nargund, Dist: Gadag, Karnataka State, India, 

 
(Received On: 26-04-16; Revised & Accepted On: 16-05-16) 

 
 

ABSTRACT 
The aim of this paper, we discuss about curvature related problems from the combinatorial point of view. Some of the 
basic problems are lying to combinatorial nature of that underlying the space with geometry and PDEs to such 
evolutionary process. Later we come to know yields related problems to combinatorial and algebraic structures of 
manifolds. 
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1. INTRODUCTION 
 
In this paper we discuss how problems are related to curvature in geometry from the combinatorial point of view. We 
know that curvature is a geometric attribute if the underlying space is Euclidean then we know that the curvature of the 
space is zero. In other wards all Euclidean spaces are flat. Otherwise the curvature comes to fore geometry is all about 
curvature. If the entity is a differentiable curve then we would like to know how this curve is curved in space. For 
surfaces, it is to know how the curvature of the surface gives its geometric picture. Differential geometry developed 
over the years from Gauss, Riemannian, Weyl, Chern and many more over the times have delved upon the issue of 
curvature while studying the problems arising from analysis and topology. Gravity as the manifestation of curvature 
enabled Einstein to develop his theory of relativity by regarding space time as a continuum. Thus, curvature dominated 
investigating the problems associated with the space and methods employed to understand its nature came from the 
methods of calculus. The study in this regard also emphasized the importance of topology. Henri Poincare around 
1900’s initiated topological studies for the problems in celestial mechanics as a result algebraic topology took birth. 
The classification themes in topology under taken in 40’s was a grand success. It enable us to see that up to 
homeomorphism any compact simple surface is a copy of S2 the sphere. Further, classifying higher dimensional spaces 
based on two dimensional spaces encountered several problems. Infact, the classification of three manifolds up to 
homemorphism as three sphere S3 came to be known as Poincare conjecture. This conjecture was recently settled by 
G.Perlman by employing the methods of geometric flows (Ricci flow). Infact, these investigations carried out by 
S.S.Chern and it students like S.T.Yau generated a good deal of topological and geometrical ideas. Thurston’s 
geometrization conjecture is more significant in understanding the geometry of 3-manifolds. Infact, S.T.Yau does an 
excellent work in relating PDE’s and geometry. Some of the findings are the most note worthy developments that have 
taken place in the past few decades. Guiding many researchers to continue their study on problems arising from these 
backgrounds. Here, we combine the combinatorial nature of the underlying space and study evolution of the space 
itself. We are drawn to relate geometry and PDEs to such evolutionary processes. In the next two sections we give 
some basic terminologies associated with the combinatorial and algebraic structures of the underlying manifolds (or 
space). Subsequent sections deal with our work.  
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2. COMBINATORIAL AND ALGEBRAIC STRUCTURES 
 
Combinatorial structures arise quite naturally. For instance in the decomposition of an entity into components, 
factorization of a positive integer into its factors, permutations on n symbol, mappings from a finite set into itself, 
polynomials over a finite field, partition of integers, sets and graphs some of the well known examples . In all these 
aspects what we notice is the components related to their decompositions. In case of cycle decomposition of 
permutations  cycle lengths, partition of an integer the size of each factor, like wise the other discrete structure 
decompositions and the size of their parts provide information about the entity under consideration which are by and 
large are similar in nature so far as their structural properties are concerned. what really matters us is the underlying 
process associated with such parts when picked randomly. For, geometry we are definitely concerned about the 
geometric attributes  in particular the curvature of the manifold. The decomposition is only to facilitate the nature of the 
problem associated with the flow, [7]. We intend to develop a model which arise when one selects at random a 
combinatorial structure of size n. We assume that such a selection is equally likely. By this we mean, if the set is 

decomposed into n parts then picking any one from these parts has probability
1
n

.  The most and well know model is to 

pick and integer uniformly from {1, 2……,n}. The models thus arising from these probabilistic background lead to a 
stochastic process (random process) that count the number of components of all conceivable size. Moreover, it also 
leads to investigate the common features of these processes,   [1], [3], [4], [6]. 
 
Before we give some examples we notice the following general description of a combinatorial structure.  
 
Suppose that the combinatorial structure decomposes into components. Let 𝑝𝑝(𝑛𝑛) denote the number of instance of size 
n. For a given instance of size n, the obvious description is number of its components. If K is the number of 
components then we would like to know how many of these K components are sizes one, two etc.  
 
Finally, it boils down to assume that for n, n fixed to count the instances 𝑝𝑝(𝑛𝑛) of size n. This is same as, picking up an 
instance at random from the uniform distribution over all 𝑝𝑝(𝑛𝑛) possibiabilities and ask for the probability of each 
component structure. 
 
In this random formulation the counts of components size become random variables. By writing 𝐶𝐶𝑖𝑖 𝑜𝑜𝑜𝑜 𝐶𝐶𝑖𝑖(𝑛𝑛) for the 
number of components of size i then (𝑐𝑐1(𝑛𝑛), … , 𝑐𝑐𝑛𝑛(𝑛𝑛)) gives the entire component size counting process and       
𝐾𝐾(𝑛𝑛) = ∑ 𝑐𝑐𝑖𝑖(𝑛𝑛)𝑛𝑛

𝑖𝑖=1 , the total  components of the random variables where {𝑐𝑐1(𝑛𝑛), … , 𝑐𝑐𝑛𝑛(𝑛𝑛)} are dependent and with 
weighted sums,  

𝑐𝑐1(𝑛𝑛) + 2𝑐𝑐2(𝑛𝑛) … +𝑛𝑛𝑛𝑛𝑛𝑛(𝑛𝑛) = 𝑛𝑛. 
 
Following two examples would give us enough ideas about the above descriptions.  

1. Integer partitions [5,8]. Partition the integer n as  𝑛𝑛 = 𝑙𝑙1 + 𝑙𝑙2 + ⋯+𝑙𝑙𝑘𝑘  with 𝑙𝑙1 ≥ 𝑙𝑙2 ≥ ⋯ ≥ 𝑙𝑙𝑘𝑘 ≥ 1. For integer 
partitions, 𝑝𝑝(𝑛𝑛) is the traditional notation for the number of such partitions, and ∑𝑝𝑝(𝑛𝑛)𝑥𝑥𝑛𝑛 = ∏ (1 − 𝑥𝑥𝑖𝑖)−1

𝑖𝑖≥1 . 
We write 𝑐𝑐𝑖𝑖(𝑛𝑛) for the number of parts which are i, and the component counting structure (𝑐𝑐1(𝑛𝑛), … , 𝑐𝑐𝑛𝑛(𝑛𝑛)) is 
an encoding of the partition. An instance for 𝑛𝑛 = 10 is 10 = 5 + 3 + 1 + 1.  
In this instance 𝐶𝐶1(10) = 2, 𝐶𝐶3(10) = 𝐶𝐶5(10) = 1, the other 𝐶𝐶𝑖𝑖(𝑛𝑛) being zero. 

2. Permutations [9,2]. Consider the cycle decomposition of a permutation of the set {1,2, … , 𝑛𝑛} 𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝐶𝐶𝑖𝑖(𝑛𝑛) being 
the number of cycles of length i. The total number of instances of size n is 𝑝𝑝(𝑛𝑛) = 𝑛𝑛!, and 𝐶𝐶1(𝑛𝑛) is the number 
of fixed points.An instance for 𝑛𝑛 = 10 is the function 𝜋𝜋 with 𝜋𝜋(1) = 9, 𝜋𝜋(2) = 1, 𝜋𝜋(3) = 7,   𝜋𝜋(4) = 4,
𝜋𝜋(5) = 3, 𝜋𝜋(6) = 2, 𝜋𝜋(7) = 5, 𝜋𝜋(8) = 8, 𝜋𝜋(9) = 10, 𝜋𝜋(10) = 6,      
whose cycle decomposition is 𝜋𝜋 = (1 9 10 6 2 )( 3 7 5)(4)(8).  
In instance 𝐶𝐶1(10) = 2, 𝐶𝐶3(10) = 𝐶𝐶5(10) = 1. 
 

3. GRAPHS AS CELL COMPLEXES 
 

In this section we are giving a cell complex exposition  to a graph. Let 𝐺𝐺 = (𝑉𝑉, 𝐸𝐸,𝑊𝑊),  be a graph we shall interpret it 
as a cell complex and describe the combinatorial structure in order to do this we need to know some algebraic basics.  

 
Let Г be a simple closed curve in R2 then it is homeomorphic to S1. A well known theorem in topology states that any 
point not lying on the boundary of the curve is either an interior point of the curve or an exterior point of the curve. 
This subtle difference divides the plane into two components one component will contain all the interior points of it and 
the other component will contain points exterior to it.  Thus, Г divides R2 into two components R2 –Г and Г interior. 

 
Further, we can map Г homeomorphicaly onto S1. 
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In fact this is a very important observation. Also, this is an important theorem in topology. Because, Г is not convex 
where as S1 is convex. 

 
An operation called convex hull operation on Г denoted conv(Г) (and read as convex hull of Г) makes it convex. The 
algebraic notions creep into the realm of topology in this fashion. Few definitions are in order. 

 
3.1 Definition: A set 𝑆𝑆 = {𝑣𝑣0,………𝑣𝑣𝑛𝑛} of vector in Rn i.e., each 𝑣𝑣𝑖𝑖  є Rn, as an N-tuple is said to be general position if 
the set {𝑣𝑣0 − 𝑣𝑣𝑛𝑛 , 𝑣𝑣1 − 𝑣𝑣𝑛𝑛 , … . , 𝑣𝑣𝑛𝑛−1 − 𝑣𝑣𝑛𝑛} is linearly independent   
 

i.e., ∑ 𝑡𝑡𝑖𝑖(𝑣𝑣𝑖𝑖−1 − 𝑣𝑣𝑛𝑛) = 0𝑛𝑛
𝑖𝑖=1 , 𝑡𝑡𝑖𝑖 = 0 𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖 = 1,2, … … … , 𝑛𝑛.                   

 
A set 𝑆𝑆 = {𝑣𝑣0, … . . , 𝑣𝑣𝑛𝑛} of vectors in general position is said to be a n-simplex. The nth constitutes the dimension of the 
simplex. An n-simplex determines a subset of  Rn. 

 
If 𝐸𝐸⊂ Rn, can we relate E as a subset (just as we saw in case of Г) with this idea and there by connect some interesting 
problems underlying the geometry of the space. This can be done and in fact that is what we are going to do now.  
 
The n-simplex determines a subset of Rn and is  given  by  

∆𝑛𝑛[𝑆𝑆] = {𝑡𝑡𝑜𝑜𝑣𝑣0 + ⋯+ 𝑡𝑡𝑛𝑛𝑣𝑣𝑛𝑛є Rn /𝑡𝑡𝑖𝑖 ≥ 0, ∑ 𝑡𝑡𝑖𝑖 = 1𝑛𝑛
𝑖𝑖=1 } 

 
This is also a convex hull ({𝑣𝑣0, … … , 𝑣𝑣𝑛𝑛}) . If the set  𝑆𝑆 = {𝑣𝑣0, … … , 𝑣𝑣𝑛𝑛}   of vector is not in general position then we say 
that the n-simplex determined by S is degenerate. 
 
A triple {𝑣𝑣0, 𝑣𝑣1, 𝑣𝑣2} is in general position, if the points are not collinear.  
 
A 0-simplex ∆0[{𝑣𝑣0}] is simply the point 𝑣𝑣0 є Rn. 
 
A 1-simplex {𝑣𝑣0, 𝑣𝑣1} determine the line segment ∆1[{𝑣𝑣0 , 𝑣𝑣1}]. 

 
A 2-simplex ∆2[{𝑣𝑣0 , 𝑣𝑣1, 𝑣𝑣2}] determine a triangle (with its interior) and a 3-simplex ∆3[{𝑣𝑣0 , 𝑣𝑣1, 𝑣𝑣2, 𝑣𝑣3}] determines a 
tetrahedron and in general  ∆𝑛𝑛[{𝑣𝑣0 , … , 𝑣𝑣𝑛𝑛}], ∆𝑛𝑛= ∆𝑛𝑛[𝑆𝑆] is the n-simplex, S here means the vertex set. When the vertex 
is repeated, the simplex is degenerate. Degenerate simplices are important when one studies mappings between 
simplicial complexes (we define later in our discussion). In what follows the vertices play important rule in the 
combinatories of sets the topological properties associated with the simplicials from a core theme of algebraic topology 
basically developed to compute the topological invariant which is not in the scope of our study.  We shall study the n-
simplicial complex ∆𝑛𝑛[𝑆𝑆]  as subset of Rn, for its characterization. A point 𝑝𝑝 ∈ ∆𝑛𝑛  may be uniquely specified by the 
co-efficient (t0, t1,…….,tn). This can be noticed easily for, 

𝑡𝑡𝑜𝑜𝑣𝑣0 + 𝑡𝑡1𝑣𝑣1 + ⋯+ 𝑡𝑡𝑛𝑛𝑣𝑣𝑛𝑛 =  𝑡𝑡′ 𝑜𝑜𝑣𝑣0 + 𝑡𝑡′1𝑣𝑣1 + ⋯+ 𝑡𝑡′𝑛𝑛𝑣𝑣𝑛𝑛  
 

(𝑡𝑡𝑜𝑜 − 𝑡𝑡′0)𝑣𝑣0 + (𝑡𝑡1 − 𝑡𝑡′1)𝑣𝑣1 + ⋯+ (𝑡𝑡𝑛𝑛 − 𝑡𝑡′𝑛𝑛)𝑣𝑣𝑛𝑛 = 0. 
 

Since, ∑
=

=
n

i
it

0
1 and∑

=

=
n

i
it

0

' 1  (by definition)   

,0)(
0

'∑
=

=−
n

i
ii tt  would mean  𝑡𝑡𝑖𝑖 = 𝑡𝑡′𝑖𝑖   for each  𝑖𝑖 = 0,1, … … . . , 𝑛𝑛 

Uniqueness follows.                                         
 
In particular, 

(𝑡𝑡𝑜𝑜 − 𝑡𝑡′0)𝑣𝑣0 + (𝑡𝑡1 − 𝑡𝑡′1)𝑣𝑣1 + ⋯+ (𝑡𝑡𝑛𝑛 − 𝑡𝑡′𝑛𝑛)𝑣𝑣𝑛𝑛 = 0. 
 
(𝑡𝑡𝑜𝑜 − 𝑡𝑡′0)(𝑣𝑣0 − 𝑣𝑣1) + ⋯+ (𝑡𝑡𝑛𝑛 − 𝑡𝑡′𝑛𝑛)(𝑣𝑣0 − 𝑣𝑣𝑛𝑛) = 0. 

where {𝑣𝑣0, … … , 𝑣𝑣𝑛𝑛} are linearly independent. 
 
So the co-efficient are uniquely determine by p. the co-efficient (𝑡𝑡0, 𝑡𝑡1, … … . , 𝑡𝑡𝑛𝑛) is called the barycentric co-ordinates 
of  𝑝𝑝 ∈ ∆𝑛𝑛 . 
 
Remark: Although   ∆𝑛𝑛[{𝑣𝑣0 , … , 𝑣𝑣𝑛𝑛}] is a subspace of Rn as a topological space it is determined by the barycentric co-
ordinates. 
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3.2 Proposition: Let  ∆𝑛𝑛  denote the subspace of Rn+1 given by  

∆𝑛𝑛[𝑆𝑆] = {𝑡𝑡𝑜𝑜 , … , 𝑡𝑡𝑛𝑛є Rn+1 / 𝑡𝑡𝑜𝑜 + ⋯+ 𝑡𝑡𝑛𝑛 = 1, 𝑡𝑡𝑖𝑖 ≥ 0}. 
 
If 𝑆𝑆 = {𝑣𝑣0, … … , 𝑣𝑣𝑛𝑛} is a set of vectors in general position in Rn, then ∆𝑛𝑛[𝑆𝑆] is homomorphic to ∆𝑛𝑛 . 
 
Note that the topological properties of ∆𝑛𝑛   are shared with the ∆𝑛𝑛[𝑆𝑆], where ∆𝑛𝑛[𝑆𝑆] is any other simplex. 
 
For example: As a subspace of Rn, ∆𝑛𝑛[𝑆𝑆] is compact because ∆𝑛𝑛  is closed and bounded in Rn+1. 
 
3.3 Proposition: The point 𝑝𝑝 ∈ ∆𝑛𝑛[𝑆𝑆] with barycentric coordinates and satisfying 𝑡𝑡𝑖𝑖 > 0 for all i from an open subset 
of ∆𝑛𝑛[𝑠𝑠] (as a subspace of Rn), p is in the boundary of  ∆𝑛𝑛[𝑠𝑠] if and only if 𝑡𝑡𝑖𝑖 = 0, for some i. 
 
Proof: Let  ∆𝑛𝑛∈ Rn then the subset of points with barycentric co-ordinates ti > 0 is the intersection of the open sets. 

𝑈𝑈𝑖𝑖 = {𝑡𝑡𝑜𝑜 , … , 𝑡𝑡𝑛𝑛є Rn+1 /𝑡𝑡𝑖𝑖 ≥ 0} with ∆𝑛𝑛 .  
 
Therefore, it is an open subset of ∆𝑛𝑛 . Its homomorphic image in ∆𝑛𝑛[𝑆𝑆] is also open in ∆𝑛𝑛[𝑠𝑠]. 
 
We can extended the mapping 

φ ∶ ∆→ ∆𝑛𝑛[𝑆𝑆]   to the subset ∏ and Rn+1,  
where ∏  = {𝑡𝑡𝑜𝑜 , … , 𝑡𝑡𝑛𝑛є Rn+1 /𝑡𝑡𝑜𝑜 + ⋯+ 𝑡𝑡𝑛𝑛 = 1} 
 
The higher plane containing ∆𝑛𝑛 in Rn+1. The mapping φ�:∏ → Rn defined by  φ�(𝑡𝑡𝑜𝑜 , … , 𝑡𝑡𝑛𝑛) =  𝑡𝑡𝑜𝑜𝑣𝑣0 + 𝑡𝑡1𝑣𝑣1 + ⋯+ 𝑡𝑡𝑛𝑛𝑣𝑣𝑛𝑛  
takes point on the boundary of  ∆𝑛𝑛  to point on the boundary of ∆𝑛𝑛.The point on the boundary have some 𝑡𝑡𝑖𝑖 =  0. Since 
openset in Rn+1 containing such points must continuous point with 𝑡𝑡𝑖𝑖  >  0 which map by  φ� to points outside ∆𝑛𝑛[𝑆𝑆]. 
 
Conversely, if a point p is on a boundary of ∆𝑛𝑛[𝑆𝑆]. Then any point set containing p would intersect with complimentary 
∆𝑛𝑛[𝑆𝑆] and thus point in the image of ∏ under fee ∆ with negative co-ordinate. This implies some 𝑡𝑡𝑗𝑗 = 0. 
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