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ABSTRACT

We studied the effects of magnetic field and heat transfer on oscillatory flow of Jeffrey fluid in a circular tube. The
expressions for the velocity field and temperature field are obtained analytically. It is observed that, the axial velocity
increases with increasing ;, Gr and , while it decreases with increasing M, Pr, Re and . The temperature field
decreases with increasing Pr.

1. INTRODUCTION

The study of oscillatory flow of a viscous fluid in cylindrical tubes has received the attention of many researchers as
they play an important role in understanding the important physiological problems, namely the blood flow in
arteriosclerotic blood vessel. Womersley [101] has investigated the oscillating flow of thin walled elastic tube. Detailed
measurements of the oscillating velocity profiles were made by Linford and Ryan [54]. Unsteady and oscillatory flow
of viscous fluids in locally constricted, rigid, axisymmetric tubes at low Reynolds number has been studied by
Ramachandra Rao and Devanathan [71], Hall [41] and Schneck and Ostrach [83]. Haldar [40] have considered the
oscillatory flow of a blood through an artery with a mild constriction. Several other workers, Misra and Singh [56],
Ogulu and Alabraba [62], Tay and A Ogulu [97] and Elshahed [31], to mention but a few, have in one way or the other
modeled and studied the flow of blood through a rigid tube under the influence of pulsatile pressure gradient.

Many researchers have studied blood flow in the artery by considering blood as either Newtonian or non-Newtonian
fluids, since blood is a suspension of red cells in plasma; it behaves as a non-Newtonian fluid at low shear rate. Barnes
et al. [13] have studied the behavior of no-Newtonian fluid flow through a straight rigid tube of circular cross section
under the action of sinusoidally oscillating pressure gradient about a nonzero mean. Chaturani and Upadhya [21] have
developed a method for the study of the pulsatile flow of couple stress fluid through circular tubes. The Poiseuille flow
of couple stress fluid has been critically examined by Chaturani and Rathod [22]. Moreover, the Jeffrey model is
relatively simpler linear model using time derivatives instead of convected derivatives for example the Oldroyd-B
model does, it represents rheology different from the Newtonian [17]. None of these studies considered the effect of
body temperature on the blood flow -prominent during deep heat muscle treatment.

The magnetohydrodynamic (MHD) flow between parallel plates is a classical problem that occurs in MHD power
generators, MHD pumps, accelerators, aerodynamic heating, electrostatic precipitation, polymer technology, petroleum
industry, purification of crude oil and fluid droplets and sprays. Especially the flow of non-Newtonian fluids in
channels is encountered in various engineering applications. For example, injection molding of plastic parts involves
the flow of polymers inside channels. During the last few years the industrial importance of non-Newtonian fluids is
widely known. Such fluids in the presence of a magnetic field have applications in the electromagnetic propulsion, the
flow of nuclear fuel slurries and the flows of liquid state metals and alloys. Sarparkaya [83] have presented the first
study for MHD Bingham plastic and power law fluids. Effect of magnetic field on pulsatile flow of blood in a porous
channel was investigated by Bhuyan and Hazarika [16]. Hayat et al. [44] have studied the Hall effects on the unsteady
hydromagnetic oscillatory flow of a second grade fluid in a channel. Couette and Poiseuille flows of an Oldroyd
6-constant fluid with magnetic field in a channel was investigated by Hayat et al. [45]. Hayat et al. [46] have studied
the influence of heat transfer in an MHD second grade fluid film over- an unsteady stretching sheet. Vasudev et al. [99]
have investigated the influence of magnetic field and heat transfer on peristaltic flow of Jeffrey fluid through a porous
medium in an asymmetric channel. Vasudev et al. [100] have studied the MHD peristaltic flow of a Newtonian fluid
through a porous medium in an asymmetric vertical channel with heat transfer. Unsteady flow of a Jeffrey fluid in an
elastic tube with a stenosis have studied by Sreenadh Sridharamalle, Devaki Pulluri, Divakar Reddy and Krishnaiah
et al. [29]. effect of jeffery fluid on heat and mass transfer past a vertical porous plate with soret and variable thermal
conductivity et al. [29] have studied. Jeffrey Fluid Flow through Porous Medium in the Presence of Magnetic Field in
Narrow Tubes santosh nallapu and G. Radhakrishnamacharya et al. [82] have studied.
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In view of these, we studied the MHD and Heat transfer Effects on an oscillatory flow of Jeffrey fluid in a circular
tube. The expressions for the velocity field and temperature field are obtained analytically. The effects of various
pertinent parameters on the velocity field and temperature field studied in detail with the help of graphs.

2. MATHEMATICAL FORMULATION

We consider an oscillatory flow of a Jeffrey fluid through in a heated uniform cylindrical tube of constant radius R . A
uniform magnetic field By is applied in the transverse direction to the flow. The wall of the tube is maintained at a
temperature T,. We choose the cylindrical coordinates (r,6,z) such that r=0 is the axis of symmetry. The flow is
considered as axially symmetric and fully developed. The geometry of the flow is shown in Fig. 1.

The constitute equation of S for Jeffrey fluid is

S = m ¥ + 429) (2.1)

where p is the dynamic viscosity, A, is the ratio of relaxation to retardation times, X, is the retardation time, y is the
shear rate and dots over the quantities denote differentiation with time.

The equations governing the flow are given by
ow op 10(rS,) ,

— = GBAW+ pgB(T -T 2.2
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where pis the fluid density, uis the fluid viscosity, p is the pressure, W is the velocity component in Z —direction, g

(23)

is the acceleration due to gravity, o is the electrical conductivity of the fluid, ﬁ coefficient of thermal expansion, T is

the temperature, K is the thermal conductivity and C, is the specific heat at constant pressure.
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Fig. 1: The Physical Model

The appropriate boundary conditions are

w=0,T =T, at r=R
ow
—=0,T=T, at =0 2.4
or ' @4
Introducing the following non-dimensional variables
r —owt R’ R
Fol g LgW o PR R g X
R R R U W, W,
P= p_pW,H—T L Pr_ﬂ”,Re='0W0
H T,-T, Ko H
Into the Egs. (2.2) — (2.4), we get (after dropping bars)
w . dp 1L [0°w | 1dw 2 Gr
Re at 0z 1+ [6r2 ] Mw + Re 0 (25)
ool 20, 100 o
ot or’ ror

is the Grashoff number

2
where Pr is the Prandtl number, M = RBO\/Eis Hartmann number, Gr = PILR (TW Tw)
H Wolt
and Re is the Reynolds number.
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The corresponding non-dimensional boundary conditions are

w=0, T=1 at r=1

ow _
—=0T=0 at r=0 2.7)

3. SOLUTION

It is fairly unanimous that, the pumping action of the heart results in a pulsatile blood flow so that we can represent the
pressure gradient (pressure in the left ventricle) as

_dp_ e
= . (3.1)
4z = Po€
where [, is a real constant and @ is the frequency of the oscillation and flow variables expresses as
0(y,t)=06,(r)e” (3.2)
w(y,t)=w,(r)e (3.3)

Substituting Egs. (3.1) — (3.2) into Egs. (2.5) and (2.6) and solving the resultant equations subject to the boundary
conditions in (2.7), we obtain

1,(Qr
6, = L(0r) (3.4)
()
W, _or (12”1)2 ['O(ﬂlr) — 'O(Qr)} APy (1+2, ){1 Io(ﬂlr)} (3.5)
Re (s +)| 1,(8) 1o(h) | A l,(5,)
Here Q° = iwPrReand 4 =(M* +ioRe)(1+4,)
In Egs. (3.4) and (3.5), IO(X) is the modified Bessel function of first kind of order zero.
Hence the temperature distribution and the axial velocity are given by
1,(Qr) .
0: 0( ) iwt (36)
()
_ (Gr (L+4) [1(8r) 1o(Qr) | Ap, lo(5r) ) ot
w= L_ L - + 21+ 4| 1- e (37)
Re(f+02)| 1,(8) 1(Q) ] A 1,(8)
in which m, =N’ —iwpeand m,=+vM’ +ioRe.
Solving equations (3.4) and (3.5) using the boundary conditions (3.6) and (3.7), we obtain
sinhm,y sinmyy
u —Acoshm,y+C——=+ A+ B—— 3.8
oY) = 2V T Sinn m, sinm, 38)
sinmy
d O,y =—"2= 3.9
o o) sinm 39)
where A= /1(11/11) ,B= Gr2(1+ /121) and C = (Acosh m,—A— B)
m? (m?+m;)
Therefore, the fluid velocity and temperature are given as
u(y,t)= L Acosh m2y+C Inhm, y +A+ Bsmmy\ ot (3.10)
sinhm, sinm,
sinmy .
and  O(y,t)= SILY ot (3.11)

sinm
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The rate of heat transfer coefficient in terms of Nusselt number Nu at the plate y=0 of the channel is given by

The rate of heat transfer coefficient in terms of Nusselt number on the boundary of the is
00 QlL(Q) .
= = Le'aﬁ (3.12)
orl,  1,(Q)
When M — 0, the Eq. (3.7) becomes
L_fer (ea) [1(8n)_1(ern)], 2p,
Re (B+2) L(B) Q)| A
Here 3 =iwRe(1+ 4,)

Nu

L]
(5]

et (3.13)

(1+4,)]1-

4. DISCUSSION OF THE RESULTS
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Fig. 2: Effects of material parameter 2, onwforM=0.1,p=1, ®=10,A=05,Pr=2,Gr=1,Re=1andt=0.1

Above Fig. 2 depicts the effects of material parameter 4,on Wfor Da=0.1, p=1 @=10, A=05Pr=2,Gr=,Re=1

and t =0.1. Itis observed that, the axial velocity w increases at the axis of tube with increasing material parameter
Ay
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Fig. 3: Effects of Hartman number Monw for 4, =0.3,p=1, ®=10,A=0.5Pr=2,Gr=1,Re=1andt=0.1

In order to see the effects of Hartmann number M on wfor 2, =0.3, p=1,w=10, 4=0.5Pr=2,Gr =1,Re=1and

t = 0.1 we plotted Above Fig. 3. It is found that, the axial velocity W decreases with an increase in Hartmann number
M . Further, it is found that the velocity is more for non-conducting (magnetic) (i.e., M — 0) Jeffrey fluid than that
of conducting Jeffery fluid.
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Fig. 4: Effects of Hartman number Pr onw for 2, =0.3,p=1, ®=10,A=05,M=1,Gr=1,Re=1andt=0.1

Above Fig. 4 shows the effects of Prandtl number Pron wfor 4 =0.3,p=1,0=10,4=05 Da=01,Gr=1,Re=1
and t = 0.1. Itis noted that, an increase in the Prandtl number Pr decreases the axial velocity W.
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Fig. 5: Effects of Grashof number Gronw for 1, =0.3,p=1, ®=10,A=05Pr=2,M=1,Re=1andt=0.1

Above Fig. 5 illustates the effects of Grashof number Gron Wfor 4 =0.3,p=1=10, 1=05Pr=2,Da=01Gr=1Re=1
and t = 0.1. Itisobserved that, the axial velocity W increases with an increase in Grashof number Gr .
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Fig. 6: Effects of Reynolds number Reonw for 4, =0.3,p=1, ®=10,A=05Pr=2,M=1,Gr=1andt=0.1
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Above Fig. 6 shows the effects of Reynolds number Re on Wfor 4, =0.3,p=1,0=10, 1=05Pr=2,Da=0.1Gr=1Re=1

and t = 0.1. It is found that, the axial velocity W decreases on increasing Reynolds number Re
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Fig. 7: Effectsof fonwfor 4=03,M=1,Pr=2,Gr=1,P=10=10,Re=1andt=0.1.

In order to see the effects of A on w for A1 = 0.3, Da = 0.1, Pr-2, Gr-1, p=1, ®=10, Re-1 and t=0.1 we plotted Fig. 7. It

is observed that, the axial velocity increases with increasing A.
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Fig. 8: Effects of wonw for 1,=03,M=1,Pr=2,Gr=1,P=1,A=05 Re=1andt=0.1.

Fig. 8 shows the effects of wonw for ,=0.3, Da=0.1,Pr=2,Gr=1,p=1,A2 =05, Re=1and t = 0.1 is shown in
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Fig. 9: Effects of Pradtl number Pron 6 for ® =10, Re=1andt=0.1.
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Above Fig. 9. Itis observed that, the axial velocity decreases on increasing .
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Fig. 10: Effects of Reynolds number Re on 8 for @ =10, Pr=2andt=0.1.

The effects of Reynolds number Re on & for w= 10, Pr =2 and t = 0.1 is deoicted in Above Fig. 10. It is found that,
the temperature & decreases with increasing Reynolds number Re.
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Fig. 11: Effects of won #forRe=1,Pr=2andt=0.1.

Above Fig. 11 shows the effects of w on 6 for Pr=2, Re =1 and t = 0.1. It is found that, the temperature & decreases
with increasing Prandtl number o.

Table — 1: Effect of Prandtl number Pr on Nu for ® =10, Re=1andt=0.1

Pr Nu

0.7 | 0.3219
1 ]0.3823
2 |0.4289

Above Table-1 depicts the effect of Prandtl number Pr on Nu for =10, Re =1 and t= 0.1. It is observed that, the Nu

increases with increasing Pr .

Table — 2: Effect of Reynolds number Re on Nu for ®=10, Pr=2and t=0.1

© 2016, IJMA. All Rights Reserved

Re Nu

1 | 0.4289
2 | 0.4602
3 | 0.4755
4 |0.4844
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Above Table-2 illustrates the effect of Reynolds number Re on Nu for o = 10, Pr=2 and t = 0.1. It is noted that, the Nu
increases with increasing Re.

Table — 3: Effect of won NuforPr=1andt=0.1

Re Nu

0 0

5 | 0.7384
10 | 0.4289
20 | -0.4472

Above Table-3shows the effect of co on Nu for Pr - 2, Re = 1 and t = 0.1. It is found that, the Nu oscillates with
increasing ®.

Table — 4: Effect of t on Nu for o =10, Re=1and Pr=2

Re Nu

0 | 0.9225
0.5 | 0.3408
1 | -0.7291
2 | 0.3011

Above Table-4 depicts the effect of t on Nu for = 10, Re =1 and Pr = 2. It is observed that, the Nu oscillates with

time t.

5. CONCLUSIONS

In this chapter, we studied the effects of magnetic field and heat transfer on oscillatory flow of Jeffrey fluid in a circular
tube. The expressions for the velocity field and temperature field are obtained analytically. It is observed that, the axial
velocity increases with increasing Ay, Grand A, while it decreases with increasing M, Pr, Re and L. The temperature
field decreases with increasing Pr.
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