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ABSTRACT
In this paper, we introduce the concept of f - derivation in an Almost Distributive Lattice (ADL) and derive some
important properties of f -derivations in ADLs.
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1. INTRODUCTION

The notion of derivation, introduced from the analytic theory, is helpful for the research of structure and property in an
algebraic system. Several authors ([5], [2]) have studied derivations in rings and near rings after Posner[9] has given the
definition of the derivation in ring theory. The concept of a derivation in lattices was introduced by G.Szasz in 1974[15].
X. L. Xin et al. [16] applied the notion of derivation in the ring theory to lattices and investigated some properties. Later,

several authors ([1], [3], [4]. [6]. [7], [8] and [18] ) have worked on this concept. The concept of an f - derivation on
lattices was introduced by Yilmaz Ceven [3] in 2008.

In 1980, the concept of an Almost Distributive Lattice (ADL) was introduced by U.M.Swamy and G.C Rao [14]. This
class of ADLs include most of the existing ring theoretic generalizations of a Boolean algebra on one hand and the class
of distributive lattices on the other.

In this paper, we introduce the concept of an f -derivation in an ADL and invistigate some important properties. Also, we
introduce the concept of an isotone f -derivation in ADLs and we establish a set of conditions which are sufficient for a

derivation on an ADL with a maximal element to become an isotone derivation. We define the fixed set F, ofan f —

derivation d in an ADL L and prove that it is an ideal of L if f is a constant function. Also, we give some
equivalent conditions under which an f -derivation on an ADL becomes an isotone f -derivation. Finally, we prove

thatif f -is a join-homomorphism, then an f -derivation on an ADL is a meet homomorphism if and only if it is a join
homomorphism.

2. PRELIMINARIES

In this section, we recollect basic concepts and important results on Almost Distributive Lattices.
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Definition 2.1 [10]: An algebra (L,v,A) oftype (2,2) is called an Almost Distributive Lattice, if it satisfies the
following axioms:

L:(avb)ac=(anc)v(bac) (RDA)
L,:aan(bvc)=(aab)v(anac) (LDA)
L,: (avb)ab=Db
L,: (avb)ra=a
L.:av(anb)=a

Definition 2.2 [10]: Let X be any non-empty set. Define, for any X,y eL, Xvy=xand XAY =Y. Then
(X,v,A) isan ADL and such an ADL, we call discrete ADL.

Through out this paper L stands for an ADL (L,v,A) unless otherwise specified.

Lemma 2.3 [10]: Forany a,b e L, we have
(i) ana=a
(i) ava=a.
(i) (@aAb)vb=Db
(iv) an(avb)=a
(v) av(bra)=a
(vi) avb=a ifandonlyif anb=D
(vil)avb=Db ifandonlyif anb=a.

Definition 2.4 [10]: For any a,b e L, we say that a is less than or equal tob and write a<b, if anb=a or,
equivalently, av b =bh.

Theorem 2.5 [10]: For any a,b,c € L, we have the following
(i) The relation < is a partial ordering on L.
(i) av(bac)=(avb)a(avc). (LDv)
(iii) (avb)va=avb=av(bva).
(iv) (avb)ac=(bva)ac.
(v) The operation A is associative in L.
(vii anbac=baanc.

Theorem 2.6 [10]: For any a,b e L, the following are equivalent.
() (anb)va=a
(i) an(bva)=a
(iii) (bra)vb=b
(iv) ba(avb)=b
(v) anb=bnaa
(vi) avb=bva
(vii) The supremum of & and b existsin L andequalsto avb
(viii) there exists X € L suchthat a<x and b <X
(iX) theinfimumof @ and b existsin L andequalsto aAb.

Definition 2.7 [10]: L is said to be associative, if the operation v in L is associative.
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Theorem 2.8 [10]: The following are equivalent.
(i) L is adistributive lattice.

(if) the poset (L, <) is directed above.

(iii)an(bva)=a, forall a,belL.

(iv) the operation v/ is commutative in L.

(V) the operation A is commutative in L.

(vi) the relation @:={(a,b) e LxL|aAb=Db} isanti-symmetric.
(vii) the relation @ defined in (vi) is a partial order on L.

Lemma 2.9 [10]: For any a,b,c,d e L ,we have the following

(i) anb<b and a<avb

(i) anb=bAa whenever a<bh.

(iii) [av (bvc)]ad =[(avb)vc]ad.

(iv) a<b impliess anc<bac, crna<cab and cva<cvh.

Definition 2.10 [10]: An element O € L is called zero elementof L, if OAa=0 forall ae L.

Lemma2.11 [10]: If L has O, thenforany a,be L ,we have the following
(i) av0=a, (i) Ova=a and (iii) an0=0.
(iv) aAnb=0 ifandonlyif bAa=0.

Anelement X € L is called maximal if, forany ye L, X<y implies X =Y.

We immediately have the following.

Lemma 2.12 [10]: For any m € L, the following are equivalent:
(1) mis maximal
(2) mvx=m forall XelL
(3) MAX=X forall XelL.

Definition 2.13 [10]: A nonempty subset | of L issaid to be an ideal if and only if it satisfies the following:
(1) a,bel =avbel

(2 ael,xeL=anaxel.

Definition 2.14 [10]: A function f :L — L issaid to be an ADL homomorphism if it satisfies the following:

1) f(xay)=fxafy,
(2 f(xvy)=fxvfy forall x,yelL.

3. f - DERIVATIONS IN ADLs
We begin this section with the following definition of a derivation in an ADL.

Definition 3.1 [13]: A function d :L — L is called a derivation on L, if d(Xx A y)=(dx A Yy)v (x Ady) for all
X,y eL.
The following definition introduces the notion of an f -derivation on ADLs.

Definition 3.2: A function d ;L — L is called an f -derivation on L if there exists a function f :L — L such
that d(XxAY) = (dx A fy) v (fx ady) forall x,yelL.

Definition 3.3: An f -derivation d on L is called an isotone f -derivation if da<db for all a,be L with
a<b.
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Example 3.4: Let d be aderivationon L .Ifwechoose f asthe identity functionon L, thenwe getthat d isan
f -derivation on L . Hence every derivationon L isan f -derivation.

Example 3.5: Every constant functionon L isan f -derivation, but not a derivation.

Example 3.6: Define d:L— L by dx=ana fx forall XeL and for some acL where f:L—>L isa
function satisfies f(xAy)= XA fy forall x,yelL.
Then d isan f -derivationon L. Inadditionif f isan increasing functionthen d is an isotone derivation also.

Lemma3.7: Let d bean f -derivationon L, then the following hold:
1. dx < fx,forany Xe L
2.1f L has0,then fO=0 implies d0=0
3. dxady<d(xay)
4. (dxvdy)ad(xay)=d(xay)

Proof:
(L) If Xel, then dx=d(xAX)=(dxA fX) v (fxAdx)=dxA fx(by Lemma 2.3). Therefore, dx < fX.

(2)1f L hasOand fO =0, thenby(1) above, d0O< f0=0.Thus, 0<d0<0 andhence d0=0.
() Let X,ye L.Wehave d(XxAYy)=(dxA fy)v(fxAdy).
Therefore, dx A fy <d(xAY).
Now, by(1) above, we get dX Ady <dx A fy <d(xAY).
(4)Forany X,yelL,
(dxvdy) Ad(xAy) = (dxvdy) A[(dx A fy) v (fx Ady)]
=[(dx v dy) Adx A fy]v[(dx v dy) A fx Ady]
= (dx A fy) v XA (dX v dy) Ady]
=(dx A fy) v (fx A dy)
=d(XAY).

Lemma 3.8: Suppose m is a maximal elementof L and d isan f -derivationon L . Then we have the following,
1. If xel, fx<dm,then dx= fx.
2. If xel, fx>dm,then dx>dm.
3. If dm=m,then fm=m and d = f .

Proof: Now,
dx=d(mAax)=(dmAa fx) v (fm A dx)
= fx vdx.
Thus fx <dx Hence d=f.

(1) Let XeL and fx<dm.
Then dx =d(mAXx)=(dmAa fxX)v(fmAadx) = fxv (fmAadx). Thus fx <dx and hence dx = fx.
(2)Let XxeL and fx>dm.Then dx =d(mA x) =(dmAa fX) v (fm A dx) = dmv (fm A dX). Thus

dx>dm.
(3)Let dm=m.Then m=dm=dma fm=mAa fm= fm.

Definition 3.9: Let d bean f -derivationon L.We define F; ={X € L/dx = fx}.

Lemma 3.10: Suppose d isan f -derivationon L where f isan increasing function. If X,yelL with y<X
and XeF, then yeF,.
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Proof: Let X,y e L with y<X and X e F,.ByLemma3.8, we have dy < fy.
Thus dy < fy < fx=dx.Now, dy=d(yAx)=(dy A fX)v(fyadx)=dyv fy = fy.Hence yeF,.

Lemma 3.11: Let d be an f -derivation on L and suppose f(XxAYy)= fxA fy for all x,yeL . Then
XAnyek, forall xeF;,yel.
Proof: Let Xe F,,yeL.Then
d(xAy)=(dxa fy) v (fxAdy)
=(fxA fy) v (fx Ady)
= fxA(fyvdy)
= fxA fy
= f(xAYy).
Hence XAYyeF,.

Lemma3.12: If d isanisotone f -derivationon L,then dx =d(xv y)A fx forall x,yelL.
Proof: Let X,y € L.Since d isanisotone f -derivationon L, dx<d(xvy)< f(xvy).

Now, dx=d[(XxvYy)aX].

[d(xv y)A IX]v[f(xvy) Adx]
[d(xVvy)A X]vdx
=[d(xvy)vdx]a fx
=d(xvy)Aa fx

Lemma 3.13: Let d be an isotone f -derivation on L. If f is a decreasing function, then Xv y e F, for all

X,yek,.

Proof: Let f be adecreasing functionand X,y € F,. We have X< XV Y. Thus
f(xvy)< fx=dx<d(xvy).Therefore, by Lemma 3.8, d(xvy)= f(xvy) andhence XvyekF,.

From Lemma 3.11 and Lemma 3.13, we get

Corollary 3.14: Let d beanisotone f -derivationon L.If f isa constantfunctionon L,then F, isan ideal
of L.

Theorem 3.15: Let m be a maximal element in L and d be an f -derivation on L. If fm=m and
f(xAy)= fxa fy forall X,y eL ,then the following are equivalent.

1. d isanisotone f -derivationon L.

2. dx=dmAa fx forall Xel.

3. d(xAay)=dxady forall x,yelL.

Proof:
(1)=>(2): Supose d isanisotone f -derivationon L and X € L. Then

dx=d(mAXx)=(dmAa fx) v (fm A dx).Thusdm A fx < dx.We have X Am <m. So that
dx A fm < (dx A fm) v (fXxAdm)=d(xAm)<dm.

Therefore, dX=dxAmAa fx=dx A fma fXx<dm A fx.Hence dx =dm A fx.
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(2= @3): Forany X,y elL,
dxAady=dma fxadma fy
=dmna fxa fy
=dma f(xAYy)
=d(xAy).
(3)=> (1) is trivial.

Theorem 3.16: Let d bean f -derivation on L . Then the following are equivalent.
1. d isisotone f -derivationon L.
2. dxad(xay)=dxady for all x,yelL.

Proof:
(1)=> (2): Suppose d isanisotone f -derivationon L and X,y eL.Then

d(xAy)=d(xAYy) ady
= [(dx A fy) v (fx Ady)] A dy
= (dxA fy ady) v (fxAady Ady)
= (dx A dy) v (fx Ady)
= (dxv fxX) Ady
= fxady
Hence dxAd(XAYy)=dxA fxAady =dxady.

()= (1): Let Xx,yelL with x<y.By (1), dxady =dxAad(XAYy)=dxadx=dx. Therefore, dx <dy
and hence d isanisotone f -derivation .

Finally, we conclude this paper with the following theorem.

Theorem 3.17: Let d bean f -derivationon L.If f(xvy)= fxv fy forall X,y e L, then the following are
equivalent.
1. d(xAy)=dxAady forall x,yelL.

2. d(xvy)=dxvdy forall x,yelL.

Proof:
(1)=(2): Let X,yeL.Then

dx =d[(xv y)AX]
=[d(xv y)A X]v[f(XxVvy) adx]
=[d(xv y)A X]V(fxAdx) v (fy AdX)]
=[d(xv y)A X]v[dxv (fy Adx)]
=[d(xv y)A fx]vdx
=[d(xvy)vdx]Aa fx

By (1), we getthat d(xv y)Adx =d[(Xv y)AX]=dx andthus d(Xvy)vdx=d(xvy).
Hence dx =d(xv y) A fX.
Again,
dy =d[(xv y) Ayl

=[d(xvy) A fy]vf(xvy) ady]

=[d(xv y) A fy]vI(fxady) v (fy Ady)]

=[d(xvy) A fy]vdy

=[d(xv y)vdy]a fy.
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Again by (1), we getthat d(Xv y)Ady =d[(xv y)Ay]=dy andthus d(Xv y)vdy=d(xvy) and hence
dy=d(xvy)a fy.

Now,

dxvdy =[d(xvy)A X]v[d(xvy)a fy]
=d(xvy)a(fxv fy)
=d(xvy)a f(xvy)
=d(xvy).

(2= (1): Let X,yelL.

Then

dxAady =d[xv(xAy)]Aad(xAy)vy]
=[dxvd (XA Y)]A[d(XAY)vdy]
=[d(xAy)vdX]A[d(xAY)vdy]
=d(xAy)v(dxAdy).

Thus d(X AYy) <dxAdy.Hence by Lemma 3.7, we get that d(X A y) =dxAdy.
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