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In this paper the concepts of soft fuzzy almost P-spaces soft weak fuzzy P-spaces and soft fuzzy P-spaces are 
introduced and studied. 
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1. INTRODUCTION 
 
Zadeh introduced the concept of fuzzy sets and fuzzy set operations in [9]. Chang in [3] introduced and developed the 
concept of fuzzy topological spaces. The concept of P-Spaces in fuzzy setting was introduced by G. Balasubramanian 
in [2]. The concept of almost GP-spaces in classical topology was introduced by M.R. Ahmadi Zand [1]. The concept 
of almost P-spaces in fuzzy setting was introduced by the authors in [4, 5, 6]. The concept of soft fuzzy topological 
space is introduced by I.U. Tiryaki [7]. In this paper, the concepts of soft fuzzy almost P-spaces and soft fuzzy P-spaces 
are introduced and studied. 
 
2. PRELIMINARIES 
 
We introduce some basic notions and results that are used in the sequel. 
 
Definition 2.1: [2] Let (𝑿𝑿, 𝝉𝝉) be a fuzzy topological space. Let 𝝀𝝀 be any fuzzy set. Then 𝝀𝝀 is said to be fuzzy 𝑮𝑮𝜹𝜹 set if 
𝝀𝝀 = ⋀ 𝝁𝝁𝒊𝒊∞

𝒊𝒊=𝟏𝟏  where each 𝝁𝝁𝒊𝒊 is fuzzy open set. The complement of a fuzzy 𝑮𝑮𝜹𝜹 set is fuzzy 𝑭𝑭𝝈𝝈. 
 
Definition 2.2: [7] Let 𝑿𝑿 be a set, 𝝁𝝁 be a fuzzy subset of 𝑿𝑿 and 𝑴𝑴 ⊆ 𝑿𝑿. Then the pair (𝝁𝝁,𝑴𝑴) will be called a soft fuzzy 
subset of 𝑿𝑿. The set of all soft fuzzy subsets of 𝑿𝑿 will be denoted by 𝑺𝑺𝑭𝑭(𝑿𝑿). 
 
Proposition 2.3: [7] If (𝝁𝝁𝒋𝒋,𝑴𝑴𝒋𝒋)𝒋𝒋∈𝑱𝑱 ∈ 𝑺𝑺𝑭𝑭(𝑿𝑿), then the family �(𝝁𝝁𝒋𝒋,𝑴𝑴𝒋𝒋)�𝒋𝒋 ∈ 𝑱𝑱� has a meet, that is greatest lower bound, 
in (𝑺𝑺𝑭𝑭(𝑿𝑿),⊑, denoted by ∏ (𝝁𝝁𝒋𝒋,𝑴𝑴𝒋𝒋)𝒋𝒋∈𝑱𝑱  such that ∏ (𝝁𝝁𝒋𝒋,𝑴𝑴𝒋𝒋)𝒋𝒋∈𝑱𝑱 = (𝝁𝝁,𝑴𝑴) where 𝝁𝝁(𝒙𝒙) = ⋀ 𝝁𝝁𝒋𝒋(𝒙𝒙)𝒋𝒋∈𝑱𝑱 ,∀𝒙𝒙, 𝑴𝑴 = ⋂ 𝑀𝑀𝒋𝒋𝒋𝒋∈𝑱𝑱 . 
 
Definition 2.4: [7] Let 𝑿𝑿 be a non-empty set and the soft fuzzy sets 𝑨𝑨 and 𝑩𝑩 in the form, 

𝑨𝑨 = {(𝝁𝝁,𝑴𝑴)|𝝁𝝁(𝒙𝒙)𝝐𝝐𝑰𝑰𝑿𝑿,∀𝒙𝒙 ∈ 𝑿𝑿,𝑴𝑴 ⊆ 𝑿𝑿} 
𝑩𝑩 = {(𝝀𝝀,𝑵𝑵)|𝝀𝝀(𝒙𝒙)𝝐𝝐𝑰𝑰𝑿𝑿,∀𝒙𝒙 ∈ 𝑿𝑿,𝑵𝑵 ⊆ 𝑿𝑿} 

Then,  
(i)   𝑨𝑨 ⊆ 𝑩𝑩 ⇔  𝝁𝝁(𝒙𝒙) ≤ 𝝀𝝀(𝒙𝒙),∀𝒙𝒙 ∈ 𝑿𝑿,𝑴𝑴 ⊆ 𝑵𝑵 . 
(ii)  𝑨𝑨 = 𝑩𝑩 ⇔  𝝁𝝁(𝒙𝒙) = 𝝀𝝀(𝒙𝒙),∀𝒙𝒙 ∈ 𝑿𝑿,𝑴𝑴 = 𝑵𝑵 . 
(iii) 𝑨𝑨′ ⟺ 𝟏𝟏 − 𝝁𝝁(𝒙𝒙),∀𝒙𝒙 ∈ 𝑿𝑿,𝑿𝑿 ∖𝑴𝑴. 
(iv) 𝑨𝑨 ⊓ 𝑩𝑩 ⇔  𝝁𝝁(𝒙𝒙) ∧  𝝀𝝀(𝒙𝒙),∀𝒙𝒙 ∈ 𝑿𝑿 and 𝑴𝑴∩𝑵𝑵, for all (𝝁𝝁,𝑴𝑴), (𝝀𝝀,𝑵𝑵)𝝐𝝐 𝑺𝑺𝑭𝑭(𝑿𝑿). 
(v)  𝑨𝑨 ⊔ 𝑩𝑩 ⇔  𝝁𝝁(𝒙𝒙) ∨  𝝀𝝀(𝒙𝒙),∀𝒙𝒙 ∈ 𝑿𝑿 and 𝑴𝑴∪𝑵𝑵, for all (𝝁𝝁,𝑴𝑴), (𝝀𝝀,𝑵𝑵)𝝐𝝐 𝑺𝑺𝑭𝑭(𝑿𝑿). 

 
Definition 2.5: [7] 

(𝟎𝟎,∅) = {(𝝀𝝀,𝑵𝑵)|𝝀𝝀 = 𝟎𝟎,𝑵𝑵 = ∅} 
(𝟏𝟏,𝑿𝑿) = {(𝝀𝝀,𝑵𝑵)|𝝀𝝀 = 𝟏𝟏,𝑵𝑵 = 𝑿𝑿} 
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Definition 2.6: [7] For (𝝁𝝁,𝑴𝑴) ∈ 𝑺𝑺𝑭𝑭(𝑿𝑿) the soft fuzzy set  

(𝝁𝝁,𝑴𝑴)′ = (𝟏𝟏 − 𝝁𝝁,𝑿𝑿 ∖𝑴𝑴) is called the complement of (𝝁𝝁,𝑴𝑴). 
 
Definition 2.7: [7] A subset 𝝉𝝉 ⊆ 𝑺𝑺𝑭𝑭(𝑿𝑿) is called an 𝑺𝑺𝑭𝑭-topology on 𝑿𝑿 if  
(i)   (𝟎𝟎,∅) and (𝟏𝟏,𝑿𝑿) ∈ 𝝉𝝉 
(ii)  �𝝁𝝁𝒋𝒋,𝑴𝑴𝒋𝒋� ∈ 𝝉𝝉 , 𝒋𝒋 = 𝟏𝟏,𝟐𝟐, … ,𝒏𝒏 ⇒ ∏ �𝝁𝝁𝒋𝒋,𝑴𝑴𝒋𝒋�𝒏𝒏

𝒋𝒋=𝟏𝟏 ∈ 𝝉𝝉 
(iii) �𝝁𝝁𝒋𝒋,𝑴𝑴𝒋𝒋�, 𝒋𝒋 ∈ 𝑱𝑱 ⇒ ∐ (𝝁𝝁𝒋𝒋,𝑴𝑴𝒋𝒋) ∈ 𝝉𝝉𝒋𝒋∈𝑱𝑱 . The elements of 𝝉𝝉 are called soft fuzzy open, and those of    
       𝝉𝝉′ = {(𝝁𝝁,𝑴𝑴)|(𝝁𝝁,𝑴𝑴)′ ∈ 𝝉𝝉} soft fuzzy closed.  
 
If 𝝉𝝉 is 𝑺𝑺𝑭𝑭-topology on 𝑿𝑿 we call the pair (𝑿𝑿, 𝝉𝝉) 𝑺𝑺𝑭𝑭-topological space (in short SFTS). 
 
Definition 2.8: [7] The closure of a soft fuzzy set (𝝁𝝁,𝑴𝑴) will be denoted by (𝝁𝝁,𝑴𝑴)��������. It is given by 

(𝝁𝝁,𝑴𝑴)�������� =⊓ {(𝜸𝜸,𝑵𝑵)|(𝝁𝝁,𝑴𝑴) ⊑ (𝜸𝜸,𝑵𝑵), (𝜸𝜸,𝑵𝑵) ∈ 𝝉𝝉′}. 
 
Likewise the interior is given by 

(𝝁𝝁,𝑴𝑴)∘ =⊔ {(𝜸𝜸,𝑵𝑵)|(𝜸𝜸,𝑵𝑵) ∈ 𝝉𝝉, (𝜸𝜸,𝑵𝑵) ⊑ (𝝁𝝁,𝑴𝑴)}. 
 
Note:     (𝝁𝝁,𝑴𝑴)�������� = 𝒄𝒄𝒄𝒄(𝝁𝝁,𝑴𝑴) and (𝝁𝝁,𝑴𝑴)∘ = 𝒊𝒊𝒏𝒏𝒊𝒊(𝝁𝝁,𝑴𝑴). 
 
Definition 2.9: [8] Let (𝑿𝑿, 𝝉𝝉)be a soft fuzzy topological space. Let (𝝀𝝀,𝑵𝑵) be a soft fuzzy set in (𝑿𝑿, 𝝉𝝉). Then 

(i)  (𝝀𝝀,𝑵𝑵) is said to be soft fuzzy regular open if (𝝀𝝀,𝑵𝑵) = 𝒊𝒊𝒏𝒏𝒊𝒊(𝒄𝒄𝒄𝒄(𝝀𝝀,𝑵𝑵)). 
(ii) (𝝀𝝀,𝑵𝑵) is said to be soft fuzzy regular closed if (𝝀𝝀,𝑵𝑵) = 𝒄𝒄𝒄𝒄(𝒊𝒊𝒏𝒏𝒊𝒊(𝝀𝝀,𝑵𝑵)). 

 
Definition 2.10: [5] A fuzzy topological space (𝑿𝑿, 𝝉𝝉) is called a fuzzy P-space if countable intersection of fuzzy open 
sets in (𝑿𝑿, 𝝉𝝉) is fuzzy open. That is, every non-zero fuzzy 𝑮𝑮𝜹𝜹 set in (𝑿𝑿, 𝝉𝝉), is fuzzy open in (𝑿𝑿, 𝝉𝝉). 
 
Definition 2.11: [5] A fuzzy topological space (𝑿𝑿, 𝝉𝝉) is called a fuzzy almost P-space if for every non-zero fuzzy 𝑮𝑮𝜹𝜹 
set 𝝀𝝀 in (𝑿𝑿, 𝝉𝝉), 𝒊𝒊𝒏𝒏𝒊𝒊(𝝀𝝀) ≠ 𝟎𝟎 in (𝑿𝑿, 𝝉𝝉). 
 
Definition 2.12: [5] A fuzzy topological space (𝑿𝑿, 𝝉𝝉) is called a weak fuzzy P-space if the countable intersection fuzzy 
regular open sets in (𝑿𝑿, 𝝉𝝉)is a fuzzy regular open set in (𝑿𝑿, 𝝉𝝉). 
 
3. ON SOFT FUZZY ALMOST P-SPACES 
 
Definition 3.1: A soft fuzzy topological space (𝑿𝑿, 𝝉𝝉) is called a soft fuzzy P-space if countable intersection of soft 
fuzzy open sets in (𝑿𝑿, 𝝉𝝉) is soft fuzzy open. That is, every non-zero soft fuzzy 𝑮𝑮𝜹𝜹 set in (𝑿𝑿, 𝝉𝝉) is soft fuzzy open in 
(𝑿𝑿, 𝝉𝝉). 
 
Definition 3.2: A soft fuzzy topological space (𝑿𝑿, 𝝉𝝉) is called a soft fuzzy almost P-space if for every non-zero soft 
fuzzy 𝑮𝑮𝜹𝜹 set (𝜆𝜆,𝑀𝑀) in (𝑿𝑿, 𝝉𝝉), 𝑖𝑖𝑖𝑖𝑖𝑖(𝜆𝜆,𝑀𝑀) ≠ (0,∅)in (𝑿𝑿, 𝝉𝝉). 
 
It is clear that in soft fuzzy topological spaces, we have the following implication:  

Soft fuzzy P-space ⇒ Soft fuzzy almost P-space. 
 
Proposition 3.3: If the soft fuzzy topological space (𝑿𝑿, 𝝉𝝉) is a soft P-space, then 

𝒊𝒊𝒏𝒏𝒊𝒊(⊓𝒊𝒊=𝟏𝟏
∞ (𝝁𝝁𝒊𝒊,𝑴𝑴𝒊𝒊)) =⊓𝒊𝒊=𝟏𝟏

∞ (𝝁𝝁𝒊𝒊,𝑴𝑴𝒊𝒊),  
where     (𝝁𝝁𝒊𝒊,𝑴𝑴𝒊𝒊)’s are non-zero soft fuzzy open sets in (𝑿𝑿, 𝝉𝝉). 
 
Proof: Let (𝝁𝝁𝒊𝒊,𝑴𝑴𝒊𝒊)’s be non-zero soft fuzzy open sets in a soft fuzzy P-space (𝑿𝑿, 𝝉𝝉). Then (𝝁𝝁,𝑴𝑴) =⊓𝒊𝒊=𝟏𝟏

∞ (𝝁𝝁𝒊𝒊,𝑴𝑴𝒊𝒊) is a 
soft fuzzy 𝑮𝑮𝜹𝜹 set in (𝑿𝑿, 𝝉𝝉). Since (𝑿𝑿, 𝝉𝝉) is a soft fuzzy P-space, the soft fuzzy 𝑮𝑮𝜹𝜹 set (𝝁𝝁,𝑴𝑴) is soft fuzzy open in (𝑿𝑿, 𝝉𝝉).  
 
Hence, we have 𝒊𝒊𝒏𝒏𝒊𝒊(𝝁𝝁,𝑴𝑴) = (𝝁𝝁,𝑴𝑴). This implies that 

𝒊𝒊𝒏𝒏𝒊𝒊(⊓𝒊𝒊=𝟏𝟏
∞ (𝝁𝝁𝒊𝒊,𝑴𝑴𝒊𝒊)) =⊓𝒊𝒊=𝟏𝟏

∞ (𝝁𝝁𝒊𝒊,𝑴𝑴𝒊𝒊) =⊓𝒊𝒊=𝟏𝟏
∞ 𝒊𝒊𝒏𝒏𝒊𝒊(𝝁𝝁𝒊𝒊,𝑴𝑴𝒊𝒊), and hence 

𝒊𝒊𝒏𝒏𝒊𝒊(⊓𝒊𝒊=𝟏𝟏
∞ (𝝁𝝁𝒊𝒊,𝑴𝑴𝒊𝒊)) =⊓𝒊𝒊=𝟏𝟏

∞ (𝝁𝝁𝒊𝒊,𝑴𝑴𝒊𝒊), 
where     (𝝁𝝁𝒊𝒊,𝑴𝑴𝒊𝒊)’s are non-zero soft fuzzy open sets in (𝑿𝑿, 𝝉𝝉). 
 
Proposition 3.4: If (𝝀𝝀𝒊𝒊,𝑴𝑴𝒊𝒊)’s are soft fuzzy regular closed sets in a soft fuzzy P-space (𝑿𝑿, 𝝉𝝉), then 

𝒄𝒄𝒄𝒄�⊔𝒊𝒊=𝟏𝟏
∞ (𝝀𝝀𝒊𝒊,𝑴𝑴𝒊𝒊)� =⊔𝒊𝒊=𝟏𝟏

∞ (𝝀𝝀𝒊𝒊,𝑴𝑴𝒊𝒊). 
 
Proof: Let (𝝀𝝀𝒊𝒊,𝑴𝑴𝒊𝒊)’s be soft fuzzy regular closed sets in a soft fuzzy P-space (𝑿𝑿, 𝝉𝝉). Then (𝝀𝝀𝒊𝒊,𝑴𝑴𝒊𝒊)’s are soft fuzzy 
closed sets in (𝑿𝑿, 𝝉𝝉) , which implies that (𝟏𝟏,𝑿𝑿) − (𝝀𝝀𝒊𝒊,𝑴𝑴𝒊𝒊) ’s are soft fuzzy open sets in (𝑿𝑿, 𝝉𝝉) . Then 
⊓𝒊𝒊=𝟏𝟏
∞ [(𝟏𝟏,𝑿𝑿) − (𝝀𝝀𝒊𝒊,𝑴𝑴𝒊𝒊)] is a non-zero soft fuzzy 𝑮𝑮𝜹𝜹 set in (𝑿𝑿, 𝝉𝝉).  
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Hence   𝒊𝒊𝒏𝒏𝒊𝒊(⊓𝒊𝒊=𝟏𝟏

∞ [(𝟏𝟏,𝑿𝑿) − (𝝀𝝀𝒊𝒊,𝑴𝑴𝒊𝒊)]) =⊓𝒊𝒊=𝟏𝟏
∞ [(𝟏𝟏,𝑿𝑿) − (𝝀𝝀𝒊𝒊,𝑴𝑴𝒊𝒊)].  

 
Therefore (𝟏𝟏,𝑿𝑿) − 𝒄𝒄𝒄𝒄�⊔𝒊𝒊=𝟏𝟏

∞ (𝝀𝝀𝒊𝒊,𝑴𝑴𝒊𝒊)� = (𝟏𝟏,𝑿𝑿) −⊔𝒊𝒊=𝟏𝟏
∞ (𝝀𝝀𝒊𝒊,𝑴𝑴𝒊𝒊). Hence 

 
we have 𝒄𝒄𝒄𝒄�⊔𝒊𝒊=𝟏𝟏

∞ (𝝀𝝀𝒊𝒊,𝑴𝑴𝒊𝒊)� =⊔𝒊𝒊=𝟏𝟏
∞ (𝝀𝝀𝒊𝒊,𝑴𝑴𝒊𝒊). 

 
Definition 3.5: A soft fuzzy set (𝝀𝝀,𝑴𝑴) in a soft fuzzy topological space (𝑿𝑿, 𝝉𝝉)is called a soft fuzzy nowhere dense if 
there exists no non-zero soft fuzzy open set (𝝁𝝁,𝑵𝑵) in (𝑿𝑿, 𝝉𝝉)such that (𝝁𝝁,𝑵𝑵) ⊑ 𝒄𝒄𝒄𝒄(𝝀𝝀,𝑴𝑴).  
 
That is, 𝒊𝒊𝒏𝒏𝒊𝒊�𝒄𝒄𝒄𝒄(𝝀𝝀,𝑴𝑴)� = (𝟎𝟎,∅). 
 
Definition 3.6: A soft fuzzy set (𝝀𝝀,𝑴𝑴) in a soft fuzzy topological space (𝑿𝑿, 𝝉𝝉)is called a soft fuzzy dense if there exists 
no soft fuzzy closed set (𝝁𝝁,𝑵𝑵) in (𝑿𝑿, 𝝉𝝉)such that (𝝀𝝀,𝑴𝑴) ⊑  (𝝁𝝁,𝑵𝑵) ⊑ (𝟏𝟏,𝑿𝑿). That is, 𝒄𝒄𝒄𝒄(𝝀𝝀,𝑴𝑴) = (𝟏𝟏,𝑿𝑿). 
 
Definition 3.7: A soft fuzzy topological space (𝑿𝑿, 𝝉𝝉)is called a soft fuzzy submaximal space if for each soft fuzzy set 
(𝝀𝝀,𝑴𝑴)in (𝑿𝑿, 𝝉𝝉)such that 𝒄𝒄𝒄𝒄(𝝀𝝀,𝑴𝑴) = (𝟏𝟏,𝑿𝑿), then (𝝀𝝀,𝑴𝑴) in (𝑿𝑿, 𝝉𝝉). 
 
Proposition 3.8: If each soft fuzzy 𝑮𝑮𝜹𝜹 set is a soft fuzzy dense set in a soft fuzzy submaximal space (𝑿𝑿, 𝝉𝝉), then 
(𝑿𝑿, 𝝉𝝉)is a soft fuzzy P-space. 
 
Proof: Let (𝝀𝝀,𝑴𝑴) be a soft fuzzy 𝑮𝑮𝜹𝜹 set is in a soft fuzzy submaximal space (𝑿𝑿, 𝝉𝝉). By hypothesis, (𝝀𝝀,𝑴𝑴) is a soft 
fuzzy dense set in (𝑿𝑿, 𝝉𝝉). Then (𝝀𝝀,𝑴𝑴) is a soft fuzzy open set in (𝑿𝑿, 𝝉𝝉). That is, every soft fuzzy 𝑮𝑮𝜹𝜹 set in (𝑿𝑿, 𝝉𝝉) is a 
soft fuzzy open set in (𝑿𝑿, 𝝉𝝉). Hence (𝑿𝑿, 𝝉𝝉) is a soft fuzzy P-space. 
 
Proposition 3.9: If 𝒄𝒄𝒄𝒄�𝒊𝒊𝒏𝒏𝒊𝒊(𝝀𝝀,𝑴𝑴)� = (𝟏𝟏,𝑿𝑿), for each soft fuzzy 𝑮𝑮𝜹𝜹 set (𝝀𝝀,𝑴𝑴) in a soft fuzzy submaximal space (𝑿𝑿, 𝝉𝝉), 
then (𝑿𝑿, 𝝉𝝉) is a soft fuzzy P-space. 
 
Proof: Let (𝝀𝝀,𝑴𝑴) be a soft fuzzy 𝑭𝑭𝝈𝝈 set in a soft fuzzy submaximal space (𝑿𝑿, 𝝉𝝉). Then (𝝀𝝀,𝑴𝑴)′  is a soft fuzzy 𝑮𝑮𝜹𝜹 set in 
(𝑿𝑿, 𝝉𝝉). By hypothesis,  

𝒄𝒄𝒄𝒄(𝒊𝒊𝒏𝒏𝒊𝒊(𝝀𝝀,𝑴𝑴)′) = (𝟏𝟏,𝑿𝑿). Then (𝟏𝟏,𝑿𝑿) − 𝒄𝒄𝒄𝒄(𝒊𝒊𝒏𝒏𝒊𝒊(𝝀𝝀,𝑴𝑴)′) = (𝟎𝟎,∅). 
 
This implies that (𝟏𝟏,𝑿𝑿) − [(𝟏𝟏,𝑿𝑿) − 𝒊𝒊𝒏𝒏𝒊𝒊(𝒄𝒄𝒄𝒄(𝝀𝝀,𝑴𝑴)] = (𝟎𝟎,∅).  
 
That is, 𝒊𝒊𝒏𝒏𝒊𝒊(𝒄𝒄𝒄𝒄(𝝀𝝀,𝑴𝑴)) = (𝟎𝟎,∅) and hence (𝝀𝝀,𝑴𝑴) is a soft fuzzy nowhere dense set in (𝑿𝑿, 𝝉𝝉). Thus the soft fuzzy 𝑭𝑭𝝈𝝈 
set (𝝀𝝀,𝑴𝑴) is a soft fuzzy nowhere dense set in a soft fuzzy submaximal space (𝑿𝑿, 𝝉𝝉). Since each soft fuzzy 𝑭𝑭𝝈𝝈 set is a 
soft fuzzy nowhere dense set in a soft fuzzy submaximal space (𝑿𝑿, 𝝉𝝉), then (𝑿𝑿, 𝝉𝝉) is a soft fuzzy P-space. 
 
Definition 3.10: A soft fuzzy topological space (𝑿𝑿, 𝝉𝝉) is called a soft fuzzy weak P-space if the countable intersection 
of soft fuzzy regular open sets in (𝑿𝑿, 𝝉𝝉) is a soft fuzzy regular open sets in (𝑿𝑿, 𝝉𝝉). That is, ∏ (𝝀𝝀𝒊𝒊,𝑴𝑴𝒊𝒊)∞

𝒊𝒊=𝟏𝟏  is a soft fuzzy 
regular open in (𝑿𝑿, 𝝉𝝉) , where (𝝀𝝀𝒊𝒊,𝑴𝑴𝒊𝒊)’s are soft fuzzy regular open sets in (𝑿𝑿, 𝝉𝝉) . It is clear that in soft fuzzy 
topological spaces, we have the following implication:  

Soft fuzzy P-space ⇒ Soft fuzzy weak P-space. 
 
Proposition 3.11: A soft fuzzy topological space (𝑿𝑿, 𝝉𝝉) is a soft fuzzy weak P-space iff ∐ (𝝀𝝀𝒊𝒊,𝑴𝑴𝒊𝒊)∞

𝒊𝒊=𝟏𝟏 , where (𝝀𝝀𝒊𝒊,𝑴𝑴𝒊𝒊)’s 
are soft fuzzy regular closed sets in (𝑿𝑿, 𝝉𝝉) is a soft fuzzy regular closed in (𝑿𝑿, 𝝉𝝉). 
 
Proof: Let (𝑿𝑿, 𝝉𝝉) be a soft fuzzy weak P-space. Then 𝒊𝒊𝒏𝒏𝒊𝒊�𝒄𝒄𝒄𝒄(∏ (𝝀𝝀𝒊𝒊,𝑴𝑴𝒊𝒊)∞

𝒊𝒊=𝟏𝟏 )� = ∏ (𝝀𝝀𝒊𝒊,𝑴𝑴𝒊𝒊)∞
𝒊𝒊=𝟏𝟏 , where (𝝀𝝀𝒊𝒊,𝑴𝑴𝒊𝒊)’s are soft 

fuzzy regular open sets in (𝑿𝑿, 𝝉𝝉). Now  
(𝟏𝟏,𝑿𝑿) − � 𝒊𝒊𝒏𝒏𝒊𝒊�𝒄𝒄𝒄𝒄(∏ (𝝀𝝀𝒊𝒊,𝑴𝑴𝒊𝒊)∞

𝒊𝒊=𝟏𝟏 )�� = (𝟏𝟏,𝑿𝑿) −∏ (𝝀𝝀𝒊𝒊,𝑴𝑴𝒊𝒊)∞
𝒊𝒊=𝟏𝟏 , 

implies that 
𝒄𝒄𝒄𝒄(𝒊𝒊𝒏𝒏𝒊𝒊[(∐ (𝟏𝟏,𝑿𝑿) − (𝝀𝝀𝒊𝒊,𝑴𝑴𝒊𝒊))] = ∐ [(𝟏𝟏,𝑿𝑿) −∞

𝒊𝒊=𝟏𝟏
∞
𝒊𝒊=𝟏𝟏 (𝝀𝝀𝒊𝒊,𝑴𝑴𝒊𝒊)].  

 
Since [(𝟏𝟏,𝑿𝑿) − (𝝀𝝀𝒊𝒊,𝑴𝑴𝒊𝒊)] is a soft fuzzy regular closed set in (𝑿𝑿, 𝝉𝝉). Then we have 

𝒄𝒄𝒄𝒄(𝒊𝒊𝒏𝒏𝒊𝒊(∐ [(𝟏𝟏,𝑿𝑿) −∞
𝒊𝒊=𝟏𝟏 (𝝀𝝀𝒊𝒊,𝑴𝑴𝒊𝒊)])) = ∐ [(𝟏𝟏,𝑿𝑿) −∞

𝒊𝒊=𝟏𝟏 (𝝀𝝀𝒊𝒊,𝑴𝑴𝒊𝒊)]. 
 
Hence ∐ [(𝟏𝟏,𝑿𝑿) −∞

𝒊𝒊=𝟏𝟏 (𝝀𝝀𝒊𝒊,𝑴𝑴𝒊𝒊)] is a soft fuzzy regular closed in (𝑿𝑿, 𝝉𝝉).  
 
Conversely, suppose that 𝒄𝒄𝒄𝒄(𝒊𝒊𝒏𝒏𝒊𝒊(∐ [(𝟏𝟏,𝑿𝑿) − (𝝀𝝀𝒊𝒊,𝑴𝑴𝒊𝒊])) = ∐ [(𝟏𝟏,𝑿𝑿) −∞

𝒊𝒊=𝟏𝟏
∞
𝒊𝒊=𝟏𝟏 (𝝀𝝀𝒊𝒊,𝑴𝑴𝒊𝒊)],  

 
where    [(𝟏𝟏,𝑿𝑿) − (𝝀𝝀𝒊𝒊,𝑴𝑴𝒊𝒊)] are soft fuzzy regular closed sets in (𝑿𝑿, 𝝉𝝉). Then 

(𝟏𝟏,𝑿𝑿) −  𝒄𝒄𝒄𝒄(𝒊𝒊𝒏𝒏𝒊𝒊(∐ [(𝟏𝟏,𝑿𝑿) − (𝝀𝝀𝒊𝒊,𝑴𝑴𝒊𝒊)])) = (𝟏𝟏,𝑿𝑿) −∞
𝒊𝒊=𝟏𝟏 ∐ [(𝟏𝟏,𝑿𝑿) −∞

𝒊𝒊=𝟏𝟏 (𝝀𝝀𝒊𝒊,𝑴𝑴𝒊𝒊)],  
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which implies that 

𝒊𝒊𝒏𝒏𝒊𝒊(𝒄𝒄𝒄𝒄(∏ [(𝟏𝟏,𝑿𝑿) − ((𝟏𝟏,𝑿𝑿) −∞
𝒊𝒊=𝟏𝟏 (𝝀𝝀𝒊𝒊,𝑴𝑴𝒊𝒊))])) =  ∏ �(𝟏𝟏,𝑿𝑿) − �(𝟏𝟏,𝑿𝑿) − (𝝀𝝀𝒊𝒊,𝑴𝑴𝒊𝒊)�� =∞

𝒊𝒊=𝟏𝟏 ∏ (𝝀𝝀𝒊𝒊,𝑴𝑴𝒊𝒊)∞
𝒊𝒊=𝟏𝟏 . 

 
Hence (𝑿𝑿, 𝝉𝝉) is a soft fuzzy weak P-space. 
 
Proposition 3.12: If a soft fuzzy topological space (𝑿𝑿, 𝝉𝝉) is a soft fuzzy weak P-space, then 

𝒄𝒄𝒄𝒄(∐ (𝝀𝝀𝒊𝒊,𝑴𝑴𝒊𝒊)∞
𝒊𝒊=𝟏𝟏 ) = ∐ 𝒄𝒄𝒄𝒄(𝝀𝝀𝒊𝒊,𝑴𝑴𝒊𝒊)∞

𝒊𝒊=𝟏𝟏 ,  
where     (𝝀𝝀𝒊𝒊,𝑴𝑴𝒊𝒊)’s are non-zero soft fuzzy open sets in (𝑿𝑿, 𝝉𝝉). 
 
Proof: Proof is similar to the Proposition 3.4. 
 
Definition 3.13: A soft fuzzy topological space (𝑿𝑿, 𝝉𝝉) is called a soft fuzzy almost Lindelöf space if every soft fuzzy 
open cover (𝝀𝝀𝜶𝜶,𝑴𝑴𝜶𝜶)𝜶𝜶∈∧ of (𝑿𝑿, 𝝉𝝉) there exists a countable subcover (𝝀𝝀𝒏𝒏,𝑴𝑴𝒏𝒏)𝒏𝒏∈ℕ such that ⊔𝒏𝒏∈ℕ 𝒄𝒄𝒄𝒄(𝝀𝝀𝒏𝒏,𝑴𝑴𝒏𝒏) = (𝟏𝟏,𝑿𝑿). 
 
Definition 3.14: A soft fuzzy topological space (𝑿𝑿, 𝝉𝝉) is said to be soft fuzzy weakly Lindelöf space if every soft fuzzy 
open cover (𝝀𝝀𝜶𝜶,𝑴𝑴𝜶𝜶)𝜶𝜶∈∧ of (𝑿𝑿, 𝝉𝝉) there exists a countable subcover (𝝀𝝀𝒏𝒏,𝑴𝑴𝒏𝒏)𝒏𝒏∈ℕ such that 

 𝒄𝒄𝒄𝒄(⊔𝒏𝒏∈ℕ (𝝀𝝀𝒏𝒏,𝑴𝑴𝒏𝒏)) = (𝟏𝟏,𝑿𝑿). 
 
Obviously every soft fuzzy almost Lindelöf space is a soft fuzzy weakly Lindelöf space. 
 
Proposition 3.15: If the soft fuzzy topological space (𝑿𝑿, 𝝉𝝉) is a soft fuzzy weak P-space, then every soft fuzzy weakly 
Lindelöf space is a soft fuzzy almost Lindelöf space. 
 
Proof: Let (𝑿𝑿, 𝝉𝝉) be a soft fuzzy weakly Lindelöf space and (𝝀𝝀𝜶𝜶,𝑴𝑴𝜶𝜶)𝜶𝜶∈∧ be a soft fuzzy open cover of (𝑿𝑿, 𝝉𝝉). Then 
there exists a countable subcover(𝝀𝝀𝒏𝒏,𝑴𝑴𝒏𝒏)𝒏𝒏∈ℕ such that 𝒄𝒄𝒄𝒄(⊔𝒏𝒏∈ℕ (𝝀𝝀𝒏𝒏,𝑴𝑴𝒏𝒏)) = (𝟏𝟏,𝑿𝑿).  
 
Since (𝑿𝑿, 𝝉𝝉) is a soft fuzzy weak P-space, 

𝒄𝒄𝒄𝒄(⊔𝒏𝒏∈ℕ (𝝀𝝀𝒏𝒏,𝑴𝑴𝒏𝒏)) =⊔𝒏𝒏∈ℕ 𝒄𝒄𝒄𝒄(𝝀𝝀𝒏𝒏,𝑴𝑴𝒏𝒏) 
where (𝝀𝝀𝒏𝒏,𝑴𝑴𝒏𝒏)’s are non-zero soft fuzzy open sets in (𝑿𝑿, 𝝉𝝉). Hence for the soft fuzzy open cover (𝝀𝝀𝜶𝜶,𝑴𝑴𝜶𝜶)𝜶𝜶∈∧ of 
(𝑿𝑿, 𝝉𝝉), there exists a countable subcover 

(𝝀𝝀𝒏𝒏,𝑴𝑴𝒏𝒏)𝒏𝒏∈ℕsuch that ⊔𝒏𝒏∈ℕ 𝒄𝒄𝒄𝒄(𝝀𝝀𝒏𝒏,𝑴𝑴𝒏𝒏) = (𝟏𝟏,𝑿𝑿). 
 
Hence (𝑿𝑿, 𝝉𝝉) is a soft fuzzy almost Lindelöf space. 
 
Proposition 3.16: If a soft fuzzy topological space (𝑿𝑿, 𝝉𝝉) is a soft fuzzy P-space, then (𝑿𝑿, 𝝉𝝉) is a soft fuzzy weak P-
space. 
 
Proof: Let (𝝀𝝀𝒊𝒊,𝑴𝑴𝒊𝒊)’s be soft fuzzy regular closed sets in (𝑿𝑿, 𝝉𝝉). Since (𝑿𝑿, 𝝉𝝉) is a soft fuzzy P-space, we have 

𝒄𝒄𝒄𝒄(∐ (𝝀𝝀𝒊𝒊,𝑴𝑴𝒊𝒊)∞
𝒊𝒊=𝟏𝟏 ) = ∐ (𝝀𝝀𝒊𝒊,𝑴𝑴𝒊𝒊)∞

𝒊𝒊=𝟏𝟏 . 
 
Now       𝒄𝒄𝒄𝒄(𝒊𝒊𝒏𝒏𝒊𝒊(∐ (𝝀𝝀𝒊𝒊,𝑴𝑴𝒊𝒊)∞

𝒊𝒊=𝟏𝟏 )) ⊑ 𝒄𝒄𝒄𝒄(∐ (𝝀𝝀𝒊𝒊,𝑴𝑴𝒊𝒊)∞
𝒊𝒊=𝟏𝟏 ) = ∐ (𝝀𝝀𝒊𝒊,𝑴𝑴𝒊𝒊)∞

𝒊𝒊=𝟏𝟏 . 
 
Since     𝒄𝒄𝒄𝒄�𝒊𝒊𝒏𝒏𝒊𝒊(𝝀𝝀𝒊𝒊,𝑴𝑴𝒊𝒊)� = (𝝀𝝀𝒊𝒊,𝑴𝑴𝒊𝒊), then 

∐ 𝒄𝒄𝒄𝒄�𝒊𝒊𝒏𝒏𝒊𝒊(𝝀𝝀𝒊𝒊,𝑴𝑴𝒊𝒊)� = ∐ (𝝀𝝀𝒊𝒊,𝑴𝑴𝒊𝒊)∞
𝒊𝒊=𝟏𝟏

∞
𝒊𝒊=𝟏𝟏 , which implies that 

∐ (𝝀𝝀𝒊𝒊,𝑴𝑴𝒊𝒊) ⊑ 𝒄𝒄𝒄𝒄(𝒊𝒊𝒏𝒏𝒊𝒊(∐ (𝝀𝝀𝒊𝒊,𝑴𝑴𝒊𝒊)∞
𝒊𝒊=𝟏𝟏 ))∞

𝒊𝒊=𝟏𝟏 . 
 
Hence 𝒄𝒄𝒄𝒄(𝒊𝒊𝒏𝒏𝒊𝒊(∐ (𝝀𝝀𝒊𝒊,𝑴𝑴𝒊𝒊)∞

𝒊𝒊=𝟏𝟏 )) = ∐ (𝝀𝝀𝒊𝒊,𝑴𝑴𝒊𝒊)∞
𝒊𝒊=𝟏𝟏 . From the Proposition 3.11, (𝑿𝑿, 𝝉𝝉) is a soft fuzzy weak P-space. 

 
Proposition 3.17: If (𝝀𝝀,𝑴𝑴) is a non-zero soft fuzzy nowhere dense and soft fuzzy 𝑮𝑮𝜹𝜹 set in a soft fuzzy topological 
space (𝑿𝑿, 𝝉𝝉), then (𝑿𝑿, 𝝉𝝉) is not a soft fuzzy almost P-space. 
 
Proof: Let (𝝀𝝀,𝑴𝑴) be a non-zero soft fuzzy nowhere dense soft fuzzy 𝑮𝑮𝜹𝜹 set (𝝀𝝀,𝑴𝑴)in (𝑿𝑿, 𝝉𝝉). Then 
𝒊𝒊𝒏𝒏𝒊𝒊(𝝀𝝀,𝑴𝑴) ⊑ 𝒊𝒊𝒏𝒏𝒊𝒊(𝒄𝒄𝒄𝒄(𝝀𝝀,𝑴𝑴)) and 𝒊𝒊𝒏𝒏𝒊𝒊�𝒄𝒄𝒄𝒄(𝝀𝝀,𝑴𝑴)� = (𝟎𝟎,∅), implies that 𝒊𝒊𝒏𝒏𝒊𝒊(𝝀𝝀,𝑴𝑴) = (𝟎𝟎,∅). Hence for the non-zero soft 
fuzzy 𝑮𝑮𝜹𝜹 set (𝝀𝝀,𝑴𝑴)in (𝑿𝑿, 𝝉𝝉), 𝒊𝒊𝒏𝒏𝒊𝒊(𝝀𝝀,𝑴𝑴) = (𝟎𝟎,∅) in (𝑿𝑿, 𝝉𝝉). Therefore (𝑿𝑿, 𝝉𝝉) is not a soft fuzzy almost P-space. 
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