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ABSTRACT 
The present manuscript study the estimation of population mean in two phase sampling using auxiliary information. In 
this paper, I proposed an improved estimator of population mean under two phase sampling scheme. The expressions 
for the bias and mean square errors (MSE) have been obtained up to the first order of approximation. The minimum 
value of the MSE of the proposed estimator is also obtained for the optimum value of the constant (α). A comparison 
has been made with the existing estimators in two phase sampling. Finally, am empirical study is also carried out 
which shows improvement of proposed estimator over other estimators in two phase sampling in the sense of having 
lesser mean squared error. 
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1. INTRODUCTION 
 
The auxiliary information has been used in sampling theory since the development of the sampling theory and its 
application to the applied areas of the society. It is well established fact among the statisticians that the suitable use of 
auxiliary information improves the efficiency of the estimates of the parameters by increasing the precision of the 
estimates. The auxiliary variable provides the auxiliary information which is highly correlated (positively or negatively) 
with the main variable under study; the auxiliary information is used for different purposes in sampling theory. It is 
used for the purposes of stratification in stratified sampling, measures of sizes in PPS (Probability Proportional to Size) 
sampling etc. It is used at both the stages designing and estimation stages of the sampling. In the present study I have 
used it at estimation stage for estimating the population mean of the main variable under study in two phase sampling. 
 
Let y and x be the study and the auxiliary variables respectively. When the variable y and x are highly positively 
correlated and the line of regression of y on x passes through the origin, the ratio type estimators are used to estimate 
the population parameters of the variable under study and the product type estimators are used to estimate the 
parameter under study when y and x are highly negatively correlated. When the regression line does not passes through 
the origin or its neighbourhood, regression estimator is appropriate estimator for the estimation of population parameter 
of the study variable. In the present study I has considered the case of positive correlation and so use the ratio type 
estimators for the estimation of population mean in two phase sampling. 
 
2. MATERIAL AND METHODS 
 
Let )...,,.........,( 21 NUUUU =  be the finite population consisting of N distinct and identifiable units out of which a 
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their respective sample means. When X  is not known, two phase sampling is used to estimate the population mean of 
the study variable y. Under this sampling technique the following procedure is used for the sample selection, 
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(i) A large sample S ′  of size n′ )( Nn <′ is drawn from the population by SRSWOR and the observations are 

taken only on the auxiliary variable x to estimate the population mean X  of the auxiliary variable. 
(ii) Then the sample S of size n )( Nn < is drawn either from S ′  or directly from the population of size N to 

observe both the study variable and the auxiliary variable.  
 
It is well known fact that the appropriate estimator for estimating population mean is the sample mean and is given by, 

yt =0                           (2.1) 
 
The variance of the estimator 0t , up to the first order of approximation is, 
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Cochran (1940) was the first to use the auxiliary information and he proposed the classical ratio type estimator in 
simple random sampling as, 
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The double sampling version of Cochran (1940) estimator is defined as, 
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is an unbiased estimator of population mean X  of auxiliary variable based on the sample 

size n′ .  
 
The bias and the mean square error of d

Rt , up to the first order of approximation respectively are, 
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Singh and Tailor (2003) utilized the correlation coefficient between x and y and proposed the following estimator of 
population mean in simple random sampling as, 
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Malik and Tailor (2013) suggested the double sampling version of Singh and Tailor (2003) estimator as, 
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The bias and the mean square error of d
STt , up to the first order of approximations respectively are, 
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3. PROPOSED ESTIMATOR 
 
Motivated by Malik and Tailor (2013) and Prasad (1989), I propose the following estimator of population mean in two 
phase sampling, 

(1 ) yx
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                  (3.1) 

where α  is a constant and is to be determined such that the mean square error of t  is minimum. 
 
To study the large sample properties of the proposed estimator, we have the following approximations, 
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Expressing the proposed estimator in terms of ie ’s, we have 
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Subtracting Y on both sides of (3.2) and simplifying, we get 
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where,  1 (1 )α α= −   
 
Taking expectations on both the sides of above equation, we get the bias of t , up to the first order of approximation 
after putting the values of different expectations as,  
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Squaring equation (3.3) on both sides and taking expectations, we have MSE of t  up to the first order of approximation 
as, 
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Putting the values of different expectations, we have MSE of t  up to the first order of approximation as, 
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The minimum mean square error of t  up to the first order of approximation is, 
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4. EMPIRICAL EXAMPLE 
 
For comparison of  performances of the proposed and the existing estimators of population mean in two phase random 
sampling, we have considered two populations given below as, 
 
Population-I [Source: Das, 1988] 
Y: the number of agricultural labours for 1971, 
X: the number of agricultural labours for 1961, 
 

068.39=Y , 111.25=X , 278=N , 60=n , 180=′n ,  

4451.1=yC , 6198.1=xC , 7213.0=yxρ . 

 
Population-II [Source: Cochran, 1977] 
Y: the number of persons per block, 
X: the number of rooms per block, 
 

10.101=Y , 80.58=X , 20=N , 8=n , 12=′n ,  

14450.0=yC , 12810.0=xC , 6500.0=yxρ . 

 
5. RESULTS AND CONCLUSION 
 
From the theoretical discussions in section-3 and the results in table-1, we see that the proposed estimator has lesser 
mean squared error and thus highest percentage relative efficiency. Therefore we can say that the proposed estimator t  
is better than the sample mean, classical ratio estimator and the Malik and Tailor (2013) estimator as it has lesser mean 
square error under two phase random sampling technique. Therefore the proposed estimator should be preferred for the 
estimation of population mean in two phase random sampling. 
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Table-1: Percentage Relative Efficiency (PRE) of 0t , d

Rt , d
STt and t  with respect to 0t . 

Estimator 
PRE(., yt =0 ) 

Population-I Population-II 

0t  100.00 100.00 
d
Rt  142.11 117.65 
d
STt  150.00 125.00 
t  179.31 130.67 
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