Between α-closed sets and g_α-closed sets

N. BALAMANI*
Assistant Professor of Mathematics,
Avinashilingam Institute for Home Science and Higher Education for Women University,
Coimbatore - 641043, Tamil Nadu, India.

A. PARVATHI
Professor of Mathematics,
Avinashilingam Institute for Home Science and Higher Education for Women University,
Coimbatore - 641043, Tamil Nadu, India.

(Received On: 27-05-16; Revised & Accepted On: 13-06-16)

ABSTRACT

In this paper we introduce and study a new class of generalized closed sets called $\psi \alpha$-closed sets in topological spaces. We analyze the relations between $\psi \alpha$-closed sets with already existing closed sets. We discuss some basic properties of $\psi \alpha$-closed sets. The class of $\psi \alpha$-closed sets is properly placed between the class of α-closed sets and the class of g_α-closed sets. We prove that the class of $\psi \alpha$-closed sets forms a topology.

Keywords: α-closed sets, ψ-closed sets, ψg-closed sets and $\psi \alpha$-closed sets

1. INTRODUCTION

Njastad [18] introduced the concept of an α-open sets. Levine [13] introduced the notion of g-closed sets in topological spaces and studied their basic properties. Veerakumar [22] introduced and studied ψ-closed sets in topological spaces. Ramya and Parvathi [20] introduced a new concept of generalized closed sets called $\psi g\alpha$-closed sets and $\psi g\alpha$-closed sets in topological spaces. Jafari et al. [10] introduced the class of $g\alpha\alpha$-closed sets. In this paper we introduce a new class of generalized closed sets called $\psi \alpha$-closed sets in topological spaces. This class is obtained by generalizing α-closed sets via ψg-open sets.

2. PRELIMINARIES

Throughout this paper (X, τ) represents non-empty topological space on which no separation axioms are defined, unless otherwise mentioned. The interior, closure and complement of a subset A of a space (X, τ) are denoted by $\text{int}(A)$, $\text{cl}(A)$ and A' respectively.

Definition 2.1: A subset A of a topological space (X, τ) is called
(i) Semi-open set [12] if $A \subseteq \text{cl}(\text{int}(A))$
(ii) α-open set [18] if $A \subseteq \text{int}(\text{cl}(\text{int}(A)))$
(iii) Pre-open set [17] if $A \subseteq \text{int}(\text{cl}(A))$
(iv) semi pre-open set [3] if $A \subseteq \text{cl}(\text{int}(\text{cl}(A)))$

The complements of the above mentioned sets are called semi-closed, α-closed, pre-closed and semi pre-closed sets respectively.

The intersection of all semi-closed (resp. α-closed, pre-closed and semi pre-closed) subsets of (X, τ) containing A is called the semi-closure (resp. α-closure, pre-closure and semi pre-closure) of A and is denoted by $\text{scl}(A)$ (resp. $\alpha\text{cl}(A)$, $\text{pcl}(A)$ and $\text{spcl}(A)$). A subset A of (X, τ) is called nowhere dense if $\text{int}(\text{cl}(A))=\emptyset$. A subset A of a topological space (X, τ) is called semi-closed (resp. α-closed) if and only if $\text{scl}(A)=\emptyset$ (resp. $\alpha\text{cl}(A)=A$).

Corresponding Author: N. Balamani*, Assistant Professor of Mathematics, Avinashilingam Institute for Home Science and Higher Education for Women University, Coimbatore - 641043, Tamil Nadu, India.
Definition 3.2: A subset A of a topological space (X, τ) is called
(a) generalized closed set (briefly g-closed) [13] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ).
(b) generalized semi-closed set (briefly gs-closed) [4] if $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ).
(c) semi-generalized closed set (briefly sg-closed) [5] if $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is semi-open in (X, τ).
(d) generalised α-closed set(briefly $g\alpha$-closed) [14] if $acl(A) \subseteq U$ whenever $A \subseteq U$ and U is α-open in (X, τ).
(e) α-generalized closed set (briefly $ag\alpha$-closed) [15] if $acl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ).
(f) generalized semi-pre-closed set(briefly gsp-closed) [7] if $spcl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ).
(g) $g\star$ -closed set [24] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is semi-open in (X, τ).
(h) g -closed set [23] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is $g\star$-open in (X, τ).
(i) g -closed set [30] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is g-open in (X, τ).
(j) g -closed set [16] if $pcl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ).
(k) g -closed set [25] if $pcl(A) \subseteq U$ whenever $A \subseteq U$ and U is $g\star$-open in (X, τ).
(l) g -closed set [1] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is $g\star$-closed in (X, τ).
(m) gs -closed set[19] if $acl(A) \subseteq U$ whenever $A \subseteq U$ and U is semi-open in (X, τ).
(n)$g\alpha$-closed set [26] if $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is $g\alpha$-open in (X, τ).
(o)gs-closed set [29] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is $g\alpha$-open in (X, τ).
(p)g-closed set [9] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is $g\alpha$-open in (X, τ).
(q)gs-closed set [10] if $acl(A) \subseteq U$ whenever $A \subseteq U$ and U is $g\alpha$-open in (X, τ).
(r)g-semi-closed set [21] if $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is $g\alpha$-open in (X, τ).
(s)pre-closed set [8] if $pcl(A) \subseteq U$ whenever $A \subseteq U$ and U is $g\alpha$-open in (X, τ).
(t)$g\alpha$-closed set[27] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is $g\alpha$-open in (X, τ).
(u)$g\star$ -closed set[2] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is $g\alpha$-open in (X, τ).
(v)ψ-closed set[22] if $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is $g\alpha$-open in (X, τ).
(w)ψ-closed set[20] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ).
(x)ψ -closed set[28] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is $g\alpha$-open in (X, τ).
(y)ψ -closed set[20] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is $g\alpha$-open in (X, τ).
(z)ψ -closed set[6] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is α-open in (X, τ).

The complements of the above mentioned sets are called their respective open-sets.

3. $\psi\alpha$ -CLOSED SETS

Definition 3.1: A subset A of a topological space (X, τ) is said to be $\psi\alpha$ -closed set if $acl(A) \subseteq U$ whenever $A \subseteq U$ and U is $\psi\alpha$-open in (X, τ).

The class of all $\psi\alpha$ -closed sets of (X, τ) is denoted by $\psi\alpha C(X, \tau)$.

Proposition 3.2: Every closed set in (X, τ) is $\psi\alpha$ -closed but not conversely.

Proof: Let A be a closed set and U be any $\psi\alpha$ -open set containing A in X. Since every closed set is α-closed,
$ acl(A) \subseteq cl(A) = A \subseteq U$. Therefore A is $\psi\alpha$ -closed.

Example 3.3: Let $X=\{a, b, c\}$, $\tau=\{\emptyset, \{a\}, \{a, b\}, X\}$. Then the subset $\{b\}$ is $\psi\alpha$ -closed but not closed in (X, τ).

Proposition 3.4: Every α -closed set in (X, τ) is $\psi\alpha$ -closed but not conversely.

Proof: Let A be an α-closed set and U be any $\psi\alpha$ -open set containing A in X. Since A is α-closed,
$ acl(A) = A \subseteq U$. Therefore A is $\psi\alpha$ -closed.

Example 3.5: Let $X=\{a, b, c\}$, $\tau=\{\emptyset, \{a, b\}, X\}$. Then the subset $\{a, c\}$ is $\psi\alpha$ -closed but not α -closed in (X, τ).

Lemma 3.6: Every ψ -open set in (X, τ) is $\psi\alpha$ -closed but not conversely.

Proof: Let A be a ψ -open set and U be any ψ -open set containing A in X. Since every open set is $\psi\alpha$ -open,
and A is $\psi\alpha$ -closed, $acl(A) \subseteq U$. Therefore A is $\psi\alpha$ -closed.

Example 3.7: Let $X=\{a, b, c\}$, $\tau=\{\emptyset, \{a\}, X\}$. Then the subset $\{a, b\}$ is $\psi\alpha$ -closed but not ψ -open in (X, τ).

Proposition 3.8: Every $\psi\alpha$ -closed set in (X, τ) is $\psi\alpha$ -closed but not conversely.

Proof: Let A be a $\psi\alpha$ -closed set and U be any ψ -open set containing A in X. Since every ψ -open set is $\psi\alpha$ -open and A is $\psi\alpha$ -closed, $acl(A) \subseteq U$. Therefore A is $\psi\alpha$ -closed.
Example 3.9: Let $X=\{a, b, c, d\}$, $\tau =\{\emptyset, \{d\}, \{a, b\}, \{a, b, d\}, X\}$. Then the subset $\{b, c, d\}$ is \bar{g}_s-closed but not $\psi \bar{\alpha}$ -closed in (X, τ).

Proposition 3.10: Every $\psi \bar{\alpha}$ -closed set in (X, τ) is $g\alpha$ (resp. αg, g_s, \bar{g}_s)-closed but not conversely.

Proof: By [10], every \bar{g}_s - closed set is $g\alpha$ (resp. αg, g_s, \bar{g}_s)-closed set. Hence it holds.

Example 3.11: Let $X=\{a, b, c, d\}$, $\tau =\{\emptyset, \{d\}, \{a, b\}, \{a, b, d\}, X\}$. Then the subset $\{a, c, d\}$ is $g\alpha$-closed αg-closed, gs-closed, gs-closed and \bar{g}_s-closed but not $\psi \bar{\alpha}$ -closed in (X, τ).

Proposition 3.12: Every $\psi \bar{\alpha}$ -closed set in (X, τ) is \bar{g}-pre closed but not conversely.

Proof: Follows from the fact that every \bar{g}_s - closed is \bar{g}-pre closed.

Example 3.13: Let $X=\{a, b, c\}$, $\tau =\{\emptyset, \{a, b\}, X\}$. Then the subset $\{a\}$ is \bar{g}-pre closed but not $\psi \bar{\alpha}$ -closed in (X, τ).

Lemma 3.14: Every semi -closed set in (X, τ) is ψg - closed but not conversely.

Proof: Let A be a semi - closed set and U be any open set containing A in X. Since A is semi - closed, $scl(A)=A$. For every subset A of X, $pcl(A)\subseteq scl(A)$ and so we have $\psi cl(A)\subseteq U$. Hence A is ψg -closed.

Example 3.15: Let $X=\{a, b\}$, $\tau =\{\emptyset, \{a\}, \{b\}, \{a, b\}, X\}$. Then the subset $\{a\}$ is ψg -closed but not semi -closed in (X, τ).

Proposition 3.16: Every $\psi \bar{\alpha}$ -closed set in (X, τ) is αgs-closed but not conversely.

Proof: Let A be a $\psi \bar{\alpha}$ -closed set and U be any semi-open set containing A in X. Since every semi-open set is ψg-open and A is $\psi \bar{\alpha}$ -closed, $acl(A) \subseteq U$. Hence A is αgs -closed.

Example 3.17: Let $X=\{a, b, c\}$, $\tau =\{\emptyset, \{a\}, \{b, c\}, X\}$. Then the subset $\{a, c\}$ is αgs-closed but not $\psi \bar{\alpha}$ -closed in (X, τ).

Lemma 3.18: Every g-closed set in (X, τ) is ψg-closed but not conversely.

Proof: Let A be a g-closed set and U be any open set containing A in X. Since A is g-closed, $cl(A) \subseteq U$. For every subset A of X, $pcl(A)\subseteq cl(A)$ and so we have $\psi cl(A)\subseteq U$. Hence A is ψg-closed.

Example 3.19: Let $X=\{a, b, c\}$, $\tau =\{\emptyset, \{a\}, \{b\}, \{a, b\}, X\}$. Then the subset $\{a\}$ is ψg-closed but not g-closed in (X, τ).

Proposition 3.20: Every $\psi \bar{\alpha}$ -closed set in (X, τ) is gp-closed (g^*p-closed) but not conversely.

Proof: Let A be a $\psi \bar{\alpha}$ -closed set and U be any open (g-open) set containing A in X. Since every open (g-open) set is ψg-open and A is $\psi \bar{\alpha}$ -closed, $acl(A) \subseteq U$. For every subset A of X, $pcl(A)\subseteq acl(A)$ and so we have $pcl(A)\subseteq U$. Hence A is gp-closed (g^*p-closed).

Example 3.21: Let $X=\{a, b, c\}$, $\tau =\{\emptyset, \{a, b\}, X\}$. Then the subset $\{a\}$ is gp-closed (g^*p-closed) but not $\psi \bar{\alpha}$ -closed in (X, τ).

Lemma 3.22: Every sg-closed set in (X, τ) is ψg-closed but not conversely.

Proof: Let A be a sg-closed set and U be any open set containing A in X. Since every open set is semi-open and A is sg-closed, $scl(A)\subseteq U$. For every subset A of X, $pcl(A)\subseteq scl(A)$ and so we have $scl(A)\subseteq U$. Hence A is ψg-closed.

Example 3.23: Let $X=\{a, b, c\}$, $\tau =\{\emptyset, \{a\}, \{a, b\}, X\}$. Then the subset $\{a, c\}$ is ψg-closed but not sg-closed in (X, τ).

Proposition 3.24: Every $\psi \bar{\alpha}$ -closed set in (X, τ) is ψ-closed but not conversely.

Proof: Let A be a $\psi \bar{\alpha}$ -closed set and U be any open set containing A in X. Since every open set is ψg-open and A is $\psi \bar{\alpha}$ -closed, $acl(A) \subseteq U$. For every subset A of X, $scl(A)\subseteq acl(A)$ and so we have $scl(A)\subseteq U$. Hence A is ψ-closed.

Example 3.25: Let $X=\{a, b, c\}$, $\tau =\{\emptyset, \{a\}, \{b\}, \{a, b\}, X\}$. Then the subset $\{a\}$ is ψ-closed but not $\psi \bar{\alpha}$ -closed in (X, τ).
Proposition 3.36: Every $\psi\alpha$ -closed set in (X, τ) is $\psi\phi$ (resp. $\psi\alpha$, $\psi\alpha\alpha$)-closed but not conversely.

Proof: By [20], every ψ-closed set is $\psi\phi$ (resp. $\psi\alpha$, $\psi\alpha\alpha$)-closed. Therefore it holds

Example 3.37: Let $X=\{a, b, c\}, \tau=\{\phi,\{a\},\{b\},\{a, b\},X\}$. Then the subset $\{a\}$ is $\psi\phi$ -closed, $\psi\alpha$-closed, and $\psi\alpha\alpha$-closed but not $\psi\alpha$ -closed in (X, τ).

Lemma 3.38: Every αg -closed set in (X, τ) is ψg - closed but not conversely.

Proof: Let A be an αg -closed set and U be any open set containing A in X. Since every open set is αg -closed, $\alpha cl(A) \subseteq U$. For every subset A of X, $\psi cl(A) \subseteq \alpha cl(A)$ and so $\psi cl(A) \subseteq U$. Hence A is ψg -closed.

Example 3.39: Let $X=\{a, b, c\}, \tau=\{\phi,\{a\},\{b\},\{a, b\},X\}$. Then the subset $\{a\}$ is ψg -closed but not αg -closed in (X, τ).

Proposition 3.40: Every $\psi\alpha$ -closed set in (X, τ) is αg - closed but not conversely.

Proof: Let A be a $\psi\alpha$ -closed set and U be any αg -open set containing A in X. Since every αg-open set is ψg-open and A is $\psi\alpha$-closed, $\alpha cl(A) \subseteq U$. For every subset A of X, $\psi cl(A) \subseteq \alpha cl(A)$ and so we have $\psi cl(A) \subseteq U$. Hence A is αg -closed.

Example 3.41: Let $X=\{a, b, c\}, \tau=\{\phi,\{a\},\{a, b\},X\}$. Then the subset $\{a\}$ is αg -closed but not $\psi\alpha$ -closed in (X, τ).
Proposition 3.42: Every $\psi^*\alpha$ -closed set in (X, τ) is $g^*\psi$ -closed but not conversely.

Proof: Follows from the fact that every ψ-closed is $g^*\psi$ -closed

Example 3.43: Let $X=\{a, b, c, d\}, \tau=\{\phi, \{a\}, \{a, b\}, X\}$. Then the subset $\{a, c, d\}$ is $g^*\psi$ -closed but not $\psi^*\alpha$ -closed in (X, τ).

Proposition 3.44: Every $\psi^*\alpha$ -closed set in (X, τ) is $\alpha\psi$ -closed but not conversely.

Proof: Let A be a $\psi^*\alpha$ -closed set and U be any α -open set containing A in X. Since every α -open set is ψg -open and A is $\psi^*\alpha$ -closed, $\alpha cl(A) \subseteq U$. For every subset A of X, $\psi cl(A) \subseteq \alpha cl(A)$. and so we have $\psi cl(A) \subseteq U$. Hence A is $\alpha\psi$ -closed.

Example 3.45: Let $X=\{a, b, c\}, \tau=\{\phi, \{a\}, \{a, b\}, \{a, b\}, X\}$. Then the subset $\{a\}$ is $\alpha\psi$ -closed but not $\psi^*\alpha$ -closed in (X, τ).

Remark 3.46: The following example shows that $\psi^*\alpha$ -closedness is independent from g-closedness, $g^*\psi$ -closedness, $g^*\alpha$ -closedness and $g^*\alpha$ -closedness.

Example 3.47: Let $X=\{a, b, c\}, \tau=\{\phi, \{a\}, \{a, b\}, X\}$. In this topology the set $\{a, c\}$ is g-closed, $g^*\alpha$ -closed, g - closed and $g^*\alpha$ -closed but not $\psi^*\alpha$ -closed. The set $\{b\}$ is $\psi^*\alpha$ -closed but not g-closed, $g^*\psi$ -closed, $g^*\alpha$ -closed and $g^*\alpha$ -closed.

Remark 3.48: The following examples show that $\psi^*\alpha$ -closedness is independent from semi-closedness.

Example 3.49: Let $X=\{a, b, c\}, \tau=\{\phi, \{a\}, \{a, b\}, X\}$. In this topology the set $\{b, c\}$ is $\psi^*\alpha$ -closed but not semi-closed.

Example 3.50: Let $X=\{a, b, c\}, \tau=\{\phi, \{a\}, \{a, b\}, X\}$. In this topology the set $\{b\}$ is semi-closed but not $\psi^*\alpha$ -closed.

Remark 3.51: The following examples show that $\psi^*\alpha$ -closedness is independent from $g^*\alpha$ -closedness, $g^*\alpha$ -closedness and $g^*\alpha$ -closedness.

Example 3.52: Let $X=\{a, b, c\}$ with $\tau=\{\phi, \{a\}, \{a, b\}, X\}$. In this topology the set $\{b\}$ is $\psi^*\alpha$ -closed but not $g^*\psi$ -closed, $g^*\alpha$ -closed and $g^*\alpha$ -closed.

Example 3.53: Let $X=\{a, b, c, d\}$ with $\tau=\{\phi, \{d\}, \{a, b\}, \{a, b, d\}, X\}$. In this topology the set $\{a, c, d\}$ is $g\alpha$ -closed, $g^*\psi$ -closed and $g^*\psi$ -closed but not $\psi^*\alpha$ -closed.

Remark 3.54: The following diagram has shown the relationship of $\psi^*\alpha$ -closed sets with already existing various closed sets. where $A \rightarrow B$ represents A implies B but not conversely. where $A \leftrightarrow B$ represents A and B are independent of each other.

\[\begin{align*}
1. & \psi^*\alpha \text{-closed} & 2. & \text{closed} & 3. & \alpha\text{-closed} & 4. & \tilde{g}_a\text{-closed} & 5. & \text{ga-closed} & 6. & \alpha g\text{-closed} & 7. & \text{sg-closed} & 8. & \text{gs-closed} & 9. & \text{g-semi-closed} & 10. & \text{g-pre-closed} & 11. & \text{ags-closed} & 12. & \text{gp-closed} & 13. & \text{g}^*\tilde{g}\text{-closed} & 14. & \psi\text{-closed} & 15. & \text{g}^*\psi\text{-closed} & 16. & \text{g}\tilde{g}\text{-closed} & 17. & \text{gsp-closed} & 18. & \text{g}^*\text{s-closed} & 19. & \text{g}^*\text{-closed} & 20. & \text{gs-closed} & 21. & \text{g}^*\psi\text{-closed} & 22. & \alpha\psi\text{-closed} & 23. & \text{g}\text{-closed} & 24. & \text{g}^*\text{-closed} & 25. & \text{g}\text{-closed} & 26. & \text{g}^*\tilde{g}\text{-closed} & 27. & \text{semi-closed} & 28. & \tilde{g}\text{-closed} & 29. & \text{g}^\alpha\text{-closed} & 30. & \tilde{g}\text{-closed} \end{align*} \]
Definition 3.55: A subset A of a topological space (X, τ) is said to be $\psi^* \alpha$-open if its complement A^c is $\psi^* \alpha$-closed.

The class of all $\psi^* \alpha$-open sets in (X, τ) is denoted by $\psi^* \alpha O(X, \tau)$.

Proposition 3.56: Every open (respectively α-open) set is $\psi^* \alpha$-open.

Proposition 3.57: Every $\psi^* \alpha$-open set is $\tilde{\alpha}_a$-open (respectively $g\alpha$-open, og-open, sg-open, gs-open, \tilde{g}-semi-open, \tilde{g}-pre-open, $args$-open, gp-open, \tilde{g}-p-open, $\psi g\tilde{g}$-open, ψg-open, gsp-open, gs-open, $\tilde{g}gs$-open, $g\psi\psi$-open and $\alpha\psi\psi$-open).

4. PROPERTIES OF $\psi^* \alpha$-CLOSED SETS AND $\psi^* \alpha$-OPEN SETS

Theorem 4.1: If A and B are $\psi^* \alpha$-closed sets in a topological space (X, τ), then $A \cup B$ is $\psi^* \alpha$-closed set in (X, τ).

Proof: Let A and B be any two $\psi^* \alpha$-closed sets in (X, τ) and U be any ψg-open set containing A and B. We have $\alpha cl(A) \subseteq U$ and $\alpha cl(B) \subseteq U$. Always $\alpha cl(A \cup B) = \alpha cl(A) \cup \alpha cl(B) \subseteq U$. Hence $A \cup B$ is $\psi^* \alpha$-closed in (X, τ).

Theorem 4.2: Let A be a $\psi^* \alpha$-closed set in (X, τ). Then $\alpha cl(A)$-A contains no non-empty closed set in (X, τ).

Proof: Suppose that A is $\psi^* \alpha$-closed. Let F be a closed subset of $\alpha cl(A)$-A. Then F^c is open and hence ψg-open such that $A^c \subseteq F^c$. Since A is a $\psi^* \alpha$-closed set, $\alpha cl(A) \subseteq F^c$. Thus $F \subseteq (\alpha cl(A))^c$. Since every closed set is α-closed, F is α-closed. Hence $F \subseteq \alpha cl(A)$. Therefore $F \subseteq \alpha cl(A) \cap (\alpha cl(A))^c = \phi$. Hence $F = \phi$.

Remark 4.3: The converse of the above theorem is not true as seen from the following example.

Example 4.4: Let $X=\{a, b, c\}$, $\tau=\{\varnothing, \{a\}, \{b, c\}, X\}$. If $A= \{b\}$ then $\alpha cl(A)-A=\{b, c\}-\{b\} = \{c\}$ does not contain non-empty closed set. However A is not a $\psi^* \alpha$-closed subset of (X, τ).

Theorem 4.5: A set A is $\psi^* \alpha$-closed in (X, τ) if and only if $\alpha cl(A)$-A contains no non-empty ψg-closed set in (X, τ).

Proof: (Necessity): Suppose that A is $\psi^* \alpha$-closed. Let F be a ψg-closed set contained in $\alpha cl(A)$-A. Now F^c is a ψg-open set in such that $A^c \subseteq F^c$. Since A is a $\psi^* \alpha$-closed set in X, $\alpha cl(A) \subseteq F^c$. Thus $F \subseteq (\alpha cl(A))^c$. Also $F \subseteq \alpha cl(A)$-A. Therefore $F \subseteq \alpha cl(A) \cap (\alpha cl(A))^c = \phi$. Hence $F = \phi$.

Sufficiency: Suppose that $\alpha cl(A)$-A contains no non empty ψg-closed set. Let $A \subseteq G$ and G be ψg-open. If $\alpha cl(A)$ is not a subset of G then $\alpha cl(A) \cap G^c$ is a non-empty ψg-closed subset of $\alpha cl(A)$-A, which is a contradiction. Therefore $\alpha cl(A) \subseteq G$ and hence A is $\psi^* \alpha$-closed.

Proposition 4.6: If A is ψg-open and $\psi^* \alpha$-closed subset of (X, τ). Then A is an α-closed set of (X, τ).

Proof: Since A is ψg-open and $\psi^* \alpha$-closed, $\alpha cl(A) \subseteq A$. Hence A is α-closed.

Theorem 4.7: If a set A is $\psi^* \alpha$-closed and ψg-open and F is α-closed in (X, τ), then $A \cap F$ is α-closed.

Proof: Since A is $\psi^* \alpha$-closed and ψg-open, A is α-closed by Proposition 4.6 Since F is α-closed in X, $A \cap F$ is α-closed in X.

Theorem 4.8: If A is a $\psi^* \alpha$-closed set in (X, τ) and $A \subseteq B \subseteq \alpha cl(A)$. Then B is also a $\psi^* \alpha$-closed set in (X, τ).

Proof: Let U be a ψg-open set of (X, τ) such that $B \subseteq U$. Then $A \subseteq U$. Since A is a $\psi^* \alpha$-closed set, $\alpha cl(A) \subseteq U$. Also since $B \subseteq \alpha cl(A)$, $\alpha cl(B) \subseteq \alpha cl(\alpha cl(A)) = \alpha cl(A)$. Hence $\alpha cl(B) \subseteq U$. Therefore B is also a $\psi^* \alpha$-closed set in (X, τ).

Theorem 4.9: Let A be a $\psi^* \alpha$-closed set of (X, τ). Then A is α-closed if and only if $\alpha cl(A)$-A is ψg-closed.

Proof: (Necessity): Let A be an α-closed subset of (X, τ). Then $\alpha cl(A)=A$ and therefore $\alpha cl(A)-A=\phi$ which is ψg-closed in (X, τ).

Sufficiency: Let $\alpha cl(A)$-A be a ψg-closed set. Since A is $\psi^* \alpha$-closed by Theorem 4.5, $\alpha cl(A)$-A contains no non-empty ψg-closed set which implies $\alpha cl(A)=A$. That is $\alpha cl(A)=A$. Hence A is α-closed.
Definition 4.10: Let \((X,\tau)\) be a topological space and let \(B \subseteq A \subseteq X\) then \(B\) is \(\psi \alpha\) -closed relative to \(A\) if \((\text{cl}(A))\cup B \subseteq U\), whenever \(B \cup U\), \(U\) is \(\psi g\)-open in \(A\).

Theorem 4.11: Let \(B \subseteq A \subseteq X\) and suppose that \(B\) is \(\psi \alpha\) -closed in \((X, \tau)\), then \(B\) is \(\psi \alpha\) -closed relative to \(A\). The converse is true if \(A\) is \(\alpha\) -open and \(\psi \alpha\) -closed in \((X, \tau)\).

Proof: Suppose that \(B\) is a \(\psi \alpha\) -closed in \((X, \tau)\). Let \(B \subseteq U\), \(U\) is \(\psi g\) - open in \(A\). Since \(U\) is \(\psi g\) - open set in \(A\), \(U \cap V \subseteq A\), where \(V\) is \(\psi g\) - open in \(X\). Hence \(B \subseteq U \subseteq V\). Suppose that \(B\) is \(\psi \alpha\) -closed in \((X, \tau)\). Hence \((\text{cl}(B))\cup A \subseteq U\). Since \(A\) is \(\alpha\) -open, it is \(\psi g\) - open in \(X\). Since \(A \subseteq U\) and \(B\) is \(\psi \alpha\) -closed relative to \(A\), \(B\) is a \(\psi \alpha\) -closed relative to \(A\). Let \(B \subseteq U\) and \(U\) be \(\psi g\) - open in \(A\). Then \(A \cap U\) is \(\psi g\) - open in \(A\). Since \(B \subseteq A\) and \(B \subseteq U\), \(B \subseteq U\subseteq V\). Since \(B\) is a \(\psi \alpha\) -closed relative to \(A\), \((\text{cl}(B))\cup A \subseteq U\). Therefore \(B\) is \(\psi \alpha\) -closed relative to \(A\).

Now, to prove the converse, assume that \(B \subseteq A \subseteq X\) where \(A\) is \(\alpha\) -open and \(\psi \alpha\) -closed in \(X\) and \(B\) is a \(\psi \alpha\) -closed relative to \(A\). Let \(B \subseteq U\) and \(U\) be \(\psi g\) - open in \(X\). Then \(A \cap U\) is \(\psi g\) - open in \(A\). Since \(B \subseteq A\) and \(B \subseteq U\), \(B \subseteq U\subseteq V\). Since \(B\) is \(\psi \alpha\) -closed relative to \(A\), \((\text{cl}(B))\cup A \subseteq U\). Therefore \(B\) is \(\psi \alpha\) -closed relative to \(A\).

Theorem 4.12: In a topological space \((X, \tau)\), for each \(x \in X\), either \(\{x\}\) is \(\psi g\)-closed or \(X\) -\(\{x\}\) is \(\psi \alpha\) closed set in \((X, \tau)\).

Proof: Suppose that \(\{x\}\) is not \(\psi g\)-closed in \(X\). Then \(\{x\}\) is not \(\psi g\)-open in \(X\). Hence \(X\) is the only \(\psi g\)-open set containing \(X\) -\(\{x\}\). That is \((X\) -\(\{x\}\)) \(\subseteq X\). Therefore \(\text{cl}(X\) -\(\{x\}\)) \(\subseteq X\), which implies that \(X\) -\(\{x\}\) is \(\psi \alpha\) -closed in \((X, \tau)\).

Definition 4.13: The intersection of all \(\psi g\)-open subsets of \((X, \tau)\) containing \(A\) is called \(\psi g\)- kernel of \(A\) and is denoted by \(\psi g\text{-ker}(A)\).

i.e \(\psi g\text{-ker}(A) = \cap\{U \subseteq X: U\) is \(\psi g\)-open in \((X, \tau)\) and \(A \subseteq U\}\) \(\subseteq \) \(\psi g\text{-ker}(A)\).

Theorem 4.14: A subset \(A\) of a topological space \((X, \tau)\) is \(\psi \alpha\) -closed in \((X, \tau)\) if and only if \(\text{cl}(A) \subseteq \psi g\text{-ker}(A)\).

Proof: (Necessity): Suppose that \(A\) is \(\psi \alpha\) -closed set in \((X, \tau)\) and \(x \in \text{cl}(A)\). If \(x \notin \psi g\text{-ker}(A)\), then there exists a \(\psi g\) - open set \(U\) in \((X, \tau)\) such that \(A \subseteq U\) and \(x \in U\). Since \(U\) is \(\psi g\) - open set containing \(A\) and \(A\) is \(\psi \alpha\) -closed, we have \(\text{cl}(A) \subseteq U\), which is a contradiction to \(x \in \text{cl}(A)\) and \(x \notin U\).

Sufficiency: Suppose that \(\text{cl}(A) \subseteq \psi g\text{-ker}(A)\). If \(U\) is any \(\psi g\)-open set containing \(A\), then \(\psi g\text{-ker}(A) \subseteq U\) so we have \(\text{cl}(A) \subseteq U\). Hence \(A\) is \(\psi \alpha\) -closed.

Remark 4.15: Jankovic and Reilly [11] stated that “If \(x\) is any point in a topological space \((X, \tau)\), then every singleton \(\{x\}\) is either nowhere dense or preopen in \((X, \tau)\).” Also this provides another decomposition namely \(X = X_1 \cup X_2\) where \(X_1 = \{x \in X: \{x\}\) is nowhere dense\} and \(X_2 = \{x \in X: \{x\}\) is preopen\}.

Proposition 4.16: For any subset \(A\) of a topological space \((X, \tau)\), \(X_1 \cap \text{cl}(A) \subseteq \psi g\text{-ker}(A)\).

Proof: Let \(x \in X_1 \cap \text{cl}(A)\) and if \(x \notin \psi g\text{-ker}(A)\). Then there is a \(\psi g\)-open set \(U\) containing \(A\) such that \(x \notin U\). Then \(U\) is \(\psi g\)-closed set containing \(x\). Since \(x \in \text{cl}(A)\), \(\text{cl}(\{x\}) \subseteq \text{cl}(A)\). Since \(x \in X_1\), \(\text{int}(\text{cl}(\{x\})) \subseteq \text{int}(\text{cl}(\{x\})) \neq \phi\). Also \(x \in \text{cl}(A)\), so \(A \cap \text{int}(\text{cl}(\{x\})) \neq \phi\). Hence there is some point \(y \in A \cap \text{int}(\text{cl}(\{x\}))\) and therefore \(y \in A \cap U\), which is a contradiction.

Theorem 4.17: A subset \(A\) of a topological space \((X, \tau)\) is \(\psi \alpha\) -closed in \((X, \tau)\) if and only if \(X_1 \cap \text{cl}(A) \subseteq A\).

Proof: (Necessity): Suppose that \(A\) is \(\psi \alpha\) -closed in \((X, \tau)\) and \(x \in X_1 \cap \text{cl}(A)\) but \(x \notin A\). Since \(x \in X_1\), \(\text{int}(\text{cl}(\{x\})) = \phi\) so we have \(\text{int}(\text{cl}(\{x\})) = \phi \subseteq \{x\}\). Therefore \(\{x\}\) is semi-closed. Since every semi-closed set is \(\psi g\) -closed, \(\{x\}\) is \(\psi g\) -closed and hence \(U = X\) -\(\{x\}\) is \(\psi g\) -open set containing \(A\) and so \(\text{cl}(A) \subseteq U\). Since \(x \in \text{cl}(A)\) so we have \(x \in U\), which is a contradiction.

Sufficiency: Suppose that \(X_1 \cap \text{cl}(A) \subseteq A\). Since \(A \subseteq \psi g\text{-ker}(A)\), \(X_1 \cap \text{cl}(A) \subseteq \psi g\text{-ker}(A)\). Therefore \(\text{cl}(A) = X \cap \text{cl}(A) = (X_1 \cup X_2) \cap \text{cl}(A) = (X_1 \cap \text{cl}(A)) \cup (X_2 \cap \text{cl}(A))\). By hypothesis \(X_1 \cap \text{cl}(A) \subseteq \psi g\text{-ker}(A)\) and by

Proposition 4.16: \(X_2 \cap \text{cl}(A) \subseteq \psi g\text{-ker}(A)\). Hence \(\text{cl}(A) \subseteq \psi g\text{-ker}(A)\). Therefore by Theorem 4.14 \(A\) is \(\psi \alpha\) -closed.
Theorem 4.18: Arbitrary intersection of \(\psi^* \alpha \)-closed sets in a topological space \((X, \tau) \) is \(\psi^* \alpha \)-closed in \((X, \tau) \).

Proof: Let \(F=\{A_i : i \in \Lambda \} \) be a family of \(\psi^* \alpha \)-closed sets and \(\Lambda=\bigcap_{i \in \Lambda} A_i \) Since \(A \subseteq \Lambda \), \(X_1 \cap \text{acl}(A) \subseteq X \cap \text{acl}(A_i) \) for each \(i \in \Lambda \) using theorem 4.17 for each \(\psi^* \alpha \)-closed set \(A_i \) we have \(X_1 \cap \text{acl}(A) \subseteq X \cap \text{acl}(A_i) \) \(\subseteq A_i \) for each \(i \in \Lambda \). Thus \(X_1 \cap \text{acl}(A) \subseteq \bigcap_{i \in \Lambda} A_i = A \). That is \(X_1 \cap \text{acl}(A) \) is \(\subseteq A \) and so by theorem 4.17 A is \(\psi^* \alpha \)-closed in \((X, \tau) \).

Remark 4.19: Thus from theorem 4.1 and theorem 4.18 leads us into another class of closed sets namely \(\psi^* \alpha \)-closed sets which are closed under finite union and arbitrary intersection. Hence the class of \(\psi^* \alpha \)-closed sets form a topology.

Lemma 4.20: For a subset \(A \) of \((X, \tau) \), \(\text{acl}(X-A) = \psi^* \text{cl}(A) \)

Theorem 4.21: A subset \(A \) of a topological space \((X, \tau) \) is \(\psi^* \alpha \)-open if and only if \(U \subseteq \psi^* \text{cl}(A) \) whenever \(U \subseteq A \) and \(U \) is \(\psi g^* \)-closed.

Proof: (Necessity) Assume that \(A \) is \(\psi^* \alpha \)-open. Then \(A^* \) is \(\psi^* \alpha \)-closed. Let \(U \) be a \(\psi g^* \)-closed set in \((X, \tau) \) contained in \(A \). Then \(U^* \) is a \(\psi g^* \)-open set in \((X, \tau) \) containing \(A^* \). Since \(A^* \) is \(\psi^* \alpha \)-closed, \(\text{acl}(A^*) \subseteq U^* \) equivalently \(U \supseteq \psi^* \text{cl}(A) \).

Sufficiency: Assume that \(U \) is contained in \(\psi^* \text{cl}(A) \) whenever \(U \subseteq A \) is \(\psi g^* \)-closed in \((X, \tau) \). Let \(A^* \) be contained in \(U \), where \(U \) is \(\psi g^* \)-open. Then \(U^* \subseteq \psi^* \text{cl}(A) \). By criteria, \(U^* \subseteq \psi^* \text{cl}(A) \). This implies \(\psi^* \text{cl}(A) = \psi g^* \text{cl}(U) \) that is \(\psi g^* \text{cl}(U) \) \(\subseteq U \). Therefore \(A^* \) is \(\psi^* \alpha \)-closed. Hence \(A \) is \(\psi^* \alpha \)-open in \((X, \tau) \).

Proposition 4.22: If \(\psi^* \text{cl}(A) \subseteq B \subseteq A \) and \(A \) is \(\psi^* \alpha \)-open, then \(B \) is \(\psi^* \alpha \)-open.

Proof: Follows from lemma 4.20 and Theorem 4.8

Theorem 4.23: If \(A \) and \(B \) are \(\psi^* \alpha \)-open sets in \((X, \tau) \), then \(A \cap B \) is \(\psi^* \alpha \)-open in \((X, \tau) \).

Proof: Let \(A \) and \(B \) be \(\psi^* \alpha \)-open sets in \((X, \tau) \). Then \(X \cap A \) and \(X \cap B \) are \(\psi^* \alpha \)-closed sets and \((X-A) \cup (X-B) = X- (A \cap B) \) is \(\psi^* \alpha \)-closed in \((X, \tau) \). Hence \(A \cap B \) is \(\psi^* \alpha \)-open.

Theorem 4.24: If \(A \) is \(\psi^* \alpha \)-open in \((X, \tau) \) if and only if \(G=\psi^* \text{cl}(X) \) whenever \(G \) is \(\psi g^* \)-open and \(\psi^* \text{cl}(A) \cup A^* \subseteq G \).

Proof: (Necessity): Let \(A \) be \(\psi^* \alpha \)-open and \(G \) is \(\psi g^* \)-open and \(\psi^* \text{cl}(A) \cup A^* \subseteq G \). This gives \(G^- \subseteq \psi^* \text{cl}(A) \cup A^* = \psi^* \text{cl}(A^*) \). Hence \(A^* = \psi^* \alpha \)-closed and \(G^* \) is \(\psi g^* \)-closed by theorem 4.5, it follows that \(G^* = \phi \). Therefore \(G = \psi^* \text{cl}(X) \).

(Sufficiency): Suppose that \(F \) is \(\psi g^* \)-closed and \(F \subseteq A \). Then \(\psi^* \text{cl}(A) \cup A^* \subseteq \psi^* \text{cl}(A) \cup F^* \). As open implies \(\psi g^* \)-open, we get \(\psi^* \text{cl}(A) \) is \(\psi g^* \)-open and \(\psi^* \text{cl}(F) \) is \(\psi g^* \)-open. Hence \(\psi^* \text{cl}(A) \cup \psi^* \text{cl}(F) \) is \(\psi g^* \)-open. It follows by the hypothesis that \(\psi^* \text{cl}(A) \cup \psi^* \text{cl}(F) \) is \(\psi g^* \)-open and hence \(\psi^* \text{cl}(A) \cup \psi^* \text{cl}(F) \) is \(\psi^* \alpha \)-open. Therefore by theorem 4.21, \(A \) is \(\psi^* \alpha \)-open in \((X, \tau) \).

5. \(\psi^* \alpha \)-CLOSURE

Definition 5.1: The \(\psi^* \alpha \)-closure of \(A \) (briefly \(\psi^* \text{acl}(A) \)) of a topological space \((X, \tau) \) is defined as follows.
\[\psi^* \text{acl}(A) = \bigcap \{ F \subseteq X : A \subseteq F \text{ and } F \text{ is } \psi^* \alpha \text{-closed in } (X, \tau) \} \]

Proposition 5.2: For a subset \(A \) of a topological space \((X, \tau) \), \(A \subseteq \psi^* \text{acl}(A) \subseteq \text{cl}(A) \)

Proof: Follows from proposition 3.2

Remark 5.3: If \(A \) is \(\psi^* \alpha \)-closed in \((X, \tau) \), then \(\psi^* \text{acl}(A) = A \).

Theorem 5.4: Let \(A \) be a subset of \(X \) and \(x \in X \), then \(x \in \psi^* \text{acl}(A) \) if and only if for every \(\psi^* \alpha \)-open set \(U \) containing \(x \), \(U \cap A = \phi \).

Proof: (Necessity): Let \(x \in \psi^* \text{acl}(A) \) and there exists a \(\psi^{\alpha} \)-open set \(U \) containing \(x \) such that \(U \cap A = \phi \). Since \(A \subseteq U^* \), \(\psi^* \text{acl}(A) \subseteq U^* \) and hence \(x \notin \psi^* \text{acl}(A) \), which is a contradiction. Hence \(U \cap A = \phi \).

(Sufficiency): Assume the given condition. Suppose that \(x \in \psi^* \text{acl}(A) \). Then there exists a \(\psi^* \alpha \)-closed set \(F \) containing \(A \) such that \(x \notin F \). Then \(x \in F^* \) and \(F^* \) is \(\psi^* \alpha \)-open. By assumption, \(F^* \cap A = \phi \). Since \(A \subseteq F^* \), \(F^* \cap A = \phi \) is which is a contradiction. Therefore \(x \in \psi^* \text{acl}(A) \).
Proposition 5.5: Let A and B be any two subsets of (X, τ). Then the following statements are true
(a) \(\psi^* \text{cl}(\emptyset) = \emptyset \) and \(\psi^* \text{cl}(X) = X \).
(b) If \(A \subseteq B \), then \(\psi^* \text{cl}(A) \subseteq \psi^* \text{cl}(B) \).
(c) \(\psi^* \text{cl}(A) \cup \psi^* \text{cl}(B) = \psi^* \text{cl}(A \cup B) \)
(d) \(\psi^* \text{cl}((A \cap B) \subseteq \psi^* \text{cl}(A) \cap \psi^* \text{cl}(B) \)
(e) \(\psi^* \text{cl}(\psi^* \text{cl}(A)) = \psi^* \text{cl}(A) \).

Proof: (a) and (b) follow from the definition of \(\psi^* \text{-closure} \).
(c) Since \(A \subseteq A \cup B \) and \(B \subseteq A \cup B \), by (b) \(\psi^* \text{cl}(A) \subseteq \psi^* \text{cl}(A \cup B) \) and \(\psi^* \text{cl}(B) \subseteq \psi^* \text{cl}(A \cup B) \). Hence \(\psi^* \text{cl}(A) \cup \psi^* \text{cl}(B) \subseteq \psi^* \text{cl}(A \cup B) \). To prove the reverse inclusion, let \(x \in \psi^* \text{cl}(A \cup B) \) and suppose that \(x \notin \psi^* \text{cl}(A) \cup \psi^* \text{cl}(B) \). Then \(x \notin \psi^* \text{cl}(A) \) and \(x \notin \psi^* \text{cl}(B) \). Therefore there exist a \(\psi^* \text{-closed set} \) U and V in X such that \(A \subseteq U \), \(B \subseteq V \), \(x \notin U \) and \(x \notin V \). Hence we have \(A \cup B \subseteq U \cup V \) and \(x \notin U \cup V \). By Theorem 4.1, \(U \cup V \) is a \(\psi^* \text{-closed set} \) and hence \(x \notin \psi^* \text{cl}(A \cup B) \), which is a contradiction. Hence \(\psi^* \text{cl}(A \cup B) \subseteq \psi^* \text{cl}(A) \cup \psi^* \text{cl}(B) \).
(d) Since \(A \cap B \subseteq A \) and \(A \cap B \subseteq B \), by (b) \(\psi^* \text{cl}(A \cap B) \subseteq \psi^* \text{cl}(A) \) and \(\psi^* \text{cl}(A \cap B) \subseteq \psi^* \text{cl}(B) \). Hence \(\psi^* \text{cl}(A \cap B) \subseteq \psi^* \text{cl}(A) \cap \psi^* \text{cl}(B) \).
(e) Follows from the definition of \(\psi^* \text{-closure} \).

Remark 5.6: The reverse inclusion of (d) is not true in general as seen from the following example.

Example 5.7: Let \(X = \{a, b, c, d\} \), \(\tau = \{\emptyset, \{a\}, \{a, b, c\}, X\} \). If \(A = \{a\} \) and \(B = \{d\} \), then \(\psi^* \text{cl}(A) = X \) and \(\psi^* \text{cl}(B) = \{d\} \). \(A \cap B = \emptyset \), \(\psi^* \text{cl}(A \cap B) = \emptyset \). But \(\psi^* \text{cl}(A) \cap \psi^* \text{cl}(B) = \{d\} \).

Theorem 5.8: The \(\psi^* \text{-closure} \) is a Kuratowski closure operator on \((X, \tau)\).

Proof: From \(\psi^* \text{cl}(\emptyset) = \emptyset \), \(\psi^* \text{cl}(A \cup \psi^* \text{cl}(A)) = \psi^* \text{cl}(A) \), and \(\psi^* \text{cl}(\psi^* \text{cl}(A)) = \psi^* \text{cl}(A) \) we can say that \(\psi^* \text{-closure} \) is a Kuratowski closure operator on \((X, \tau)\).

REFERENCES

Source of support: Nil, Conflict of interest: None Declared

[Copy right © 2016. This is an Open Access article distributed under the terms of the International Journal of Mathematical Archive (IJMA), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.]