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ABSTRACT 
In this paper we introduce and study a new class of generalized closed sets called ψ*𝛼𝛼 -closed sets in topological 
spaces.  We analyze the relations   between ψ*𝛼𝛼 -closed sets with already existing closed sets. We discuss some basic 
properties of  ψ*𝛼𝛼 -closed sets The class of ψ*𝛼𝛼 -closed sets is properly  placed  between the class  of 𝛼𝛼-closed sets and 
the class of  𝑔𝑔�𝛼𝛼  (resp. ψ)-closed  sets. We prove that the class of ψ*𝛼𝛼- closed sets form a topology.  
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1. INTRODUCTION 
 
Njastad [18] introduced the concept of an α-open sets. Levine [13] introduced the notion of g-closed sets in topological 
spaces and studied their basic properties. Veerakumar [22] introduced and studied ψ-closed sets in topological spaces. 
Ramya and Parvathi [20] introduced a new concept of generalized closed sets called ψg� -closed sets and ψg-closed sets 
in topological spaces. Jafari et.al[10] introduced  the class of  g� α-closed sets. In this paper we introduce a new class of 
generalized closed sets called ψ*𝛼𝛼 -closed sets in topological spaces. This class is obtained by generalizing 𝛼𝛼 -closed 
sets via ψg-open sets. 
 
2. PRELIMINARIES 
 
Throughout this paper (X, τ) represents non-empty topological space on which no separation axioms are defined, unless 
otherwise mentioned. The interior, closure and complement of a subset A of a space (X, τ) are denoted by int(A), cl(A) 
and Ac respectively.  
 
Definition 2.1: A subset A of a topological space (X, τ) is called   
(i) Semi-open set [12] if A ⊆ cl(int(A))  
(ii) 𝛼𝛼 -open set [18] if A ⊆ int(cl(int(A)))  
(iii) Pre-open set [17] if A ⊆ int(cl(A))                        
(iv) semi pre-open  set [3] if A ⊆ cl(int(cl(A)))   
 
The complements of the  above mentioned  sets are called semi-closed, α-closed,  pre-closed and  semi pre-closed sets  
respectively
 
The  intersection of all semi-closed (resp.α-closed, pre-closed  and semi pre-closed) subsets of  (X,τ) containing A is  
called the semi-closure (resp. α-closure, pre-closure and semi pre-closure) of A  and is denoted by scl(A) (resp. αcl(A), 
pcl(A) and  spcl(A)). A subset A of (X, τ) is called nowhere dense if int(cl(A))=φ. A subset A of a topological space  
(X, τ) is called semi-closed (resp.α-closed) if and only if scl(A)=A(resp. αcl(A)=A) 
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Definition 2.2: A subset A of a topological space (X, τ) is called 
(a)generalized closed set ( briefly g-closed) [13]  if cl(A) ⊆ U whenever A⊆U and U is open in (X, τ). 
(b) generalized semi-closed set  (briefly gs-closed) [4] if scl(A) ⊆ U whenever A⊆U and U is open  in  (X, τ). 
(c) semi-generalized closed set (briefly sg-closed) [5] if scl(A) ⊆ U whenever A⊆U and U is  semi- open in    (X, τ). 
(d) generalized 𝛼𝛼-closed set(briefly g𝛼𝛼-closed) [14] if αcl(A) ⊆ U whenever A⊆U and U is 𝛼𝛼-open in (X, τ). 
(e)  𝛼𝛼-generalized closed set (briefly 𝛼𝛼g-closed) [15] if αcl(A) ⊆ U whenever A⊆U and U is open in (X, τ). 
(f) generalized semi-pre -closed set(briefly gsp-closed) [7] if spcl(A) ⊆ U whenever A⊆U and U is open   in (X, τ). 
(g) g� - closed set [24] if cl(A) ⊆ U whenever  A⊆U and U is semi-open in  (X, τ). 
(h) g

*-closed  set[23]  if cl(A) ⊆ U whenever  A⊆U and U is g-open in  (X, τ). 
(i)*g- closed set [30] if cl(A) ⊆ U whenever  A⊆U and U is g� -open in  (X, τ). 
(j) gp-closed set [16] if pcl(A) ⊆ U whenever  A⊆U and U is  open in  (X, τ). 
(k) g*p -closed  set [25]  if pcl(A) ⊆ U whenever  A⊆U and U is g-open in  (X, τ). 
(l) αg� - closed  set [1] if αcl(A) ⊆ U whenever  A⊆U and U is g� -open in (X, τ). 
(m) αgs -closed  set[19] if αcl(A) ⊆ U whenever  A⊆U and U is semi-open in (X, τ). 
(n) g#s-closed set  [26] if scl(A) ⊆ U whenever  A⊆U and U is αg-open in (X, τ). 
(o) #gs-closed set [29] if scl(A) ⊆ U whenever  A⊆U and U is *g -open in (X, τ). 
(p) g�-closed set [9] if cl(A) ⊆ U whenever  A⊆U and U is # gs-open in (X, τ). 
(q) g�α -closed set [10] if αcl(A) ⊆ U whenever  A⊆U and U is # gs-open in (X, τ). 
(r) g�-semi-closed set[21]  if scl(A) ⊆ U whenever  A⊆U and U is # gs-open in (X, τ). 
(s) g�-pre closed set[8]  if pcl(A) ⊆ U whenever  A⊆U and U is # gs-open in (X, τ). 
(t) g#- closed set[27] if cl(A) ⊆ U whenever A⊆U and U is 𝛼𝛼g - open in (X, τ). 
(u) g

#p# -closed set[2] if cl(A) ⊆ U whenever A⊆U and U is g# - open in (X, τ). 
(v) ψ-closed set [22] if scl(A) ⊆ U whenever  A⊆U and U is sg-open in (X, τ). 
(w) ψg-closed set [20] if ψcl(A) ⊆ U whenever  A⊆U and U is open in (X, τ). 
(x) g*ψ -closed  set[28] if ψcl(A) ⊆ U whenever  A⊆U and U is  g-open in (X, τ). 
(y) ψg� - closed  set[20] if ψcl(A) ⊆ U whenever  A⊆U and U is g� -open in (X, τ). 
(z) αψ- closed set [6] if ψcl(A) ⊆ U whenever  A⊆U and U is  𝛼𝛼-open  in (X, τ). 
The complements of   the above mentioned sets are called their respective open-sets.  
 
3. ψ*𝛼𝛼 -CLOSED SETS 
 
Definition 3.1: A subset A of a topological space (X, τ) is said to be ψ*𝛼𝛼 -closed set if αcl(A) ⊆ U whenever  A⊆U and 
U is   ψg -open in (X, τ). 
 
The class of all  ψ*𝛼𝛼 -closed sets of  (X,τ)  is denoted by ψ*𝛼𝛼 C(X, τ). 
 
Proposition 3.2:  Every closed set in (X, τ) is ψ*𝛼𝛼 -closed but not conversely. 
 
Proof: Let A be a closed set and U be any ψg -open set containing A in X. Since every closed set is 𝛼𝛼-closed,       
αcl(A) ⊆ cl(A) =A⊆ U. Therefore A is ψ*𝛼𝛼 - closed. 
 
Example 3.3: Let X={a, b, c}, τ ={φ,{a},{a, b},X}. Then the subset {b} is ψ*𝛼𝛼 -closed but not closed in (X, τ). 
 
Proposition 3.4: Every 𝛼𝛼 -closed set in (X, τ) is ψ*𝛼𝛼 -closed but not conversely. 
 
Proof: Let A be an 𝛼𝛼-closed set and U be any ψg -open set containing A in X. Since A is 𝛼𝛼-closed, αcl(A) =A,    
αcl(A) =A⊆ U. Therefore   A is ψ*𝛼𝛼 -closed. 
 
Example 3.5: Let X={a, b, c}, τ ={φ,{a, b},X}. Then the subset {a, c} is ψ*𝛼𝛼 -closed but not 𝛼𝛼 -closed in (X, τ). 
 
Lemma 3.6:  Every  #gs -closed set in  (X, τ)  is ψg - closed  but not conversely. 
 
Proof: Let A be a #gs -closed set and U be any open set containing A in X. Since every open set is *g-open and A is #gs 
-closed, scl(A)⊆U. For every subset A of X, ψcl(A)⊆scl(A) and so ψcl(A)⊆U. Hence A is ψg -closed. 
 
Example 3.7: Let X={a, b, c}, τ ={φ,{a}, X}.Then the subset {a, b} is ψg -closed  but not #gs -closed  in (X, τ).   
 
Proposition 3.8: Every ψ*𝛼𝛼 -closed set  in  (X, τ)  is  g� α- closed  but not conversely. 
 
Proof: Let A be a ψ*𝛼𝛼-closed   set   and   U be any #gs - open set containing A in X.  Since every #gs -open set is       
ψg -open and A is ψ*𝛼𝛼 -closed, αcl(A) ⊆ U.  Hence A is g� α- closed. 
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Example 3.9: Let X={a, b, c, d}, τ ={φ,{d},{a, b},{a, b, d},X}. Then the subset {b, c, d} is g�α - closed but not           
ψ*𝛼𝛼 -closed in (X, τ).    
 
Proposition 3.10: Every  ψ*𝛼𝛼 -closed set in  (X, τ)  is gα(resp.αg, sg, gs, g� s)-closed but not conversely.  
 
Proof: By [10], every g�α - closed set is gα ( resp. αg, sg, gs, g� s)- closed set. Hence it holds. 
 
Example 3.11: Let X={a, b, c, d}, τ ={φ,{d}, {a, b}, {a, b, d}, X}.Then the subset {a, c, d} is  gα-closed  αg-closed, 
sg-closed, gs-closed and g� s- closed but not ψ*𝛼𝛼 -closed  in (X, τ).  
 
Proposition 3.12: Every ψ*𝛼𝛼 -closed set in (X, τ) is g�- pre closed but not conversely. 
 
Proof: Follows from the fact that every g�α - closed is g�- pre closed. 
 
Example 3.13: Let X={a, b, c}, τ ={φ,{a, b},X}. Then the subset {a} is g�- preclosed but not ψ*𝛼𝛼 -closed in (X, τ).    
 
Lemma 3.14: Every semi -closed set in (X, τ) is ψg -closed but not conversely. 
 
Proof: Let A be a semi- closed set and U be any open set containing A in X. Since A is semi- closed, scl(A)=A. For 
every  subset A of X, ψcl(A)⊆scl(A) and so we have  ψcl(A)⊆U.  Hence A is ψg -closed. 
 
Example 3.15: Let X={a, b, c}, τ ={φ,{a},X}. Then the subset {a, b} is ψg -closed but not semi -closed  in (X, τ). 
 
Proposition 3.16:  Every ψ*𝛼𝛼 -closed set in (X, τ) is αgs-closed but not conversely. 
 
Proof: Let A be a ψ*𝛼𝛼 -closed set and U be any semi-open set containing A in X. Since every semi-open set is ψg-open 
and A is ψ*𝛼𝛼 -closed, αcl(A) ⊆ U. Hence A is αgs -closed. 
 
Example 3.17: Let X={a, b, c}, τ ={φ,{a},{b, c},X}.Then the subset {a, c} is αgs-closed but not ψ*𝛼𝛼 -closed  in (X, τ).    
 
Lemma 3.18: Every g-closed set in (X, τ) is ψg-closed but not conversely. 
 
Proof: Let A be a g-closed set and U be any open set containing A in X. Since A is g-closed, cl(A)⊆U. For every  
subset A of X, ψcl(A)⊆cl(A)  and so we have  ψcl(A)⊆U. Hence A is ψg-closed. 
 
Example 3.19: Let X={a, b, c}, τ ={φ,{a},{b},{a, b},X}. Then the subset {a} is ψg-closed   but not g-closed in (X, τ).   
 
Proposition 3.20: Every ψ*𝛼𝛼 -closed set in (X, τ) is gp - closed (g*p-closed) but not conversely. 
 
Proof: Let A be a ψ*𝛼𝛼 -closed set and U be any  open (g-open) set containing A in X.  Since every open (g-open) set is 
ψg-open and A is ψ*𝛼𝛼 -closed, αcl(A) ⊆ U. For every subset A of X, pcl(A)⊆αcl(A)and so we have  pcl(A)⊆U. Hence 
A is gp -closed (g*p-closed). 
 
Example 3.21: Let X={a, b, c}, τ ={φ,{a, b}, X}. Then the subset {a} is gp -closed (g*p-closed) but not ψ*𝛼𝛼 -closed in 
(X, τ).   
 
Lemma 3.22: Every sg -closed set in   (X, τ) is ψg - closed but not conversely. 
 
Proof: Let A be a sg -closed set and U be any open set containing A in X. Since every open set is semi-open  and  A is 
sg-closed, scl(A)⊆U. For every subset A of X, ψcl(A)⊆scl(A) and so we have ψcl(A)⊆U. Hence A is ψg -closed. 
 
Example 3.23: Let X={a, b, c}, τ ={φ,{a}, {a, b},X}. Then the subset {a, c} is ψg -closed but not sg -closed  in (X, τ).   
 
Proposition 3.24: Every  ψ*𝛼𝛼 -closed set in (X, τ) is ψ-closed but not conversely. 
 
Proof: Let A be a ψ*𝛼𝛼 - closed set and  U be any sg -open set  containing A in X. Since every  sg-open set is   ψg-open  
and  A is ψ*𝛼𝛼 -closed set, αcl(A) ⊆ U. For every subset A of X, scl(A)⊆αcl(A) and so we have scl(A)⊆U. Hence A is 
ψ -closed. 
 
Example 3.25: Let X={a, b, c}, τ ={φ,{a},{b},{a, b},X}.Then the subset {a} is ψ-closed but not ψ*𝛼𝛼 -closed  in (X, τ). 
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Proposition 3.26: Every ψ*𝛼𝛼 -closed set in (X, τ) is ψg� (resp. ψg, gsp)-closed but not conversely. 
 
Proof: By [20], every ψ-closed set is ψg�  (resp. ψg, gsp)-closed. Therefore it holds 
 
Example 3.27: Let X={a, b, c, d},  τ ={φ,{a},X}.Then the subset {a, b} is  ψg� -closed, ψg-closed, and gsp-closed  but 
not ψ*𝛼𝛼 -closed in (X, τ). 
 
Lemma 3.28: Every αg -closed set in (X, τ)  is ψg - closed but not conversely. 
 
Proof: Let A be an αg -closed set and U be any open set containing A in X. Since A is  αg -closed, αcl(A) ⊆ U. For 
every   subset A of X, ψcl(A)⊆αcl(A) and so ψcl(A)⊆U. Hence A is ψg -closed. 
 
Example 3.29: Let X={a, b, c}, τ ={φ,{a},{b},{a, b},X}. Then the subset {a} is ψg -closed  but not αg -closed  in     
(X, τ).   
 
Lemma 3.30: Every gα -closed set in (X, τ) is ψg - closed but not conversely. 
 
Proof: Let A be a gα -closed set and U be any open set containing A in X. Since every open set is α-open and A is     
gα -closed, αcl(A) ⊆ U. For every subset A of X, ψcl(A)⊆αcl(A) and so ψcl(A)⊆U. Hence A is ψg -closed. 
 
Example 3.31: Let X={a, b, c}, τ ={φ,{a},{a, b},X}.Then the subset {a, c} is ψg -closed   but not gα -closed  in (X, τ).   
 
Proposition 3.32: Every ψ*𝛼𝛼 -closed set in   (X, τ) is  g#s -closed  but not conversely. 
 
Proof: Let A be a ψ*𝛼𝛼 -closed set and U be any αg -open set containing A in X. Since every αg open set is ψg -open  
and A is ψ*𝛼𝛼-closed, αcl(A) ⊆ U.  For every subset A of X, scl(A)⊆αcl(A) and so scl(A)⊆U. Hence A is g#s -closed. 
 
Example 3.33: Let X={a, b, c}, τ ={φ,{a},{b},{a, b},X}.Then the subset {a} is g#s -closed but not ψ*𝛼𝛼 -closed in     
(X, τ).   
 
Lemma 3.34: Every g� -closed set in (X, τ) is ψg -closed but not conversely. 
 
Proof: Let A be a g� -closed set and U be any open set containing A in X. Since every open set is semi open and A is  
g� -closed, cl(A)⊆U. For every subset A of X, ψcl(A)⊆cl(A) and so we have ψcl(A)⊆U. Hence A is ψg -closed. 
 
Example 3.35: Let X={a, b, c}, τ ={φ,{a},X}. Then the subset {a, b} is ψg -closed but not g� - closed in (X, τ). 
 
Proposition 3.36: Every ψ*𝛼𝛼 -closed set in (X, τ) is αg� - closed but not conversely. 
 
Proof: Let A be a ψ*𝛼𝛼 -closed set and U be any  g� -open set containing A in X. Since every g� - open set is ψg-open and 
A is ψ*𝛼𝛼 -closed, αcl(A) ⊆ U.  Hence A is 𝛼𝛼g�-closed. 
 
Example 3.37: Let X={a, b, c}, τ ={φ,{a},{a, b}, X}. Then the subset {a, c} is 𝛼𝛼g�-closed but not ψ*𝛼𝛼 -closed in (X, τ).    
 
Lemma 3.38: Every *g-closed set in (X, τ) is ψg-closed but not conversely. 
 
Proof: Let A be a *g -closed set and U be any open set containing A in X. Since every open set is g� -open and A is *g -
closed, cl(A)⊆U. For every subset A of X, ψcl(A)⊆cl(A) and so we have  ψcl(A)⊆U. Hence A is ψg-closed. 
 
Example 3.39: Let X={a, b, c}, τ ={φ,{a},{b},{a, b}, X}.Then the subset {b} is ψg -closed  but not *g -closed in      
(X, τ).   
 
Proposition 3.40:  Every ψ*𝛼𝛼 -closed set in (X, τ) is #gs- closed but not conversely. 
 
Proof: Let A be a ψ*𝛼𝛼 -closed set and U be any *g -open set containing A in X. Since every *g -open set is ψg-open and 
A is ψ*𝛼𝛼 -closed, αcl(A) ⊆ U. For every subset A of X, scl(A)⊆αcl(A) and so we have scl(A)⊆U. Hence A is  #gs -
closed. 
 
Example 3.41: Let X={a, b, c}, τ ={φ,{a},{a, b},X}.Then the subset {a, c} is #gs -closed but not ψ*𝛼𝛼 -closed  in (X, τ).    
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Proposition 3.42:  Every ψ*𝛼𝛼 -closed set in (X, τ) is g*ψ -closed but not conversely. 
 
Proof: Follows from the fact that every ψ-closed is g*ψ -closed 
 
Example 3.43: Let X={a, b, c, d}, τ ={φ,{a}, {a, b},X}. Then the subset{a, c, d} is  g*ψ -closed but not ψ*𝛼𝛼 -closed in 
(X, τ). 
 
Proposition 3.44:  Every ψ*𝛼𝛼 -closed set in (X, τ) is 𝛼𝛼ψ -closed but not conversely. 
 
Proof: Let A be a ψ*𝛼𝛼 -closed set and U be any 𝛼𝛼 -open set containing A in X. Since every 𝛼𝛼 -open set is ψg -open and 
A is ψ*𝛼𝛼 -closed, αcl(A) ⊆ U. For every subset A of X, ψcl(A) ⊆αcl(A). and so we have ψcl(A) ⊆U.  Hence A is αψ- 
closed. 
 
Example 3.45: Let X={a, b, c}, τ ={φ,{a},{b},{a, b},X}.Then the subset {a} is 𝛼𝛼ψ -closed but not ψ*𝛼𝛼 -closed in      
(X, τ).     
 
Remark 3.46: The following example shows that ψ*𝛼𝛼 -closedness is independent from g-closedness, g*-closedness,   
*g-closedness and  g#p#- closedness. 
 
Example 3.47: Let X={a, b, c},  τ ={φ,{a},{a, b},X}.In this topology  the set  {a, c} is g-closed, g*-closed, *g - closed 
and g#p#- closed but not ψ*𝛼𝛼 -closed. The set {b} is ψ*𝛼𝛼 -closed but not g-closed, g*-closed, *g - closed and              
g#p#- closed. 
 
Remark 3.48: The following examples show that  ψ*𝛼𝛼 -closedness is independent  from semi-closedness. 
 
Example 3.49: Let X={a, b, c}, τ ={φ,{a, b},X}.In this topology the set {b, c} is ψ*𝛼𝛼 -closed but not  semi-closed. 
 
Example 3.50: Let X={a, b, c}, τ ={φ.{a},{b},{a, b},X}. In this topology the set{b} is semi-closed but not               
ψ*𝛼𝛼 -closed. 
 
Remark 3.51: The following examples show that ψ*𝛼𝛼 -closedness is independent from g�-closedness, g#-closedness and 
g~ -closedness.  
 
Example 3.52: Let X={a, b, c} with τ ={φ,{a},{a, b},X}. In this topology  the set{b} is ψ*𝛼𝛼 -closed but not  g� - closed, 
g#-closed  and g�-closed. 
 
Example 3.53: Let X={a, b, c, d} with τ ={φ.{d},{a, b},{a, b, d}, X}. In this topology the set {a, c, d} is g� - closed,   
g#-closed and g�-closed but not ψ*𝛼𝛼 -closed.                        
 
Remark 3.54: The following diagram has shown the relationship of ψ*𝛼𝛼 -closed sets with already existing various 
closed sets. where A → B   represents A implies B  but not conversely. where A              B   represents A and  B  are 
independent of each other.    
 
                                                                                   
                      2               16     17 18 19 20      21       22              23 
                                                     24 
                      3                                                                                     25              
                                                                                                                        
                                                                                                                                           26                                                   
                      4                                                                                                               
                      5                                                                                                          27  
                      6                                                                                                           
                      7                                                                                                                   28    
                       29 
                      8          9 10 11 12 13      14         15                 30      
 
 
1. ψ

*𝛼𝛼 -closed      2. closed      3.  α-closed   4. g� α  -closed   5. gα-closed     6. αg -closed    7.sg-closed 8. gs-closed    9. 
g�-semi- closed  10. g�-pre-closed 11.αgs-closed 12.gp-closed  13. g*p-closed  14. ψ-closed 15. ψg�-closed 16.ψg- closed  
17. gsp-closed  18. g#s-closed  19. αg� -closed 20. #gs -closed   21. g*ψ-closed  22.αψ-closed      23.g- closed  24. g

*-
closed  25.*g-closed   26 g#p#-closed   27. semi-closed   28. g� -closed   29. g#-closed  30. g� -closed                                                                                                                                                               
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Definition 3.55: A subset A of a topological space (X, τ) is said to be ψ*𝛼𝛼 -open if its complement cA  is ψ*𝛼𝛼 -closed. 
 
The class of all ψ*𝛼𝛼 -open sets in   (X, τ) is denoted by ψ*𝛼𝛼O(X, τ). 
 
Proposition 3.56:  Every open (respectively α-open) set   is ψ*𝛼𝛼 -open. 
 
Proposition 3.57:  Every ψ*𝛼𝛼 -open set is g� α  - open (respectively gα-open, αg-open, sg-open, gs-open, g�-semi- open,  
g�-pre- open, αgs-open, gp- open,  g*p-open, ψ-open, ψg�- open, ψg-open, gsp- open, g#s-open, αg� -open,  #gs- open,   
g*ψ-open and αψ-open) 
 
4. PROPERTIES OF ψ*𝛼𝛼 -CLOSED SETS AND ψ*𝛼𝛼 -OPEN SETS 
 
Theorem 4.1:   If A and B are ψ*𝛼𝛼 -closed sets in a topological space  (X, τ), then A∪ B   is ψ*𝛼𝛼 -closed  set  in (X, τ). 
 
Proof:  Let A and B be any two  ψ*𝛼𝛼 -closed  sets in (X, τ) and U be  any  ψg -open set  containing A and B. We  have 
αcl(A) ⊆ U and αcl(B) ⊆ U. Always   αcl(A∪B) = αcl(A) ∪ αcl(B) ⊆ U. Hence A ∪ B is ψ*𝛼𝛼 -closed  in (X, τ). 
 
Theorem 4.2: Let A be a ψ*𝛼𝛼 -closed set in (X, τ). Then αcl(A)-A contains  no non-empty closed set in (X, τ). 
 
Proof: Suppose that A is ψ*𝛼𝛼-closed. Let F be a closed subset of αcl(A)-A. Then Fc is open and hence  ψg -open  such 
that  A⊆ Fc.  Since A is a ψ*𝛼𝛼 -closed set, αcl(A) ⊆ Fc. Thus F⊆(αcl(A))c. Since every closed set is 𝛼𝛼 -closed, F is 𝛼𝛼-
closed. Hence F⊆αcl(A). Therefore F⊆ αcl(A) ∩ (αcl(A))c

  =φ. Hence   F=φ.  
 
Remark 4.3: The converse of the above theorem is not true as seen from the following example. 
 
Example 4.4: Let X={a, b, c}, τ={φ, {a}, {b, c}, X}. If A={b} then αcl(A)-A ={b, c}-{b}={c}does not contain   non-
empty closed set.  However   A is   not  a  ψ*𝛼𝛼-closed subset of  (X, τ). 
 
Theorem 4.5: A set A is ψ*𝛼𝛼 –closed in (X, τ) if and only if αcl(A)-A contains  no non-empty ψg -closed  set in (X, τ). 
 
Proof: (Necessity): Suppose that A is ψ*𝛼𝛼 -closed. Let F be a ψg -closed set contained in  αcl(A)-A. Now Fc is a        
ψg -open set in X such that A⊆ Fc. Since A is a ψ*𝛼𝛼 -closed set in X, αcl(A) ⊆ Fc. Thus F⊆(αcl(A))c.  Also F⊆αcl(A)-
A. Therefore F⊆ αcl(A) ∩ (αcl(A))c

  =φ.  Hence F= φ.   
 
Sufficiency: Suppose that αcl(A)-A contains no non empty ψg -closed set. Let A⊆G and G be ψg-open. If αcl(A) is 
not a subset of G then αcl(A) ∩ Gc is a non-empty ψg -closed subset of αcl(A)-A, which is a contradiction. Therefore 
αcl(A)⊆G and hence A is ψ*𝛼𝛼 -closed. 
 
Proposition 4.6:  If  A is  ψg -open and ψ*𝛼𝛼 -closed subset of (X, τ).Then A is an  α-closed  set of (X, τ). 
 
Proof:  Since  A is ψg -open and  ψ*𝛼𝛼 -closed, αcl(A) ⊆ A. Hence A is α-closed.    
 
Theorem 4.7: If  a set A is ψ*𝛼𝛼 -closed  and  ψg -open   and  F is α-closed in (X,τ), then A ∩ F  is  α-closed. 
 
Proof: Since   A is ψ*𝛼𝛼 -closed and ψg -open, A is α-closed  by Proposition 4.6  Since  F is  𝛼𝛼 -closed in X,  A ∩ F  is  
𝛼𝛼 -closed in X. 
 
Theorem 4.8:  If A is a ψ*𝛼𝛼 -closed set in (X,τ) and A⊆B⊆αcl(A) . Then B is also a ψ*𝛼𝛼 -closed  set in  (X, τ). 
 
Proof: Let U be a ψg -open set of (X, τ) such that B⊆U. Then A⊆U.  Since A is a ψ*𝛼𝛼 -closed set, αcl(A) ⊆ U. Also  
since B⊆αcl(A),  αcl(B)⊆ αcl(αcl(A))= αcl(A). Hence αcl(B)⊆U.  Therefore B is also a ψ*𝛼𝛼 -closed set in (X, τ). 
 
Theorem 4.9:  Let A be  a  ψ*𝛼𝛼 -closed  set of   (X,τ). Then A is α-closed if and only if αcl(A)-A is ψg -closed. 
 
Proof: (Necessity): Let A be an  α-closed  subset of  (X,τ). Then αcl(A)=A and  therefore αcl(A)-A=φ which is  ψg- 
closed in (X, τ). 
 
Sufficiency: Let αcl(A)-A be a  ψg -closed set. Since A   is ψ*𝛼𝛼 -closed by theorem 4.5, αcl(A)-A contains no non- 
empty  ψg-closed set which implies αcl(A)-A=φ. That is αcl(A)=A. Hence A is α-closed.   
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Definition 4.10: Let (X,τ) be a topological space and let B⊆A⊆X Then B is ψ*𝛼𝛼 -closed relative to A if (αcl)A(B)⊆U, 
whenever  B⊆U, U is ψg-open in A. 
 
Theorem 4.11: Let B⊆A⊆X and suppose that B is  ψ*𝛼𝛼 -closed  in (X, τ), then B is ψ*𝛼𝛼 -closed relative to A. The 
converse is true if A is 𝛼𝛼 - open and  ψ*𝛼𝛼 -closed in (X, τ). 
 
Proof: Suppose that B is a ψ*𝛼𝛼 -closed in (X, τ). Let B⊆U, U is ψg - open   in A. Since U is  ψg - open set  in A,     
U=V ∩ A, where  V is ψg - open  in X. Hence  B⊆U⊆V. Since B is   ψ*𝛼𝛼 -closed in X. αcl(B)⊆V. Hence  αcl(B) ∩ A 
⊆ V ∩ A which in turn  implies that (αcl)A(B)⊆V ∩ A=U. Therefore   B is ψ*𝛼𝛼 -closed relative to A. 
 
Now, to prove the converse, assume  that  B⊆A⊆X where  A is α- open  and  ψ*𝛼𝛼 -closed in X and  B is a  ψ*𝛼𝛼 -closed  
relative to A.  Let  B⊆U and  U  be  ψg-open  in X. Then A ∩ U is   ψg- open in A.  Since B⊆A and B⊆U, B⊆A ∩ U 
Since B is a ψ*𝛼𝛼 -closed  relative to A, (αcl)A(B)⊆A ∩ U. Since A is α-open, it is  ψg-open   in X. Since A⊆A and   A 
is ψ*𝛼𝛼 -closed in X, αcl(A)⊆A. Since B⊆A, αcl(B)⊆αcl(A).Hence αcl(B)⊆A. Therefore αcl(B)∩A⊆αcl(B)  implies 
(αcl)A(B)=αcl(B).  Hence αcl(B) ⊆A ∩ U=U. Thus B is  ψ*𝛼𝛼 -closed in X.            
 
Theorem 4.12: In a topological space (X, τ), for each x∈X, either {x} is ψg-closed or X-{x} is ψ*𝛼𝛼 closed set in  
(X,τ). 
 
Proof: suppose that {x} is not ψg-closed in X. Then X-{x} is not ψg-open in X. Hence X is the only ψg-open set 
containing  X-{x}. That is (X-{x})⊆X  Therefore αcl(X-{x})⊆X  which implies that X-{x} is ψ*𝛼𝛼 -closed  in (X, τ). 
 
Definition 4.13: The intersection of all ψg-open subsets of (X, τ) containing A is called ψg- kernal of A and is denoted 
by ψg-ker(A)  
i.e  ψg-ker(A)=∩{U / U  is ψg-open in (X, τ) and  A ⊆U} 
 
Theorem 4.14: A subset A of a topological space (X, τ) is ψ*𝛼𝛼 -closed in (X,τ)   if and only if  αcl(A) ⊆ψg-ker(A). 
 
Proof: (Necessity): Suppose that A is ψ*𝛼𝛼 -closed set in (X,τ) and x∈αcl(A). If x∉ψg-ker(A),  then  there exists a      
ψg - open set U  in (X,τ) such that A⊆U and  x∉U. Since U is ψg - open set containing A and A is ψ*𝛼𝛼-closed, we 
have αcl(A) ⊆U,  which is a contradiction to x∈αcl(A) and x∉U. 
 
Sufficiency:  Suppose that αcl(A) ⊆ψg-ker(A). If U is any ψg-open set containing  A, then ψg-ker(A) ⊆U so we have  
αcl(A) ⊆U. Hence A   is ψ*𝛼𝛼 -closed.   
 
Remark 4.15: Jankovic and Reilly [11] stated that “If x is any  point in a topological space (X, τ), then every singleton 
{x} is either nowhere dense or preopen in (X, τ)”. Also this provides another decomposition namely X=X1 ∪ X2 where 
X1={x∈X:{x} is nowhere dense} and X2={ x∈X:{x} is preopen}. 
 
Proposition 4.16: For any subset   A   of a topological space  (X,τ), X2   ∩ αcl(A) ⊆ψg-ker(A). 
 
Proof: Let x∈ X2 ∩ αcl(A) and if  x∉ψg-ker(A).Then there is a ψg-open set U containing  A such that x∉U. Then Uc 
is ψg-closed set containing x. Since x∈αcl(A), αcl({x})⊆αcl(A). Since x∈X2, {x}⊆int(cl({x}), hence int(cl({x}) ≠φ. 
Also x∈αcl(A), so A ∩ int(cl({x}))≠φ. Hence there is  some point  y∈ A ∩ int(cl({x})) and therefore y∈A ∩ Uc , 
which is a contradiction. 
 
Theorem 4.17: A subset A of a topological space (X,τ) is ψ*𝛼𝛼 -closed in (X,τ) if and only if  X1  ∩ αcl(A) ⊆A 
 
Proof: (Necessity): Suppose that A is ψ*𝛼𝛼 -closed in (X,τ) and x∈ X1 ∩ αcl(A) but x∉A. Since x∈X1, int(cl({x})) =φ 
so we have  int(cl({x})) =φ ⊆{x}. Therefore {x} is semi-closed. Since every semi-closed set is ψg -closed, {x} is      
ψg -closed and hence U=X-{x} is ψg-open   set containing A and so αcl(A) ⊆U. Since x∈αcl(A) so we have x∈U,  
which is a contradiction. 
 
Sufficiency: Suppose that X1 ∩ αcl(A) ⊆A. Since A ⊆ψg-ker(A), X1 ∩ αcl(A) ⊆ψg-ker(A). Therefore                
αcl(A)= X ∩ αcl(A)=( X1 ∪ X2) ∩ αcl(A)=( X1 ∩ αcl(A)) ∪ (X2 ∩ αcl(A)).By hypothesis X1   ∩ αcl(A) ⊆ψg-ker(A) 
and by  
 
Proposition 4.16:  X2 ∩ αcl(A) ⊆ψg-ker(A).Hence αcl(A) ⊆ψg-ker(A). Therefore by Theorem 4.14 A is ψ*𝛼𝛼 -closed. 
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Theorem 4.18: Arbitrary intersection of ψ*𝛼𝛼 -closed sets in a topological space (X, τ) is ψ*𝛼𝛼- closed in (X, τ). 
 
Proof: Let F={Ai : i∈Λ }be a family of  ψ*𝛼𝛼 -closed sets and  A=∩i∈ Λ Ai. Since A ⊆Ai for each  i∈Λ ,  X1  ∩ αcl(A) 
⊆ X1   ∩ αcl(Ai) for each i∈Λ , using  theorem 4.17 for each ψ*𝛼𝛼 -closed set Ai, we have X1   ∩ αcl(A) ⊆ X1  ∩ αcl(Ai) 
⊆ Ai, for each  i∈ .Λ  Thus X1 ∩ αcl(A) ⊆ ∩i∈ Λ Ai.  = A That is X1  ∩ αcl(A) ⊆ A  and so  by theorem 4.17 A is ψ*𝛼𝛼-
closed in (X,τ)   
 
Remark 4.19: Thus from theorem 4.1and theorem 4.18 leads us into another class of closed sets namely ψ*𝛼𝛼 -closed 
sets which are closed under finite union and arbitrary intersection. Hence  the class of ψ*𝛼𝛼 -closed sets form a topology. 
 
Lemma 4.20: For a subset A of (X, τ), αcl(X-A) =X-αint(A) 
 
Theorem 4.21: A subset A of a topological space (X, τ) is   ψ*𝛼𝛼 -open if and only if U⊆αint(A) whenever U⊆A  and U 
is ψg -closed. 
 
Proof: (Necessity) Assume that A is ψ*𝛼𝛼 -open. Then Ac is ψ*𝛼𝛼 -closed. Let U be a ψg -closed set in (X, τ)     
contained in A. Then Uc  is a  ψg -open set in (X, τ) containing  Ac. Since Ac is ψ*𝛼𝛼 -closed, αcl(Ac) ⊆ Uc  equivalently  
U⊆αint(A). 
 
Sufficiency: Assume that U is contained in αint(A)  whenever U is contained in A and U is ψg -closed  in  (X, τ).  Let  
Ac

 be contained in U, where U is ψg -open.  Then Uc is contained in A. By criteria, Uc ⊆ αint(A). This implies  
(αint(A))c ⊆U  that is αcl(Ac) ⊆ U. Therefore  Ac is   ψ

*𝛼𝛼 -closed. Hence A is ψ*𝛼𝛼 -open in (X, τ). 
 
Proposition 4.22:  If αint(A) ⊆B⊆A and A is ψ*𝛼𝛼 –open, then B is ψ*𝛼𝛼 –open. 
 
Proof: Follows from lemma 4.20 and   Theorem 4.8 
 
Theorem 4.23: If A and B are ψ*𝛼𝛼 -open sets in (X, τ), then A ∩ B is ψ*𝛼𝛼 -open in (X, τ). 
 
Proof: Let A and B be ψ*𝛼𝛼-open sets in (X, τ). Then X-A and X-B are ψ*𝛼𝛼-closed sets and (X-A)∪(X-B)=  X-(A ∩B) 
is ψ*𝛼𝛼-closed in (X, τ). Hence A ∩ B is ψ*𝛼𝛼-open. 
 
Theorem 4.24: If  a set A  is  ψ*𝛼𝛼-open   in  (X, τ) if and only if G=X whenever  G is  ψg-open  and αint(A) ∪ Ac⊆G. 
 
Proof: (Necessity): Let A be ψ*𝛼𝛼-open and G is ψg-open and αint(A) ∪ Ac⊆G. This gives Gc⊆(αint(A) ∪ Ac)c= 
(αint(A))c  ∩ A=(αint(A))c  - Ac=αcl(Ac)- Ac. Since Ac is ψ*𝛼𝛼- closed  and  Gc is ψg -closed  by theorem 4.5, it follows 
that Gc=φ. Therefore G=X. 
 
(Sufficiency): Suppose that F is ψg -closed and F⊆A. Then αint(A) ∪ Ac⊆αint(A) ∪ Fc. As open implies α-open 
implies ψg-open, we get αint(A) is ψg-open and Fc  ψg-open. Henceαint(A) ∪ Fc ψg-open. It follows by the 
hypothesis that αint(A) ∪ Fc=X and hence F⊆αint(A). Therefore by theorem 4.21, A  is ψ*𝛼𝛼- open   in (X, τ). 
 
5. ψ*𝛼𝛼 –CLOSURE 
 
Definition 5.1:  The   ψ

*𝛼𝛼 -closure of A (briefly ψ*𝛼𝛼cl(A)) of a topological space (X,τ) is defined as follows. 
ψ*𝛼𝛼cl(A)= ∩ {F⊆X:  A ⊆F and F is  ψ*𝛼𝛼 -closed in (X,τ)} 
 
Proposition 5.2:  For a subset A of a topological space (X, τ), A ⊆ψ*𝛼𝛼cl(A) ⊆ cl(A) 
 
Proof: Follows from proposition 3.2 
 
Remark 5.3: If  A is ψ*𝛼𝛼 -closed in (X,τ), then ψ*𝛼𝛼cl(A)=A. 
 
Theorem 5.4: Let A be a subset of X and x∈X, then x∈ψ*𝛼𝛼cl(A) if and only if for every ψ*𝛼𝛼-open set U containing x, 
U ∩  A ≠φ. 
 
Proof: (Necessity): Let x∈ψ*𝛼𝛼cl(A) and there exists a ψ*𝛼𝛼-open set  U containing x such that U ∩ A = φ. Since          
A ⊆ Uc,  ψ*𝛼𝛼cl(A) ⊆ Uc and hence x∉ψ*𝛼𝛼cl(A),which is a contradiction. Hence U ∩  A ≠φ. 
(Sufficiency): Assume the given condition. Suppose that x∉ψ*𝛼𝛼cl(A). Then there exists a ψ*𝛼𝛼 - closed set F containing 
A such that x∉F. Then x∈Fc and Fc is ψ*𝛼𝛼-open. By assumption, Fc ∩ A ≠φ. Since A ⊆ F, Fc ∩ A = φ, which is a 
contradiction. Therefore x∈ψ*𝛼𝛼cl(A). 
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Proposition 5.5:  Let A and B be any two subsets of (X, τ). Then the following statements are true 
(a) ψ*𝛼𝛼cl(φ)=φ and ψ*𝛼𝛼cl(X)=X.   
(b)  If A ⊆B, then ψ*𝛼𝛼cl(A) ⊆ψ*𝛼𝛼cl(B).  
(c) ψ*𝛼𝛼cl(A) ∪ ψ*𝛼𝛼cl(B)= ψ*𝛼𝛼cl(A ∪ B)    
(d)  ψ

*𝛼𝛼cl(A∩B) ⊆ψ*𝛼𝛼cl(A) ∩ψ*𝛼𝛼cl(B)   
(e) ψ*𝛼𝛼cl(ψ*𝛼𝛼cl(A)) =ψ*𝛼𝛼cl(A). 
 
Proof: (a) and (b) follow from the definition of ψ*𝛼𝛼-closure. 
(c) Since A ⊆ A ∪ B  and B ⊆ A ∪ B, by (b) ψ*𝛼𝛼cl(A) ⊆ψ*𝛼𝛼cl(A ∪ B) and  ψ*𝛼𝛼cl(B) ⊆ψ*𝛼𝛼cl(A ∪ B).Hence 
ψ*𝛼𝛼cl(A) ∪ ψ*𝛼𝛼cl(B) ⊆ ψ*𝛼𝛼cl(A ∪ B). To prove the reverse inclusion, let  x∈ψ*𝛼𝛼cl(A∪B) and suppose that 
x∉ψ*𝛼𝛼cl(A) ∪ ψ*𝛼𝛼cl(B).Then x∉ψ*𝛼𝛼cl(A) and x∉ψ*𝛼𝛼cl(B). Therefore there exist a ψ*𝛼𝛼 - closed sets U and V in X  
such that A ⊆ U, B ⊆ V,  x∉U and x∉V. Hence we have A ∪ B ⊆ U ∪ V and  x∉U ∪ V. By theorem 4.1, U ∪ V is a 
ψ*𝛼𝛼-closed set and hence x∉ψ*𝛼𝛼cl(A ∪ B), which is a contradiction. Hence ψ*𝛼𝛼cl(A∪B)⊆ψ*𝛼𝛼cl(A)∪ 
ψ*𝛼𝛼cl(B).Therefore  ψ*𝛼𝛼cl(A) ∪ ψ*𝛼𝛼cl(B)= ψ*𝛼𝛼cl(A ∪ B). 
 
(d) Since A  ∩ B ⊆ A and A  ∩ B ⊆ B, by (b) ψ*𝛼𝛼cl(A  ∩ B) ⊆ ψ*𝛼𝛼cl(A) and ψ*𝛼𝛼cl(A  ∩ B) ⊆ ψ*𝛼𝛼cl(B). Hence 
ψ*𝛼𝛼cl(A∩B) ⊆ψ*𝛼𝛼cl(A) ∩ψ*𝛼𝛼cl(B). 
 
(e) Follows from the definition of ψ*𝛼𝛼-closure. 
 
Remark 5.6: The reverse inclusion of  (d)  is not true  in general as seen from the following example. 
 
Example 5.7: Let X={a, b, c, d}, τ={φ, {a}, {a, b, c},  X}.If  A={a} and B={d}, then ψ*𝛼𝛼cl(A)=X and ψ*𝛼𝛼cl(B)={d}, 
A  ∩ B=φ, ψ*𝛼𝛼cl(A  ∩ B)= φ. But ψ*𝛼𝛼cl(A) ∩ ψ*𝛼𝛼cl(B)={d}. 
 
Theorem 5.8: The   ψ

*𝛼𝛼 –closure is  a Kuratowski   closure operator  on (X,τ). 
 
Proof: From  ψ*𝛼𝛼cl(φ)=φ,A ⊆ψ*𝛼𝛼cl(A), ψ*𝛼𝛼cl(A) ∪ ψ*𝛼𝛼cl(B)= ψ*𝛼𝛼cl(A ∪ B) and ψ*𝛼𝛼cl(ψ*𝛼𝛼cl(A)) =ψ*𝛼𝛼cl(A) we can 
say that  ψ*𝛼𝛼 –closure is  a  Kuratowski   closure operator  on (X,τ). 
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