International Journal of Mathematical Archive-7(6), 2016, 98-103 MA Available online through www.ijma.info ISSN 2229 - 5046 ## SOLVING FUZZY SEQUENCING PROBLEM USING GENERALIZED TRAPEZOIDAL FUZZY NUMBERS #### K. KRIPA*1, R. GOVINDARAJAN2 ¹Assistant Professor, St. Thomas College of Arts and Science, Chennai, India. ²Professor and Head, D G Vaishnav College, Chennai, India. (Received On: 20-06-16; Revised & Accepted On: 30-06-16) #### **ABSTRACT** In this paper, we present the different methods to solve fuzzy sequencing problem using fuzzy technological values like generalized fuzzy numbers. The procedure adopted was the fuzzy sequencing problems are defuzzified using ranking functions and hence solving the crisp sequencing problem by standard sequencing algorithm for obtaining the optimal sequence and minimum completion time in terms of fuzzy values which is illustrated with numerical examples and solutions. Keywords: Fuzzy sequencing problem, generalized fuzzy numbers, fuzzy arithmetic and ranking functions. #### 1. INTRODUCTION Operations research is a problem solving and decision making Science. Modeling is the essence of operations research. Formulating a model help us to convert the complexities and uncertainties of a decision making problem to a logical model which is open to formal analysis. It also involves the application of scientific tools for finding optimum solution to the problem involving the operations of system. A sequencing problem is to determine the optimal sequence in which 'n' jobs to be performed by 'm' machine and various optimality criteria like minimum elapsed time, minimum idle time, minimum inventory cost with the given conditions i) the order of the machine in which each job should be performed ii) the actual or expected time required by the jobs on each of the machine. Sequencing have been most commonly encountered in production shops where different products are to be processed over various combinations of machines. The complicated real life situations are defined in terms of impressions which was overcame by **Zadeh** with a powerful tool of fuzzy data. Thus fuzzy sequencing problem plays a vital role in formulating the uncertainty in actual environment. This paper is framed as follows section2: Basic definitions and preliminary results, section 3: Application of ranking functions to solve Fuzzy sequencing problem (FSP), section 4: Numerical examples illustrated with solutions and section 5: conclusion. #### 2. PRELIMINARIES Basic notations and preliminary results are referred from [1, 2, 3] **Definition 2.1:** A fuzzy set $A = \{(x, \mu_{\tilde{A}}(x)): x \in X\}$ is defined for $x \in X$ with respect to the membership function $\mu_{\tilde{A}}$ where $\mu_{\tilde{A}}$ is defined by $\mu_{\tilde{A}}: X \to [0, 1]$. Corresponding Author: K. Kripa*1, R. Govindarajan² ¹Assistant Professor, St. Thomas College of Arts and Science, Chennai, India. #### Solving Fuzzy Sequencing Problem Using Generalized Trapezoidal Fuzzy Numbers / IJMA- 7(6), June-2016. **Definition 2.1.1:** A generalized fuzzy number \tilde{A} where $\tilde{A} = (a, b, c, d; w)$ is called **generalized trapezoidal fuzzy** number if its membership function is given by $$\mu_{\tilde{A}} = \begin{cases} \frac{w(x-a)}{(b-a)}, & a \le x \le b \\ w, & b \le x \le c \end{cases}$$ $$\frac{w(x-c)}{(c-d)}, & c \le x \le d, \text{ where } 0 < w \le 1.$$ **Definition 2.1.2:** The ranking function of generalized trapezoidal fuzzy number $\tilde{A} = (a, b, c, d; w)$ is given by $\Re(\tilde{A}) = \frac{w(2a+2b+d-c)}{4}$, where $\tilde{A} = (a, b, c, d; w)$ **Fuzzy arithmetic operations 2.1.3:** Let $\tilde{\mathbf{A}} = (a, b, c, d; w_1)$ and $\tilde{\mathbf{B}} = (e, f, g, h; w_2)$ then - 1. $\tilde{\mathbf{A}} \oplus \tilde{\mathbf{B}} = (a+e, b+f, c+g, d+h; \min(w_1, w_2))$ - 2. $\tilde{\mathbf{A}} \ominus \tilde{\mathbf{B}} = (\text{a-e, b-f, c-g, d-h; } \min(w_1, w_2))$ #### 3. APPLICATION OF RANKING FUNCTIONS TO SOLVE FUZZY SEQUENCING PROBLEM #### 3.1 Algorithm for solving fuzzy sequencing problem #### 3.1.1 Processing 'n' jobs through two machines The simplest possible fuzzy sequencing decision problem is that of 'n' jobs two machine fuzzy sequencing problem is to determine the sequence in which 'n' jobs should be processed through two machines so as to minimize the total elapsed time T. This type of problem can be completely described as: - i) only two machines A and B are involved - ii) each job is processed in the order AB, and - the expected fuzzy processing time $\tilde{A}_i = (a_i, b_i, c_i, d_i; w_i)$ and $\tilde{B}_i = (x_1, y_1, z_1, u_1; w_1)$ where i = 1, 2, 3...n are known as given below: The procedure for the solution of the above problem is described as follows: Step-1: using ranking function the fuzzy sequencing problem is defuzzified into crisp sequencing problem Step-2: the optimal sequence for the crisp sequencing problem is determined using crisp sequencing algorithm **Step-3:** After finding the optimal sequence as stated above, the total elapsed fuzzy time and also the fuzzy idle times on machines \tilde{A} and \tilde{B} are determined as follows **Step-4: Total elapsed fuzzy time** = the fuzzy time between starting the first job in the optimal sequence on machine \tilde{A} and completing the last job in the optimal sequence on machine \tilde{B} . Step-5: Fuzzy idle time on machine $\tilde{A} = (\text{fuzzy time when the last job in the optimal sequences is completed on Machine <math>\tilde{B}) - (\text{fuzzy time when the last job in the optimal sequence completed on machine }\tilde{A})$ **Step-6: Fuzzy idle time on machine** $\tilde{\mathbf{B}} = (\text{fuzzy time when the first job in the optimal sequence completed on machine <math>\tilde{\mathbf{A}}) + \sum_{k=2}^{n} [(\text{fuzzy time when k}^{\text{th}} \text{ job starts on machine } \tilde{\mathbf{B}}) - (\text{fuzzy time k} - 1)^{\text{st}} \text{ job finished on machine } \tilde{\mathbf{B}})]$ #### 3.1.2 Processing 'n' jobs through three machines This type of problem can be completely described as: - i) only two machines A, B and C are involved - ii) each job is processed in the order ÃãC - iii) no passing of jobs is permitted, and - iv) the expected fuzzy processing time $\tilde{A}_i = (a_i, b_i, c_i, d_i; w_i)$, $\tilde{B}_i = (x_i, y_i, z_i, u_i; w_i)$ $\tilde{C} = (e_i, f_i, g_i, h_i; w_i)$ where i = 1, 2, 3...n are known as given below: #### K. Kripa*¹, R. Govindarajan² / Solving Fuzzy Sequencing Problem Using Generalized Trapezoidal Fuzzy Numbers / IJMA- 7(6), June-2016. The procedure for the solution of the above problem is described as follows: Step-1: using ranking function the fuzzy sequencing problem is defuzzified into crisp sequencing problem **Step-2:** the optimal sequence for the crisp sequencing problem of Processing 'n' jobs through three machines is determined using crisp sequencing algorithm. The resulting optimal sequence will also be optimal for the original problem of 3 machines and n jobs. The total elapsed fuzzy time and also the fuzzy idle times on machines \tilde{A} , \tilde{B} and \tilde{C} are determined as follows: **Step-3: Total elapsed fuzzy time** = the fuzzy time between starting the first job in the optimal sequence on machine \tilde{A} and completing the last job in the optimal sequence on machine \tilde{C} . **Step-4: Fuzzy idle time on machine** $\tilde{\bf A}$ = (fuzzy time when the job J1 is completed on Machine $\tilde{\bf C}$) – (fuzzy time when the last job is completed on machine $\tilde{\bf A}$) **Step-5:** Fuzzy idle time on machine $\tilde{\mathbf{B}} = (\text{fuzzy time when the first job J3is completed on machine } \tilde{\mathbf{A}}) + \sum_{k=2}^{n} [(\text{fuzzy time when k}^{\text{th}} \text{ job on machine } \tilde{\mathbf{B}}) - (\text{fuzzy time out for } (k-1)^{\text{st}} \text{ job on machine } \tilde{\mathbf{B}})] + [\text{fuzzy time last job is completed on } \tilde{\mathbf{C}} - \text{fuzzy time last job is completed on } \tilde{\mathbf{B}}]$ **Step-6: Fuzzy idle time on machine C=** (fuzzy time when the first job J3is completed on machine B) + $\sum_{k=2}^{n} [(fuzzy \ time \ when \ k^{th} \ job \ on machine C) - (fuzzy \ time \ out for (k-1)^{st} job \ on machine C)]$ #### 3.1.3 Processing 'n' jobs through m machines This type of problem can be completely described as: - i) there are n jobs denoted by J1, J2, J3,.... In to be performed - ii) each job is processed through m machines \tilde{A}_1 , \tilde{A}_2 , \tilde{A}_3 ,... \tilde{A}_m in the order $\tilde{A}_1\tilde{A}_2$, \tilde{A}_3 ,... \tilde{A}_m Machines - iii) no passing of jobs is permitted - iv) the expected fuzzy processing time are known as given below: Job machine fuzzy time for n jobs and m machines | | $ ilde{ extbf{A}}_1$ | $ ilde{ t A}_2$ | | $ ilde{ ilde{A}}_{m}$ | |----|--|--|-------|--| | J1 | $(a_{11}, b_{11}, c_{11}, d_{11}, w_{11})$ | $(a_{12}, b_{12}, c_{12}, d_{12}, w_{12})$ | | $(a_{1m}, b_{1m}, c_{1m}, d_{1m}, w_{1m})$ | | J2 | $(a_{21}, b_{21}, c_{21}, d_{21}, w_{21})$ | $(a_{22}, b_{22}, c_{22}, d_{22}, w_{22})$ | ••••• | $(a_{2m}, b_{2m}, c_{2m}, d_{2m}, w_{2m})$ | | J3 | $(a_{31}, b_{31}, c_{31}, d_{31}, w_{31})$ | $(a_{32}, b_{32}, c_{32}, d_{32}, w_{32})$ | ••••• | $(a_{3m}, b_{3m}, c_{3m}, d_{3m}, w_{3m})$ | | Ji | $(a_{i1}, b_{i1}, c_{i1}, d_{i1}, w_{i1})$ | $(a_{i2}, b_{i2}, c_{i2}, d_{i2}; w_{i2})$ | | $(a_{im},b_{im,}c_{im,}d_{im,;}w_{im})$ | | Jn | $(a_{n1}, b_{n1}, c_{n1}, d_{n1}, w_{n1})$ | $(a_{n2}, b_{n2}, c_{n2}, d_{n2}, w_{n2})$ | | $(a_{nm}, b_{nm}, c_{nm}, d_{nm}; w_{nm})$ | The procedure for the solution of the above problem is described as follows: Step-1: using ranking function the fuzzy sequencing problem is defuzzified into crisp sequencing problem **Step-2:** the optimal sequence for the crisp sequencing problem of Processing 'n' jobs through m machines is determined using crisp sequencing algorithm. The resulting optimal sequence will also be optimal for the original problem. The total elapsed fuzzy time and also the fuzzy idle times on machines are also determined #### 4. NUMERICAL EXAMPLES ILLUSTRATED WITH SOLUTIONS #### 4.1 Type I: Fuzzy Sequencing for 5 jobs on 2 machines #### K. Kripa*1, R. Govindarajan2/ #### Solving Fuzzy Sequencing Problem Using Generalized Trapezoidal Fuzzy Numbers / IJMA- 7(6), June-2016. **Ex-1:** A book binder has one printing press, one binding machine and manuscripts of a number of different books. The time required to perform the printing and binding operation for each book are shown below. We wish to determine the order in which books should be processed, in order to minimize the total time (in hrs) required to turn out all the books Books: B1 B2 B3 B4 B5 Printing time: (8,10,12,16;1) (2,2,2,2;1) (16,18,20,24;1) (4,6,8,12;1) (18,20,22,26;1) Binding time: (2,4,6,10;1) (10,12,16,20;1) (12,14,16,20;1) (14,16,18,22;1) (6,8,10,14;1) **Solution:** Using ranking function for trapezoidal fuzzy number given fuzzy sequencing problem is converted in crisp problem and the optimal sequence is obtained by standard sequencing algorithm The sequence of the books is given by | 5 |) | 5 | 1 | į | |------------|----|----|----------------------------|-------| | B 2 | R4 | B3 | B5 | I R I | | D_{-} | דע | כם | $\mathbf{D}_{\mathcal{I}}$ | וע | The fuzzy optimum time for completing all the books and the idle time for printing and binding is given in the following table: | Books | Printing | Printing | Binding | Binding | Idle time for printing | Idle time | |-------|-----------------|-----------------|-----------------|-----------------|------------------------|-------------| | | | | | | | For binding | | | In time | Out time | In time | Out time | | | | B2 | (0,0,0,0;1) | (2,2,2,2;1) | (2,2,2,2;1) | (12,14,18,22;1) | = | (2,2,2,2;1) | | B4 | (2,2,2,2;1) | (6,8,10,14;1) | (12,14,18,22;1) | (26,30,36,44;1) | = | - | | В3 | (6,8,10,14;1) | (22,26,30,38;1) | (26,30,36,44;1) | (38,44,52,64;1) | = | - | | B5 | (22,26,30,38;1) | (40,46,52,64;1) | (40,46,52,64;1) | (46,54,62,78;1) | = | (2,2,0,0;1) | | B1 | (40,46,52,64;1) | (48,56,64,80;1) | (48,56,64,80;1) | (50,60,70,90;1) | (2,4,6,10;1) | (2,2,2,2;1) | | | | | | Total | (2,4,6,10;1) | (6,6,4,4;1) | The optimum (minimum) time required to turn out all the books is (50, 60, 70, 90; 1) hrs The idle time for printing is (2, 4, 6, 10; 1) hours The idle time for binding is (6, 6, 4, 4; 1) hours #### 4.2Type II: Fuzzy Sequencing for 5 jobs on 3 machines | Ex 2: | Job: | J1 | J2 | J3 | J4 | J5 | |-------|--------|--------------|---------------|--------------|----------------|---------------| | Mac | hineÃ: | (2,6,8,12;1) | (4,8,10,14;1) | (4,6,8,12;1) | (6,10,12,14;1) | (2,6,8,12;1) | | Mac | hineB: | (2,2,2,2;1) | (1,1,1,1;1) | (2,4,6,10;1) | (2,6,8,12;1) | (3,3,3,3;1) | | Mac | hineC: | (3,3,3,3;1) | (4,8,10,14;1) | (2,6,8,12;1) | (4,6,8,12;1) | (4,8,10,14;1) | **Solution:** Using ranking function for trapezoidal fuzzy number given fuzzy sequencing problem is converted in crisp problem and the optimal sequence is obtained by standard sequencing algorithm The sequence of the jobs is given by | J2 | J5 | J4 | J3 | J1 | |----|----|----|----|----| The fuzzy optimum time for completing all the jobs and the idle time for the two machines is given in the following table: | Job | | Machine Ã | | Machine Ã | Machine B | Machine B | Machine C | Machine C | |-----|-----------|-----------------|-----------|-----------------|-----------------|-----------------|-----------------|-----------------| | | | In time | | Out time | In time | Out time | In time | Out time | | J2 | | (0,0,0,0;1) | | (4,810,14;1) | (4,8,10,14;1) | (5,91115;1) | (5,9,11,15;1) | (9,17,21,29;1) | | J5 | | (4,8,10,14;1) | | (7,11,14,16;1) | (6,14,18,26;1) | (9,17,21,29;1) | (9,17,21,29;1) | (13,25,31,43;1) | | J4 | | (6,14,18,26;1) | | (12,24,30,42;1) | (12,24,30,42;1) | (14,30,38,54;1) | (14,30,38,54;1) | (18,36,46,66;1) | | J3 | | (12,24,30,42;1) | | (16,30,38,54;1) | (16,30,38,54;1) | (18,34,44,64;1) | (18,34,44,64;1) | (20,42,54,78;1) | | J1 | | (16,30,38,54;1) | | (18,36,46,66;1) | (18,36,46,66;1) | (20,38,48,68;1) | (20,38,48,68;1) | (23,45,57,81;1) | | | Idle time | | Idle time | Idle time | | | | | | | Ã | | B | С | | | | | (5.9.11.15:1) (4,8,10,14;1) (1,5,7,11;1) #### K. Kripa*¹, R. Govindarajan² / Solving Fuzzy Sequencing Problem Using Generalized Trapezoidal Fuzzy Numbers / IJMA- 7(6), June-2016. | | - | (3,7,9,13;1) | (1,5,7,11;1) | |-------|---------------|-----------------|----------------| | | - | (2,0,0,0;1) | - | | | (5,9,11,15;1) | (0,2,2,2;1) | - | | | | (3,7,11,15;1) | | | Total | (5,9,11,15;1) | (13,29,39,55;1) | (6,14,18,26;1) | The optimum (minimum) time required to finish all the jobs is (23, 45, 57, 81; 1) hrs The idle time for machines \tilde{A} is (5, 9, 11, 15; 1) hours The idle time for machines B is (13, 29, 39, 55; 1) hours The idle time for machines C is (6, 14, 18, 26; 1) hours #### 4.3 Type III: Fuzzy Sequencing for 4 jobs on 5 machines | Ex: 3 | | | | | Machine | | | |-------|-----|----|----------------|---------------|---------------|---------------|-----------------| | | | | Ã | B | Č | Ď | Ē | | | | J1 | (6,10,12,16;1) | (4,8,10,14;1) | (2,4,6,10;1) | (2,6,812;1) | (8,12,14,18;1) | | | Job | J2 | (6,8,10,14;1) | (6,810,14;1) | (4,6,8,12;1) | (4,8,10,14;1) | (10,12,16,20;1) | | | | J3 | (4,8,1014;1) | (4,6,8,12;1) | (4,8,10,14;1) | (6,810,14;1) | (8,10,12,16;1) | | | | J4 | (8,10,12,16;1) | (2,6,8,12;1) | (2,4,6,10;1) | (2,4,6,10;1) | (6,8,10,14;1) | **Solution:** Using ranking function for trapezoidal fuzzy number given fuzzy sequencing problem is converted in crisp problem and the optimal sequence is obtained by standard sequencing algorithm The sequence of the jobs is given by The fuzzy optimum time for completing all the jobs and the idle time for the two machines is given in the following table: | Job | Machine Ã | Machine Ã | Machine B | Machine B | Machine C | Machine C | |-----|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------| | | In time | Out time | In time | Out time | In time | Out time | | | (0,0,0,0) | (6,10,12,16;1) | (6,10,12,16;1) | (10,18,22,30;1) | (10,18,22,30;1) | (12,2228,40;1) | | J1 | | | | | | | | J3 | (6,10,12,16;1) | (10,18,22,30;1) | (10,18,22,30;1) | (14,24,30,42;1) | (14,24,30,42;1) | (18,32,40,56;1) | | J2 | (10,18,22,30;1) | (16,26,32,44;1) | (16,26,32,44;1) | (22,3,42,58;1) | (22,34,42,58;1) | (26,40,50,70;1) | | J4 | (16,26,32,44;1) | (24,36,44,60;1) | (24,36,44,60;1) | (26,42,52,72;1) | (26,42,52,72;1) | (28,48,60,84;1) | | Job | Machine D | Machine D | Machine E | Machine E | |-----|-----------------|-----------------|------------------|------------------| | | In time | Out time | In time | Out time | | | (12,22,28,40;1) | (14,28,36,52;1) | (14,28,36,52;1) | (22,40,50,70;1) | | J1 | | | | | | J3 | (18,32,40,56;1) | (24,40,50,70;1) | (24,40,50,70;1) | (32,50,62,86;1) | | J2 | (26,40,50,70;1) | (30,48,60,84;1) | (32,50,62,86;1) | (42,62,78,106;1) | | J4 | (30,48,60,84;1) | (32,52,66,94;1) | (42,62,78,106;1) | (48,70,88,120;1) | | Job | Idle time | |-------|-----------------|------------------|--------------------|--------------------|-------------------| | | Ã | B | Č | Ď | Ē | | J1 | - | (6,10,12,16;1) | (10,18,22,30;1) | (12,22,28,40;1) | (14,28,36,52;1 | | J3 | - | - | (-26,-4,8,30;1) | (-34,-4,12,42;1) | (-46,-10,10,48;1) | | J2 | = | (-26,-4,8,30;1) | (-34,-6,10,40;1) | (-44,-10,10,46;1) | = | | J4 | (24,34,44,60;1) | (-34,-6,10,38;1) | (-44,-8,8,46;1) | = | = | | | | (-24,18,46,94;1) | (-36,10,40,94;1) | (-46,4,36,88;1) | | | Total | (24,34,44,60;1) | (-78,18,76,78;1) | (-130,10,88,240;1) | (-112,12,86,216;1) | (-32,18,46,100;1) | The optimum (minimum) time required to finish all the jobs is (48, 70, 88,120; 1) hrs The idle time for machines \tilde{A} is (24, 34, 44, 60; 1) hours The idle time for machines B is (-78, 18, 76, 78; 1) hours ### K. Kripa*¹, R. Govindarajan² / Solving Fuzzy Sequencing Problem Using Generalized Trapezoidal Fuzzy Numbers / IJMA- 7(6), June-2016. The idle time for machines \tilde{C} is (-130, 10, 88,240; 1) hours The idle time for machines D is (-112, 12, 86,216; 1) hours The idle time for machines \tilde{E} is (-32, 18, 46,100; 1) hours #### 5. CONCLUSION Fuzzy sequencing problem is solved by classical approach after defuzzification, which is easy to understand, helps to formulate uncertainty in actual environment and also serves as application for the decision makers in real life situation. #### REFERENCES - 1. M. Jayalakshmi and P.Pandian A new method for finding an optimal fuzzy Solution for fully fuzzy linear programming problem –International Journal of Engineering research and applications vol 2, Issue 4 , July-August 2012, Pp 247-254 - 2. Amit kumar,Pushpinder singh, Pampreet Kaur, Amar Preet Kaur- Generalized Simplex algorithm to olve fuzzy linear programming problem with ranking of Generalized fuzzy numbers- Turkish Journal of fuzzy system, vol 1, No.2, Pp80-103, 2010. - 3. Amit kumar, Pushpinder singh, Pampreet Kaur, Amar Preet Kaur- A new method for solving fully fuzzy linear programming problem- Applied mathematical modeling 35(2011) 817-823. #### Source of support: Nil, Conflict of interest: None Declared [Copy right © 2016. This is an Open Access article distributed under the terms of the International Journal of Mathematical Archive (IJMA), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.]