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ABSTRACT

In the present paper we prove a common fixed point theorem for four weakly compatible self maps of a complete G
metric space
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1. INTRODUCTION

In an attempt to generalize fixed point theorems on a metric space, Gahler [2, 3] introduced the notion of 2-metric
spaces while Dhage [1] initiated the notion of D - metric spaces. Subsequently several researchers have proved that
most of their claims made are not valid. As a probable modification to D - metric spaces Shaban Sedghi, Nabi Shobe

and Haiyun Zhou [5] introduced D" metric spaces. In 2006, Zead Mustafa and Brailey Sims [7] initiated G - metric
spaces .Of these two generalizations, the G -metric space evinced interest in many researchers.

The purpose of this paper is to prove a common fixed point theorem for four weakly compatible self maps of a

complete G -metric space. Now we recall some basic definitions and lemmas which will be useful in our later
discussion

2. PRELIMINARIES

We begin with

Definition 2.1: ([7], Definition 3) Let X be a non-empty setand G : X — [0, o0) be a function satisfying:

Gl G(X,y,2)=0if x=y=12

G2) 0<G(x,X,y)forall X, yeX with X#Y

G3) G(X,X,¥Y)<G(X,y,z)forall X,Yy,Ze Xwith Z#Y

G4  G(X,Y,2)=G(o(x,Yy,2)) for allX,y,zZe X, where o(X,y,z) is a permutation of the set
{X,'y, z} and

G5  G(X,Y,2) <G(X,w,wW)+G(w,Yy,z) forall X, y,z,we X.
Then G is called a G - metric on X and the pair (X, G) is called a G - metric Space.

Definition 2.2: ([7], Definition 4) A G-metric Space (X, G) is said to be symmetric if
G6) G(X, Y, ¥)=G(x, X, y) forall X,y e X
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The example given below is a non-symmetric G-metric space.

Example 2.3: ([7], Examplel): Let X ={a,b}.DefineG : X*® — [0, ©) byG(a,a,a) = G(b,b,b) =0;
G(a,a,b)=1,G(a,b,b) =2 andextend G toall of X°by using (G4). Then it is easy to verify that (X, G) is
a G - metric space. Since G(a,a,b) = G(a,b,b), the space (X, G) is non-symmetric, in view of (G6).

Example 2.4: Let (X, d) be a metric space. Define G¢ : X* — [0, 0) by

G (x,Y,2) :%[d(x, y)+d(y, z2)+d(z, X)]for X, Y, Z€ X .Then (X, G{) is a G-metric Space.

Lemma 2.5: ([7], p-292) If (X, G) is a G-metric space then G(X, Y, Y) < 2G(Y, X, X) forall X,y € X

Definition 2.6: Let (X, G) be a G-metric Space. A sequence {X_} in X is said to be G-convergent if there isa X, € X
such that to each € >0 there is a natural number N for which G(X,, X, X,) < & forall N> N .

Lemma 2.7: ([7], Proposition 6) Let (X, G) be a G-metric Space, then for a sequence{x } < X and point X € X the

following are equivalent.
(1) {x,}Iis G- convergentto X.

(2) dg(X,,X) >0 as n— oo (thatis {x }convergesto X relative to the metric dg)
() G(X,,X,,X) >0 a n—oo

@ G(X,,XX)—>0a n—>ow

) G(X,,X,,X)—>0a m,n—o0

Definition 2.8: ([7], Definition 8) Let (X, G) be a G-metric space, then a sequences {X } < X is said to be G-Cauchy
if for each€ > 0, there exists a natural number N such that G(X,,, X, X;) < & forall n,m,1 >N .

Note that every G-convergent sequence in a G-metric space (X, G) is G-Cauchy.

Definition 2.9: ([7], Definition 9) A G-metric space (X, G) is said to be G-complete if every G -Cauchy sequence in
(X, G) is G-convergent in (X, G).

The notion of weakly compatible mappings as a generalization of commuting maps is introduced by Gerald Jungck [4].
We now give the definition of weakly compatibility in a G-metric space

Definition 2.10: Suppose f and g are self maps of a G-metric space (X, G). The pair f and g is said to be weakly
compatible pair if G( fgx, gfx, gfx) < G( fx, gx, gx) forall X e X ,

Definition 2.11: Let (X,G) be a G -metric space and f,h, g ,and P be selfmaps of X such that f(X) < g(X),
h(X) < p(X).Forany X, € X, there is a sequence{X,} in X suchthat fX,, = gx,,,andhx, , = px,, ., for

n >0, then the sequence{xn} is called an associated sequence of X, relative to self maps f,h,g,and p orsimply

an associated sequence of X,

Definition 2.12: Let *:R" x R™ —IR" be a binary operation satisfying the following conditions

(i) =* isassociative and commutative
(i) * iscontinuous

Definition 2.13: ([6], Definition 1.1) The binary operation is said to satisfy « - property if there exists a positive real
number ¢ such that a *b < o max{a,b}forall a,beR"
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Example 2.14: (i) if a*b=a+b foreach a,beR" thenfor «>2 we have a *b < a max {a,b}

ab
Example 2.15: (ii) if a*b =——————— foreach a,beR" thenfor ¢>1 we have a*b < g max{a,b}
max{ a, b, 1}

3. MAIN RESULTS

We now state our main theorem.

Theorem 3.1: Let (X, G) be a complete G- metric space such that * satisfies « - property withar > 0. Let f,h, g
and P be self maps of X satisfying the following conditions.

3.1.1) f(X)<cg(X),h(X)< p(X) and g(X) or p(X) isaclosed subset of X
(3.1.2) G(fx,hy,hy) < k (G(px, gy, gy)*G(fx, px, px)) +k,(G(px, gy, gy) *G(hy, gy, gy))

G(px, hy, hy) +G(fx, gy, gy))
2

+Kk, (G(px, gy, gy) *

forallX,y € X, where K;,K,,k;>0and 0<a(k1+k2+k3)<%

(3.1.3) the pairs (T, p)and (h, Q) are weakly compatible

Then f,h,gand P have a unique common fixed pointin X

Proof: Suppose f,h,gand P be self maps of X for which the condition (3.1.1) holds. Let X, € X then we
define an associated sequence {Y,} in X such that

(314)  Yon = Xpy = OXpnug N Yony = NXyppy = PXop,p for 20

Now we claim that the sequence {Y,} is Cauchy sequence

By (3.1.2) we have
G(an » Yona1o y2n+1) = G( fXZn 'hX2n+1 1 hx2n+1)
< Ky (GUPXzn s O%one1 s OXonen) * G (X, PXoy s PX,,))
+K, (GPXn s DXt s PXanar) * G (NXz1 1 OXans 1 9Xann))

G(px,.,hx, ., hx +G(fx, , 0%, ,,0X
+k3 (G(PX2n,9X2n+l,gX2n+1)* (p 2n 2n+1 2n+l) ( 2n g 2n+1 g 2n+l))

2
= k1 (G(yZn—l 1 Yo yZn) *G(yzn ' Yo y2n—1))
+ k2 (G(yZn—l ' y2n ' yZn) *G(y2n+l ' y2n ' yZn))

G : : +G » Yon
+ k3 (G(y2n_1 ’ y2n , y2n) * (yZn—l y2n+l y2n+12) (y2n y2n yZn))
<k amax{(G(Y,n_1: Yan+Yon) s G(Yans Yana: Yons)}
+K, amax G511 Yan s Yan) s G(Yanias Yon s Yan)}

G : : +G(Y, .V, ,
+ k3 a maX{G(yZn—l ’ y2n ’ y2n)’ (yzn_l y2n+1 y2n+1) (yzn yzn y2n)}

2
<k amax{G(Y,,1:Yan: Yon)s 2G(Yan_1s Yans Yan)}
+K, aMaX{G (Y011 Yon s Yon) 1 26 (Yon s Yonsa s Yanin)}

G(yZn—l ! yZn’ y2n) + G( yZn ! y2n+l ! y2n+l)

+Kky @ max{G (Y 1+ Yonr Yan) 5 }
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Now it G( Va0, Yonis Yania) > G (Yanas Yan s Yan )s we have

G(Yan s Yansas Yonia) < 2K G(Yan 14 Yon s Yan ) +2K:G(Yan s Yaneas Yana) +Ks@ G(Yan s Yanias Yonia)
< 2K G(Yn 1 Yansa s Yonia ) T 2K:G(Yan s Yanaas Yonia) + 2Ke@ G(Yan s Yanias Yonat)
=20k, + K, +K3) G(Yan s Yaner s Yonsa)
< G(Yan: Yaners Yonss)

Since 2a/(k; + Kk, +k;) <1 which is a contradiction.

Therefore

(3'1'5) G( yZn ! y2n+1’ y2n+1) SG(yZn—l’ y2n ! yZn)

Similarly
(3'1'6) G( y2n+1 ! y2n+2' y2n+2)SG(y2n ! y2n+1 ! y2n+l)

From (3.1.5) and (3.1.6) we have
BL7) G(Y,, Yo Your) SG(Yoyy Yoo Y,) forn=0,12,........

Using (3.1.7) we get
G(ym yn+l7 yn+1) < 20[(k1 + k2 + kB)G(yn—M yn’ yn)

=KG (Yo, Yo V)
Where k =2a(k; +k, +k;) <1
So
G(Yn s Yosar Vo) SKG(Yot Yoo V)

<k’G(Y,_2 Yo Yor)

<k" G(Y, ¥y, ¥,) >0
Since k" >0 as n > «©

If m>n then
G(yn’ ym’ ym)S G(ym yn+l’ yn+1)+G(yn+11 yn+21 yn+2)+ """" +G(ym—l’ ym’ ym)
<K"G (Yo, Yo Y1)+ K" G (You Yur Vo) + e+ K" G Y0, Vi Vi)

n

1-k

G(Y,: ¥y, ¥,)—>0asn,m— oo

Showing that the sequence {yn} is a Cauchy, and by the completeness of X , sequence{yn} convergesto Z € X

Therefore
(3.18) !'_r)g X0 = !'_[]l hXzp1 = !'_[g OXonia = !]!11 PXani2 =2

If g(X)is closed subset of X then there exists a V € X such that gV = Z

If hv # Z then by (3.1.2) we get
(319) G( fxzn ’ hV! hV) S kl (G( pxzn 1 gV, gV) *G( fxzn 1 pxzn 1 pXZn)) + k2 (G( pXZn 1 gV! gV) >kG(hV! gV, gV))

G(px,,,hv,hv)+G(fx,,,qv, gv))
2

+K; (G(pX,, , 9V, gv) *

© 2016, IJMA. All Rights Reserved 107



J. Niranjan Goud*, M. Rangamma/
Common Fixed Point Theorem for Four Weakly Compatible Selfmaps of a Complete G —Metric Space / IIMA- 7(6), June-2016.

On letting N — oo in (3.1.9) and using (3.1.8), we get
G(z,hv,hv) <k, (G(z,2,2)*G(z,2,2))+k, (G(z,z,2)* G(hv, z,2))
G(z,hv,hv)+G(z,z,z))
2

+k,(G(z,2,2)*

By using « -property, we get

G(z.hv, )< Ky G(h, 2,2) + ko 2L

<2a(k,+k;)G(z,hv,hv)
<G(z,hv,hv)

Since 2a(k, +Kk;) <1 which is a contradiction, hence hv = z

Therefore
(3.1.10) hv = gv = Z since the pair (h, g) is weakly compatible then we have hgv = ghv and so

(3.111) hz=gz
Now if hz # Z then by (3.1.2) we get
(3.1.12) G(fx,,,hz,hz) < k; (G(pX,,,92,92) *G(1X;,, PXpn s PX5,)) +K, (G(PX,, . 92, 92) *G(hz, 927, 92))

G(pX,, ,hz,hz)+G(fx2n,gz,gz))
2

+K; (G(pXy, 92, 92) *

On letting N — o0 in (3.1.12) and using (3.1.8), (3.1.11), we get
G(z,hz,hz) <k, (G(z,hz,hz)*G(z,z,2))+k, (G(z,hz,hz)*G(gz, gz, 9z))
G(z,hz,hz)+G(z,hz,hz))
2

+k; (G(z,hz,hz)*
By o -property, we get
G(z,hz,hz) < a (k, +k, +k;)G(z,hz,hz) < G(z,hz, hz)

Since a(k; +K, +k;) <1 which is a contradiction, hence hz = z

Therefore
(3.113) hz=gz=z2

Since h(X) < p(X) there exists U € X suchthat hz = pu=1z2

If fu =2z by (3.1.2) we get
(3.1.14) G(fu,hz,hz) <k, (G(pu, gz,9z) *G(fu, pu, pu))+k, (G(pu,gz,9z) *G(hz, gz, gz))

G(pu,hz,hz)+G(fu,gz, 9z
+k, (G(pu, gz, g2)» 2P )2 (fu,97,92),

<k, (G(z,z,2)*G(fu,z,2))+k, (G(z,z,2)*C(z,z,2))

G(z,2,2)+G(fu,z,2)
> )

+k, (G(z,2,2)*

By « -property, we get
G(fu,z,z) <2 a(k, +k;) G(fu,z,z) <G(fu,z,2)

Since 2a(k; +K,) <1 which is a contradiction, hence fu =z
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Therefore
(3.1.15) fu=pu=z

Since the pair (f, p) is weakly compatible then fpu = pfu so fz = pz

If fz# 2z then by (3.1.2) we get
(3.1.16) G(fz,z,z) =G(fz,hz,hz) < k (G(fz,z,2) *G(fz, fz, fz)) +k, (G(fz,z,2) *GC(z, z, 2))
G(fz,z,z)+G(fz,z,z))

+k, (G(fz,2,2)* 5

By « -property, we get
G(fz,z,z) < a(k +k,+k;)G(fz,2,2) < G(fz,2,2)

1
since ar(k; +k, +k;) < > which is a contradiction, hence fz =z

Therefore fz =gz =hz = pz =2 Showing that Zis a common fixed point for self maps f,h,g and p

The proof is similar when p(X) is a closed subset of X with appropriate changes
We now prove the uniqueness of the common fixed point
If possible let W be any other common fixed point for self maps f,h,g and p

Then from the condition (3.1.2), we have

(3.1.17) G(z,w,w) =G(fz,hw, hw)
<k (G(pz, gw, gw) *G(fz, pz, pz))
+k, (G(pz, gw, gw) *G(hw, gw, gw))
G(pz,hw,hw)+G(fz,gz,gz))

2
=k, (G(z,w,W)*G(z,z,2))+k, (G(z,w, W) *G(w, w, w))

G(z,w,w)+G(z,z,2)
> )

+k; (G(pz, gw, gw) *

+k; (G(z,w,w) *

by using « -property, we get
G(z,w,w) < ax (k; +k, +k; )G(z,w,w) < G(z,w,w)

. 1 . o
Since a(k, +k, +k;) < > which leads to a contradiction if Z # W, hence z = W.

Therefore Z is a unique common fixed point for self maps f,h, g and p

Corollary 3.2: Let (X, G) be a complete G- metric space. Let f,h,gand P be self maps of X satisfying the
following conditions.

3.21) f(X)<c g(X),h(X)c< p(X) and g(X) or p(X) isa closed subset of X

(322) G(fx,hy,hy) <k (G(px, gy, gy)+G(fx, px, px)) +k,(G(px, gy, gy) + G(hy, gy, gy))

G(px, hy,hy)+G(fx, gy, gy))
2

+K; (G(px, gy, gy) +

forall X,y € X, where k;,K,,k;>0and 0<(kl+k2+k3)<%
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(3.2.3) the pairs (T, p)and (h, Q) are weakly compatible Then f,h,gand P have a uniqgue common fixed point

in X

Proof: Define a*b=a+b foreacha,b e R* then for & > 2 we have a *b < amax{a,b}

Taking o = 2 all the conditions of the Theorem (3.1) hold. Therefore f,h,gand P have a unique common fixed

pointin X
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