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ABSTRACT 
In this paper, an attempt has been made to understand the dynamics of a food chain model where the top predator has 
no dynamics of its own. In this regard, we consider a food chain model with Holling type III functional response. The 
dynamics behaviour of the model system around biolgically feasible equilibra are studied. Conditions for which the 
model enter into Hopf-bifuraction are worked out. To substantiate our analysis findings numerical simulations are 
carried out for hypothetical set of parameter values. 
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1. INTRODUCTION 
 
A food chain is a succession of organisms in a community that constitute a feeding sequence in which food energy is 
transferred from the source in plants through a series of organisms with different trophic levels. Food chain is started by 
photosynthesizing plant (called producers), then followed by herbivores, a succession of carnivore and finally 
decomposers. An interlocked pattern of food chain is called food web. Food web is very important in maintaining the 
stability of an ecosystem. Food chain hypothesis assumes only the simplest kind of Darwinian selection. A simple 
example of a food chain can be visualized as:  producers – herbivores – carnivores. Some other three species food chain 
systems have also got the attention of the scientist. For example, in waste treatment process, the bacteria lives on the 
waste (or nutrient) while other organisms as ciliates feed on the bacteria. In many field situations, the plant – herbivore 
– parasitoid food chains become extremely important and it has been shown that parasitoid may determine fitness of the 
plant by destroying herbivore. Thus, three species food chain systems like nutrient – bacteria – ciliate, plant – 
herbivores – parasitoid, plant – pest – predator, et cetera are emerging in different branches of biology in their own 
right. Hsu, et al., 2003 studied a ratio-dependent food chain model with Michalies – Menten type functional response. 
They presented that food chain model is rich in boundary dynamics and capable of generating extinction dynamics and 
the successful implementations of biological controls. Maiti, et al., 2005; 2006;  Kara and Can, 2006, Patra, et al. 2009; 
Pathak, et al., 2009 proposed a delayed food chain model and showed that system is rich in boundary dynamics and 
successful implementation of biological control to reduce hazards of chemical pesticides.   
 
After analysis of above research papers and their references, we have introduced a food chain model with Holliing type 
III functional response and studied the dynamical behavior of the system. This work is different from previous papers 
because in this paper we take density of top predator is constant and we also found the bifurcation point of the system 
(Agarwal, et al., 2011, 2012, Jana, et al. 2016) which breaks the system into two parts.   
 
2. THE MODEL 
 
Consider a food chain model where the top predator has no dynamics of its own. The growth rate of the predator 
depends on the prey. Apart from the implicit competition between the predators due to sharing of food, competition is 
also assumed between them. The dynamical equations of this food chain are given as 
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With initial conditions 

( ) 00 0 ≥= xx  and ( ) .00 0 ≥= yy  
 
Here yx,  and z  denotes the density of prey, predator and top predator. The model parameters edabbKr ,,,,,, 21  
and f assume only positive values. The initial prey density is assumed to be strictly positive as the predator species 
will not survive in the absence of food. Further the initial condition for the prey species is assumed to be less than the 
carrying capacity K .The initial density of the predator is assumed to be positive. 
 
3. EXISTENCE AND DISSIPATIVENESS 
 
In analogy to the population dynamics, it is very important to observe the consequences that restrict the growth of the 
population. In this sense, study of dissipativeness of the model system (1) around different steady states is very much 
needed. For this, we find dissipativeness of the system in the following lemma: 
 

Lemma 3.1: The set ( ){ },0,0:, AyKxyx <<<<=Ω where ,2
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Proof: From the first equation of the system (2.1), we get 
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According to comparison principle, it follows that 

.max Kx =                                                                                                                                         (3.2) 
 
From the second equation of the system (2.1), we get 
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According to comparison principle, we get 

.2

22
2

max A
ea

daKby =
−

=                                                                                                             (3.4) 

With positive condition  
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Therefore all solutions of system (2.1) enter into the region  
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This completes the proof of lemma. Thus, the model system (2.1) is dissipative. In the next Section we present the 
equilibrium analysis of the model.  
 
4. EQUILIBRIUM ANALYSIS OF THE SYSTEM 
 
There are three non negative equilibrium points are exist. (i) the trivial equilibrium point ( )0,00E  always exists. (ii) 

the predator free equilibrium point ( )0,1 KE .(iii)the interior equilibrium point ( )**
2 , yxE . The existence of 

equilibrium points ( ) 0,00E and ( )0,1 KE  are obvious. We show the existence of interior equilibrium point 

( )**
2 , yxE as follows. 

 
Existence of  ( )**

2 , yxE  
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Here *x  and *y are the positive solutions of the following algebraic equations  
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From equation (4.2), we get 
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The solution of equation is always positive if Kx <* . 
 
Putting the value of *y from equation (4.3) in equation (4.1), we get 
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From equation (4.4), we have 

.0)0( 9 <= PF                                                                                                                               (4.5) 
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Thus there exists a ,*x  ,0 * Kx <<  such that .0)( * =xF Now, the sufficient condition for the uniqueness of 2E  is 

( ) 0*' >xF .From (4.4) we can find and ( )*' xF  as follows, 
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By using (4.4) in (4.7) we can check that ( )*' xF  is positive. 

This completes the existence of 2E . 
 
5. STABILITY ANALYSIS OF THE SYSTEM  
 
To discuss the local stability of system (2.1), we compute the variational matrix ( )EV of system (2.1). The entries of 
general variational matrix are given by differentiating the right side of system (2.1) with respect to x  and y , i.e. 
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Accordingly, the linear stability analysis about the equilibrium points 2,1,0, =iEi  gives the following results: 

1. The equilibrium point 0E  is saddle point if d
f
z

<2  in yx −  plane otherwise it is unstable manifold 

in yx − plane. 

2. The equilibrium point 1E is stable manifold in yx −  plane if d
f
z

Ka
Kb

<+
+ 222

2
2  otherwise it is unstable 

manifold in yx − plane. 

3. The characteristic polynomial corresponding equilibrium point 2E is given as 

( ) .0211222112211
2 =−++− aaaaaa λλ                                                                                                 (5.2) 
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The equilibrium point 2E , if it exists, is locally asymptotically stable if 02211 <+ aa  and .021122211 >− aaaa  
 
Obviously, there are only two equilibrium points while the 1E is stable. As it begins to lose its stability, the equilibrium 

point 2E starts to appear in the system. For further analysis, the possibility of occurrence of a local Hopf bifurcation is 
explored. In fact, it requires two conditions. One is the presence of an equilibrium point with a pair of purely imaginary 
eigenvalues for a particular value of the bifurcation parameter and another one is the change in its stability for a 
variation of the bifurcation parameter. Here, we will focus on the equilibrium point 2E only. 
 
6. BIFURCATION ANALYSIS OF THE SYSTEM 
 
For finding the conditions of bifurcation point of the system (2.1), we follow following steps: 
 
Step-1: Find 22a as the function of the interesting bifurcation parameter f . 
 
Step-2: Putting ωλ i= in equation (5.2), we get 

( ) .0 211222112211
2 =+−++ aaaaiaa ωω                                                                                              (5.3) 

 
Comparing the real and imaginary part of the equation (5.3), we get the positive value of ω as 
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This indicates the occurrence of a pair of purely imaginary eigenvalues. 
 
Step-3: Verify the transversality condition by differentiating equation (5.2) with respect to bifurcation parameter f , 
we get 
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Using the value of ω  in the equation (5.4) and collect the real part ofλ , we have following equation 
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Step-4: Determine the occurrence of a local Hopf bifurcation by considering the sign of (5.5). If (5.5) is nonzero then a 
local Hopf bifurcation occurs. In addition, if (5.5) is positive, the system behaviour changes from equilibrium state to 
oscillatory. In contrast, if (5.5) is negative then the system behaviour changes from oscillatory to equilibrium state. 
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7. NUMERICAL RESULTS 
 
The global stability of the non-linear model system (2.1), in the positive octant, is investigated numerically. The 
numerical integration for model system (2.1) is carried out for various choices of biologically feasible parameter values 
and for different sets of initial conditions. In all the cases being considered here the data is chosen such that the 
persistence conditions are satisfied. Model system (2.1) is solved numerical using the Runge–Kutta method. The 
dynamic behavior and its corresponding time series of the model system (2.1) are decided on the following data set: 

.90,2,02.0,4.0,03.0,1.0,04.0,200,10 21 ========= zfedbabKr             (7.1) 
 
The interior equilibrium point of the model system (2.1) corresponding to the feasible parameters values are same as 
(7.1) is: 

( ).1520.1  ,7337.22E  
 
The characteristic polynomial and characteristic roots of the model system corresponding to the interior equilibrium 
point are given as: 

.00636.843693.182 =++ λλ                                                                                                   (7.2) 
.64267.8,72658.9 21 −=−= λλ                                                                                                (7.3) 

 
From equations (5.3) and (5.4), we find the critical value of bifurcation point f and its behaviour .The critical value of 

bifurcation point f  is 82682.1* =f and 
( ) .50557.3Re

*

−=
= ffdf

d λ
 The sign of equation (5.5) is negative then 

the system behaviour changes from oscillatory to equilibrium state. The figure 1 shows this dynamical behaviour of the 
system (2.1). From equation (7.3), it is clear that all characteristic roots of the characteristic polynomial (7.2) are 
negative. So, the model system (2.1) is shows stable behavior at the interior equilibrium point. Figure (2) shows the 
stability of the system (2.1) and figure (3) shows the time series graph of the system at 82682.12 >=f . When the 
value of 82682.16.0 <=f , the system become unstable (refer Figure (4) and Figure 5).So in this paper f is a 
bifurcation point of the system which breaks the system in two parts as: 

82682.1<f , the system (2.1) becomes unstable. 
82682.1>f , the system (2.1) becomes stable. 
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Figure-1: Bifurcation Graph for values of f  from 1.0  to 2  and other values of parameters are same as (7.1) 
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Figure-2: Stable limit cycle and other parameters are same as (7.1). 
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Figure-3: Graph of x  and y versus t  and other parameters are same as (7.1). 
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Figure-4: Dynamic behavior of the system (2.1) when 6.0=f and other values of parameters are same as (7.1). 
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Figure-6: Time Series Graph for the system (2.1) when 6.0=f  and other values of parameters are same as (7.1) 

 
8. DISCUSSIONS AND CONCLUSIONS 
 
A nonlinear mathematical model is proposed and analyzed to see the dynamic behaviour of the food chain model with 
Holling type III functional response. Using stability theory of differential equations, we have obtained conditions for 
the existence of different equilibria and discussed their stabilities in local manner. From our analysis, we have found 
the bifurcation point of the system which split the system in two parts. In this paper f is the bifurcation point. 
When 82682.1<f , the system (2.1) becomes unstable and when 82682.1>f , the system (2.1) becomes stable. 
The dynamical behaviour of the system changes from oscillatory to equilibrium state. It has been theoretically and 
numerically shown that a local Hopf bifurcation is possible. Therefore, the system (2.1) permits limit cycle behaviour. 
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