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ABSTRACT 
In this paper, we introduce the concept of symmetric bi- f -derivation in an Almost Distributive Lattice (ADL) and 
derive some important properties of symmetric bi- f -derivations in ADLs.  
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1. INTRODUCTION 
 
The concept of derivation in an ADL was introduced in our earlier paper [11]. The notion of derivation in Lattices was 
first given in G.Szasz [15] in 1974. Earlier Posner[9] introduced derivations in ring theory and later several authors 
worked on it ([2], [5]). Several authors worked on derivations in Lattices ([1], [3], [4], [6], [7], [8], [16], [17] and [18]). 
We have introduced the concept of f -derivations in an ADL in our paper [12] and the concept of symmetric bi-
derivations in an ADL in our paper [13]. The concept of symmetric bi- f -derivations in lattices was introduced by 
Kyung Ho Kim [6] in 2012. 
 
In 1980, the concept of an Almost Distributive Lattice(ADL) was introduced by U.M.Swamy and G.C Rao[14]. In this 
paper, we introduce the concept of symmetric bi- f -derivation in an ADL and derive some important properties. We 
introduce the concept of an isotone symmetric bi- f -derivation in an ADL and establish a set of conditions which are 
sufficient for the trace of a symmetric bi- f -derivation on an ADL with a maximal element to become an isotone . 
Also, we prove ),(=),( yzxDfxyxD ∨∧  if D  is isotone and ),()],([=),( yxDyzxDfxyxD ∨∨∧  if f  

is a join homomorphism or an increasing function on L . We define a set )(LFa  for each La∈  and prove that it is a 

weak ideal if D  is a join preserving symmetric bi- f -derivation on an ADL L  with 0 where f  is a join-
homomorphism. 
 

2. PRELIMINARIES 
 
In this section , we recollect certain basic concepts and important results on Almost Distributive Lattices.  
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Definition 2.1:[10]An algebra ),,( ∧∨L  of type (2,2)  is called an Almost Distributive Lattice if it satisfies the 
following axioms: 

)(  )()(=)(  :1 ∧∧∨∧∧∨ RDcbcacbaL  

)(  )()(=)(  :2 ∧∧∨∧∨∧ LDcabacbaL  

bbbaL =)(  :3 ∧∨  

aabaL =)(  :4 ∧∨  

abaaL =)(  :5 ∧∨   
 
Definition 2.2:[10]  Let X be any non-empty set. Define, forany xyxLyx =  ,, ∨∈ and .= yyx ∧  Then 

),,( ∧∨X  is an ADL and such an ADL, we call discrete ADL. 
 
Through out this paper L  stands for an ADL ),,( ∧∨L  unless otherwise specified.       
 
Lemma 2.3:[10]  For any ,, Lba ∈  we have 

aaai =   )( ∧  
.=  )( aaaii ∨  

bbbaiii =)( )( ∨∧  
abaaiv =)(  )( ∨∧  
.=)(   )( aabav ∧∨  

abavi =  )( ∨  if and only if bba =∧  
bbavii = )( ∨  if and only if .= aba ∧    

 
Definition 2.4:[10] For any ,, Lba ∈  we say that a  is less than or equal to b  and write ,ba ≤  if aba =∧  or , 
equivalently, .= bba∨    
 
Definition 2.5:[10]  For any Lcba ∈,, , we have the following 

(i) The relation ≤  is a partial ordering on .L  
(ii) )(   ).()(=)( ∨∨∧∨∧∨ LDcabacba  
(iii) ).(==)( ababaaba ∨∨∨∨∨  
(iv) .)(=)( cabcba ∧∨∧∨  
(v) The operation ∧  is associative in .L  
(vi) .= cabcba ∧∧∧∧    

 
Theorem 2.6:[10]  For any ,, Lba ∈  the following are equivalent. 

aabai =)(  )( ∨∧  
aabaii =)(  )( ∨∧  
bbabiii =)(  )( ∨∧  
bbabiv =)(  )( ∨∧  

abbav ∧∧ =  )(  
abbavi ∨∨ =  )(  

( )vii the supremum of a  and b  exists in L  and equals to ba∨  
( )viii there exists Lx∈  such that xa ≤  and xb ≤  
( )ix  the infimum of a  and b  exists in L  and equals to .ba ∧    

 
Definition 2.7:[10]  L  is said to be associative, if the operation ∨  in L  is associative.   
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Theorem 2.8:[10]  The following are equivalent. 

Li   )(  is a distributive lattice. 
  )(ii the poset ),( ≤L  is directed above. 

,=)(  )( aabaiii ∨∧  for all ., Lba ∈  
  )(iv the operation ∨  is commutative in .L  
  )(v the operation ∧  is commutative in .L  
  )(vi the relation }= | ),{(:= bbaLLba ∧×∈θ  is anti-symmetric. 
  )(vii the relation θ  defined in )(vi  is a partial order on .L    

 
Lemma 2.9:[10]  For any Ldcba ∈,,, ,we have the following  

(i)   bba ≤∧  and baa ∨≤  
(ii)  abba ∧∧ =  whenever ba ≤ . 
(iii) .])[(=)]([ dcbadcba ∧∨∨∧∨∨  
(iv) ba ≤   implies ,cbca ∧≤∧  bcac ∧≤∧  and .bcac ∨≤∨    

 
Definition 2.10:[10]  An element L∈0  is called zero element of ,L  if 0=0  a∧  for all .La∈   
 
Lemma 2.11:[10] If L  has 0 , then for any Lba ∈,  , we have the following 
(i) aaiiaa =0  )(  ,=0  ∨∨  and 0.=0  )( ∧aiii  
(iv) 0=  ba ∧  if and only if 0.=ab∧   
 
Definition 2.12:[14]  Let L  be a non-empty set and Lx ∈0 . Define, for Lyx ∈, ,  

0    = xxifyyx ≠∧  

         0 =     =   x if x x and 

0    = xxifxyx ≠∨  

 0=    =        xxify , then ),,,( 0xL ∧∨  is an ADL with 0x  as zero element. This is called discrete ADL   
                                        with zero.     

 
An element Lx∈  is called maximal if, for any Ly∈ , yx ≤  implies yx = .  
 
We immediately have the following.  
 

Lemma 2.13:[10] For any Lm∈ , the following are equivalent: 
(1)  m is maximal 
(2)  mxm =∨  for all Lx∈  
(3)  xxm =∧  for all Lx∈ .   

 
Definition 2.14:[10]  A nonempty subset I  of L  is said to be an ideal if and only if it satisfies the following: 

(1) IbaIba ∈∨⇒∈,  
(2) IxaLxIa ∈∧⇒∈∈  , .   

 
Definition 2.15:[10]  A nonempty subset I  of L  is said to be an initial segment of L  if, La∈  and Lx∈  such 
that ax ≤  imply that Lx∈ .   
 
Definition 2.16:[13]  A nonempty subset I  of L  is said to be a weak ideal if and only if it satisfies the following: 

(1) IbaIba ∈∨⇒∈,  
(2) I  is an initial segment of L .    

       
Observe that every ideal of L  ia weak ideal, but not converse.  
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Definition 2.17:[10]  A function LLf →:  is said to be an ADL homomorphism if it satisfies the following: 

(1) fyfxyxf ∧∧ =)( , 
(2) fyfxyxf ∨∨ =)(  for all Lyx ∈, .    

 
Definition 2.18: A function LLd →:  is called an isotone, if dydx ≤  for any Lyx ∈,  with yx ≤ .  
 
3. SYMMETRIC bi- f -Derivations IN ADLs 
 
We begin this section with the following definition of a symmetric map and a symmetric bi-derivation in an ADL.  
 
Definition 3.1:[13]  A mapping LLLD →×:  is called symmetric if ),(=),( xyDyxD  for all Lyx ∈, . 
 
If ),(),( zyDzxD ≤  for any Lyx ∈,  with yx ≤ , then we call D  as an isotone map on L .   
 
Definition 3.2:[13]  A symmetric function LLLD →×:  is called a symmetric bi-derivation on L , if 

)],([)],([=),( zyDxzxDyzyxD ∧∨∧∧  for all Lzyx ∈,, .   
 
Observe that a symmetric bi-derivation D  on L  also satsfies 

( , ) = [ ( , )] [ ( , )]D x y z z D x y y D x z∧ ∧ ∨ ∧  for all Lzyx ∈,, . 
 
The following definition introduces the notion of an symmetric bi- f -derivation on ADLs.   
 
Definition 3.3: A symmetric function LLLD →×: is called a symmetric bi- f -derivation on, if there exists 
afunction LLf →:  such that             

)],([)],([=),( zyDfxzxDfyzyxD ∧∨∧∧   for all Lzyx ∈,, .   
 
Obviously, a symmetric bi- f -derivation D  on L  satisfies the relation  

)],([)],([=),( zxDfyyxDfzzyxD ∧∨∧∧  for all Lzyx ∈,, .   
 
Example 3.4: Let LLf →:  be a function such that fyfxyxf ∧∧ =)(  for all Lyx ∈, . Let La∈  and define 
a function LLLD →×:  by afyfxyxD ∧∧=),(  for all Lyx ∈, . Then D  is a symmetric bi- f -derivation 
on L .    
 
Example 3.5: Every symmetric bi-derivation on L  is a symmetric bi- f -derivation, where LLf →:  is the identity 
map.  
 
But, a symmetric bi- f -derivation need not be a symmetric bi-derivation. For, consider the following example.    
 
Example 3.6:. Let L  be discrete ADL with 0 and La∈≠0 . Define a function LLf →:  by afx =  for all 

Lx∈  and LLLD →×:  by ayxD =),(  for all Lyx ∈, , then D  is a symmetric bi- f -derivation on L  but 
not a symmetric bi-derivation.    
 
Example 3.7: Let L  be a discrete ADL with at least two elements. Define a function LLLD →×:  by 

yxyxD ∧=),(  for all Lyx ∈, , then D  is not a symmetric bi- f -derivation on L . Since, it is not a symmetric 
map.    
 
Lemma 3.8: Let D  be a symmetric bi- f -derivation on L . Then the following hold:   

1.  ),(=),( yxDfxyxD ∧  for all Lyx ∈,   
2.  ),(][=),( yzxDfyfxyzxD ∧∧∨∧  for all Lzyx ∈,,   
3.  If L  has 0, then 0=0f  implies 0=)(0, yD  for all Ly∈   

  
Proof: (1) Let Lyx ∈, . 
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Then ),(=)],([)],([=),(=),( yxDfxyxDfxyxDfxyxxDyxD ∧∧∨∧∧ . 
 
(2) Let Lzyx ∈,, . Then 
[ ] ( , ) = [ ] [[ ( , )] [ ( , )]]
                                  = [[ ] ( , )] [[ ] ( , )]
                                  = [ ( , )] [ ( , )] = ( , ).

fx fz D x z y fx fz fz D x y fx D z y
fx fz fz D x y fx fz fx D z y

fz D x y fx D z y D x z y

∨ ∧ ∧ ∨ ∧ ∧ ∨ ∧
∨ ∧ ∧ ∨ ∨ ∧ ∧
∧ ∨ ∧ ∧

 

 
(3) Suppose L  has 0 and 0=0f . Then,  
by (1) above, 0=)(0,0=)(0,0=)(0, yDyDfyD ∧∧ .  
 
Corollary 3.9:  If d  is the trace of a symmetric bi- f -derivation D , then dxfxdx ∧=  for all Lx∈ .    
 
Theorem 3.10: If d  is the trace of a symmetric bi- f -derivation on an assosiative ADL L , then 

)(),()(=)( dyfxyxDdxfyyxd ∧∨∨∧∧ .  
 
Proof: Let Lyx ∈, . Then  

( ) = ( , )
             = [ ( , )] [ ( , )]
             = [ [[ ( , )] [ ( , )]]] [ [[ ( , )] [ ( , )]]]
             = ( ) ( , ) ( ).

d x y D x y x y
fy D x x y fx D y x y
fy fy D x x fx D x y fx fy D y x fx D y y
fy dx D x y fx dy

∧ ∧ ∧
∧ ∧ ∨ ∧ ∧
∧ ∧ ∨ ∧ ∨ ∧ ∧ ∨ ∧
∧ ∨ ∨ ∧

 

 
Corollary 3.11: If d  is the trace of a symmetric bi- f -derivation on an ADL L , then )( yxddxfy ∧≤∧ .  
 
Proof: Let Lyx ∈, . Then  

( ) = ( , )
             = [ ( , )] [ ( , )]
             = [ [[ ( , )] [ ( , )]]] [ ( , )]
             = [( ) ( , )] [ ( , )].

d x y D x y x y
fy D x x y fx D y x y
fy fy D x x fx D x y fx D y x y
fy dx D x y fx D y x y

∧ ∧ ∧
∧ ∧ ∨ ∧ ∧
∧ ∧ ∨ ∧ ∨ ∧ ∧
∧ ∨ ∨ ∧ ∧

 

 
Thus )(),()( yxdyxDdxfydxfy ∧≤∨∧≤∧ .  
 
Theorem 3.12:  Let m be a maximal element of L  and d  be the trace of a symmetric bi- f -derivation D  on L  such 
that fm  is also a maximal element. Then the following are equivalent.   

1.  d  is an isotone map on L   
2.  dmfxdx ∧=  for all Lx∈   
3.  dydxyxd ∧∧ =)(  for all Lyx ∈,   
4.  dydxyxd ∨∨ =)(  for all Lyx ∈, .  

  
Proof: :(2)(1)⇒  Let Lx∈ . By Corollary 3.11, dxxmddmfx =)( ∧≤∧ .  
On the other hand, since d  is an isotone, dmmxd ≤∧ )( . Thus dmmxddxfm ≤∧≤∧ )( .  
Therefore, dmfxdxfmfxdxfxfmdxfxdx ∧≤∧∧∧∧∧ === . Hence dmfxdx ∧= . 
 

:(3)(2)⇒  Let Lyx ∈, . Then dydxdmydmxdmyxyxd ∧∧∧∧∧∧∧ ===)( . 
Then ( ) = ( ) =d x y f x y d m∧ ∧ ∧ = .fx fy dm fx dm fy dm dx dy∧ ∧ ∧ ∧ ∧ = ∧  
 

:(4)(2)⇒  Let Lyx ∈, . Then dydxdmydmxdmyxyxd ∨∧∨∧∧∨∨ =)()(=)(=)( . 
Then ( ) = ( ) = ( )d x y f x y dm fx fy dm∨ ∨ ∧ ∨ ∧ ( ) ( ) = .fx dm fy dm dx dy= ∧ ∨ ∧ ∨  

(1)(4)  (1)(3) ⇒⇒ and  are trivial.  
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Lemma 3.13:  Let D  be a symmetric bi- f -derivation on L. Then the following hold:   

1.  If D  is isotone, then ( , ) = ( , )D x y fx D x z y∧ ∨   
2.  If f  is a join homomorphism, then ),()],([=),( yxDyzxDfxyxD ∨∨∧   
3.  If f  is increasing, then ),()],([=),( yxDyzxDfxyxD ∨∨∧   

  
Proof: Let Lzyx ∈,, .  
(1) Suppose D  is an isotone function on L .  
 
Then ),(),( yzxDyxD ∨≤ . Thus ),(=),(),( yxDyzxDfxyxD ∨∧∧ .  
 
Therefore ),(),( yzxDfxyxD ∨∧≤ .  
 
Now, )],()([)],([=),)((=),( yxDzxfyzxDfxyxzxDyxD ∧∨∨∨∧∧∨ .  
 
Thus ),(),( yxDyzxDfx ≤∨∧ . Hence ( , ) = ( , )D x y fx D x z y∧ ∨ . 
 
(2) Let f  be a join-homomorphism on L . Then  

( , ) = (( ) , )
            = [ ( , )] [ ( ) ( , )]
             = [ ( , )] [ ) ( , )]
            [ ( , )] [[ ( , )] [ ( , )]]
            [ ( , )] [ ( , ) [ ( ,

D x y D x z x y
fx D x z y f x z D x y
fx D x z y fx fz D x y
fx D x z y fx D x y fz D x y
fx D x z y D x y fz D x

∨ ∧
∧ ∨ ∨ ∨ ∧
∧ ∨ ∨ ∨ ∧

= ∧ ∨ ∨ ∧ ∨ ∧
= ∧ ∨ ∨ ∨ ∧ )]]

            [ ( , )] ( , ).
y

fx D x z y D x y= ∧ ∨ ∨

 

(3) Let f  be an increasing function on L . Then )( zxffx ∨≤ .  
 
Now,  

( , ) = (( ) , )
            = [ ( , )] [ ( ) ( , )]
            = [ ( , )] [ ( ) ( , )]
            = [ ( , )] [ ( , )]
            = [ ( , )] ( , ).

D x y D x z x y
fx D x z y f x z D x y
fx D x z y f x z fx D x y
fx D x z y fx D x y
fx D x z y D x y

∨ ∧
∧ ∨ ∨ ∨ ∧
∧ ∨ ∨ ∨ ∧ ∧
∧ ∨ ∨ ∧
∧ ∨ ∨

 

 
Definition 3.14: Let D  be a symmetric bi- f -derivation on L  and La∈ . We define 

}=),(/{=)( fxfxxaDLxLFa ∧∈ .  
 
Lemma 3.15: Let D  be a symmetric bi- f -derivation on L  where f  is an increasing function and La∈ . Then 

)(LFa  is an initial segment in L .  
 
Proof: Let Lyx ∈,  with yx ≤  and )(LFixy a∈ . Since f  is an increasing function, fyfx ≤ . 
Now,  

  

( , ) = ( , )
                   = [[ ( , )] [ ( , )]]
                   = [[ ( , )] [ ( , )]]

D x a fx D x y a fx
fy D x a fx D y a fx
fy fx D x a fx fy D y a fx

∧ ∧ ∧
∧ ∨ ∧ ∧
∧ ∧ ∨ ∧ ∧ ∧

   

                          

= [[ ( , )] [ ( , ) ]]
= [ ( , ) [ ]]
= [ ( , ) ]
= .

fx D x a fx D y a fy fx
D x a fx fy fx
D x a fx fx
fx

∧ ∨ ∧ ∧ ∧
∨ ∧ ∧
∨ ∧
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Lemma 3.16: Let D  be a join preserving symmetric bi- f -derivation on L  where f  is a join-homomorphism and 

La∈ . Then )(LFyx a∈∨  for all )(, LFyx a∈ .  
 
Proof: Let )(, LFyx a∈ . Then  

( , ) ( ) [ ( , ) ( , )] ( ) ( )
                                   = [[ ( , ) ( , )] [ ]] ( )
                                   [[ ( , ) [ ]] [ ( , )] [ ]]] ( )
        

D x y a f x y D x a D y a f x y f x y
D x a D y a fx fy f x y
D x a fx fy D y a fx fy f x y

∨ ∧ ∨ = ∨ ∧ ∨ ∧ ∨
∨ ∧ ∨ ∧ ∨

= ∧ ∨ ∨ ∧ ∨ ∧ ∨
                           [[ [ ( , ) ]] [[ ( , ) ] ]] ( )

                                   [[[ ( , )] [ ]] [[ ( , ) ] [ ]]] ( )
                                   [

fx D x a fy D y a fx fy f x y
fx D x a fx fy D y a fy fx fy f x y

fx fy

= ∨ ∧ ∨ ∧ ∨ ∧ ∨
= ∨ ∧ ∨ ∨ ∨ ∧ ∨ ∧ ∨
= ∨ ] ( )

                                   ( ) ( )
                                   ( ).

f x y
f x y f x y
f x y

∧ ∨
= ∨ ∧ ∨
= ∨

 

Hence )(LFyx a∈∨ .  
 
Finally we conclude this paper with the following theorem, which is a direct consequence of Lemma 3.15 and Lemma 
3.16. 
 
Theorem 3.17: Let L  be an ADL with 0 and D  be a join preserving symmetric bi- f -derivation on L  where f  is a 

join-homomorphism and La∈ . Then )(LFa  is a weak ideal of L .  
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