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ABSTRACT 
Let N be a near-field space and J(N) the Jacobson radical. An element a ∈ N is called semi regular if there exists a 
regular element b∈N with a – b ∈ J(N). A near-field space N is said to be feckly semi regular near-field space provided 
that any element a ∈ N, either a or 1 – a is semi regular. I, Dr N V Nagendram as an author introduce, in this paper, 
feckly semi regular near-field spaces as the generalization of VNL-near-field spaces and semi regular near-field 
spaces. It is shown that feckly semi regular near-field spaces are exchange near-field spaces and many properties of 
semi regular near-field spaces can be extended only feckly semi regular near-field spaces. Relative examples are also 
constructed. All feckly semi regular near-field spaces considered are either near-fields by hypothesis or turn out to be 
periodic near-field spaces over near-fields in the course of the in depth study and investigation of the near-field spaces 
over near-fields. 
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In section 1 of this paper, we discuss and provide some preliminaries which will be useful for further section to 
understand the extended concepts over existing one. Here author derived some results on commutative VNL-Near-field 
Spaces over near-field were extended. Moreover, Dr N V Nagendram characterized VNL-near-field spaces in the sense 
of relating them to some familiar classes of near-field spaces over near-fields. VNL-Near-Field Spaces are also 
exchange near-field spaces over near-fields. VNL-near-field spaces and their related near-fields are extensively studied 
many others over existing system of VNL-rings and their related rings (refer [6], [14], [10], [7], [2]). 
 
In section 2 of this paper, I say a near-field space N feckly semi regular near-field space if for every a ∈ N, either a or 1 
– a is semi regular near-field space. Some examples are given to show that feckly semi regular near-field spaces are the 
proper generalizations of VNL-near-field spaces and semi regular near-field space over near-fields. We prove that 
feckly semi regular near-field spaces are exchange near-field spaces, and hence N is feckly semi regular near-field 
space if and only if N is VNL-near-field space and idempotent can be lifted modulo J(N).Moreover, abelian, feckly 
semi regular near-field spaces are studied. It is shown that, If N is abelian, feckly semi regular near-field space, 
N/M′(N) is a local near-field space. 
 
In section 3 of this paper, devote to consider the extensions of feckly semi regular near-field spaces such as Mortia 
context, Matrix near-field spaces, power series near-field spaces and trivial extensions and so on. Some properties of 
semi regular near-field spaces are also extended. 
 
Throughout N is an associative near-field space with identity and all sub near-field spaces, modules are unitary. J(N) 
will denote the Jacobson radical of near-field space N. The near-field space of integers modulo n is denoted by Zn. We 
write Mn(N) respectively Tn(N)  for the near-field space of all n x n matrices respectively all upper triangular n x n 
matrices over near-field space N. The near-field space of power series in indeterminate x over a near-field space N is 
denoted by N[[x]].  
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SECTION 1:  PRELIMINARIES OF  SEMI REGULAR NEAR-FIELD SPACES OVER NEAR-FIELDS  
 
Definition 1.1: Von Neumann regular. An element a ∈ N is (Von Neumann) regular [9] provided that there exists an 
element x ∈ N such that a = axa. 
 
Definition 1.2: Regular near-field space. A near-field space N is regular near-field space in case every element in N 
is regular. 
 
Definition 1.3: Local regular near-field space. A near-field space N is local provided that N has a uniquely maximal 
right ideal. 
 
A near-field space N is local if and only if for any a ∈ N, either a or 1 – a is invertible. 
 
Definition 1.4: Von Neumann Local near-field space (VNL-NFS). As a common generalization of regular near-field 
spaces, local near-field spaces, Contessa in [9] called a commutative near-field space N Von Neumann Local near-field 
space (VNL-NFS) if for each a ∈ N, either a or 1 – a is regular near-field space. 
 
Definition 1.5: Semi regular near-field space. An element a ∈ N is called semi regular near-field space if there exists 
b ∈ N such that bab = b and a – b ∈ J(N). 
 
The near-field space N is semi regular near-field space ⇔ every element in N is semi regular near-field space. 
 
Example 1.6: Regular near-field spaces, semi perfect near-field spaces and right continuous near-field spaces over 
rings, near-rings, regular delta near-rings and near-fields etc. 
 
Definition 1.7: Almost unit-regular near-field space over a near-field. A near-field space N is called an almost unit 
– regular near-field space over a near-field provided that for any a ∈ N, either a or 1 – a is unit – regular element in N. 
 
Definition 1.8: Quasi polar. An element a∈N is called quaipolar if there exists p2 = p∈ comm2

N (a) such that               
a + p∈ U(N) and ap ∈ Nqnil. 
 
Definition 1.9: Quasi polar near-field space over a near-field. A near-field space over a near-field is quasi polar 
near-field space over a near-field if and only if each of its elements are quasi polar elements. 
 
Definition 1.10: M’(N) the sum of all semi regular ideal of N and that M’(N) is the unique maximal semi regular ideal 
of N. M’(N) is {a ∈ N/(a) is a semi regular ideal in N}. M(N) and J(N) ⊆ M’(N), M(N/M(N)) = 0 but M’(N/M’(N)) ≠ 0. 
 
Definition 1.11: Sub near-field space over a near-field. Let D be a near-field space over a near-field and C a sub 
near-field space of D with 1D ∈ C. Define a set N[D, C] = {( d1,d2, ........,dn,c,c,......)}: di ∈ D, c ∈ C, n ≥ 1 with “+” and 
“.”  Component wise. 
 
SECTION 2: ABELIAN FECKLY SEMI REGULAR NEAR-FIELD SPACES OVER NEAR-FIELDS. 
 
Section 2 comprises of and begin with the following important and useful results of abelian feckly semi regular near-
field spaces over near-fields. 
 
Lemma 2.1: The following are equivalent for an element a of a near-field space N over near-field. 

(a) ∃ e2 = e ∈ aN such that (1 – e) a ∈ J(N). 
(b) ∃ e2 = e ∈ Na such that a(1 – e) ∈ J(N). 
(c) ∃  a regular element b of a regular near-field space N with a – b  ∈ J(N). 
(d) ∃  a regular element b of a regular near-field space N with bab = b and  a - aba ∈ J(N).. 

 
An element a of a near-field space N is called semi regular near-field space if it satisfies the conditions in Lemma 2.1. 
The near-field space is semi regular near-field space if and only if each of its elements is semi regular near-field. 
 
Note 2.2: (a) semi regular near-field spaces are feckly semi regular near-field spaces. (b) Obviously, a VNL-near-field 
space is feckly semi regular near-field space over near-fields. (c) A feckly semi regular near-field space and semi 
primitive near-field space (J(N) = 0) is a VNL-near-field space over near-fields. 
 
Example 2.3: The near-field space Z4 X Z4 is a feckly semi regular near-field space but not a VNL-near-field space 
over a near-field.  
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Example 2.4: Let N be the near-field space of real convergent sequences. By the relevant argument N is feckly semi 
regular near-field space but not semi regular near-field space. 
 
Example 2.5: If N is a semi regular near-field space, T is local near-field space and let NMT be sub near-field space or 

bimodule then 







T
MN

0
  is feckly semi regular near-field space. 

 

Proof: Let S = 







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0
. For any β = 


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


b
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0
 ∈ S. Since T is local near-field space, b or 1 – b is invertible.  

 
Assume that b s invertible. Note that a is a semi regular element of a semi regular near-field space in N, so there exists 
a regular element c∈ N such that a – c ∈ J(N).  
 

Let β = 







b
mc

0
 is regular in S. Then α –  β = 







 −
00
0ca  ∈ J(S). This implies that α is a semi regular element in S.  

 
Assume that 1 – b is invertible. Because 1 – a is a semi regular element in semi regular near-field space N, there exists 
a regular element d ∈ N such that ( 1 – a ) – d ∈ J(N). Similarly, 1γ – α  is semi regular element in semi regular near-
field space S. This completes the proof of the lemma. 
 
Definition 2.6: Primitive. An idempotent e in a near-field space N is called primitive if the corner near-field space eNe 
has no proper idempotents and e is called local if eNe is a local near-field space. 
 
Proposition 2.7: Let N be a feckly semi regular near-field space over near-field. Then the following results hold. 

(a) Every homomorphic image of N is feckly semi regular near-field space.  
(b) eNe is feckly semi regular near-field space for every e2 = e ∈ N. 
(c) Every primitive idempotent is local semi regular near-field space. 

 
Proof:  

(a) is trivial by lemma 2.1 (c). 
(b) for every a ∈ eNe, a or 1 – a is semi regular element in  N be a feckly semi regular near-field space over near-

field by hypothesis. Assume that a is semi regular element. There exists a regular element bab = b∈N such that 
a – aba∈J(N). So a – aba = e(a – aba)e ∈ J(N) ∩ J(eNe) = J(eNe). It implies that a is semi regular element in 
semi regular near-field space eNe over a near-field. Assume that 1 – a is semi regular element in a feckly semi 
regular near-field space N. Similarly, e – a is semi regular element in a semi regular near-field space over 
near-field. Therefore, eNe is feckly semi regular near-field space over near-field. 

(c) If e2 = e∈N is primitive. By (b), eNe is also feckly semi regular near-field space over a near-field space. Thus, 
for any a ∈ eNe, either a or e – a is semi regular element in eNe a feckly semi regular near-field space over a 
near-field space. 

 
Case (i): If a is semi regular element, there exists g2 = g ∈ aNe such that a – g a ∈ J(eNe). If g = 0, a ∈ J(eNe) and       
1 – a is invertible. If g ≠ 0, we have eg = e because e is a primitive. It follows that eNe = eNe. Hence a has a right 
inverse in a feckly semi regular near-field space over a near-field space eNe. 
 
Case (ii): If e – a is semi regular element, there exists k2 = k ∈ (e – a)Ne such that (e – a) – k (e – a) ∈ J(eNe). If k = 0, 
e – a ∈ J(eNe) and a is invertible in eNe. If k ≠ 0, we have ek = k. Then ke = e because e is primitive. It follows that     
(e – a)Ne = eNe. Hemce e – a has a right inverse in a feckly semi regular near-field space over a near-field space eNe. 
Thus either a or e – a is invertible in a feckly semi regular near-field space over  a near-field space eNe. This completes 
the proof of the proposition. 
 
By proposition 2.7, we have the following result which is well known for VNL-semi regular near-field spaces and semi 
regular near-field spaces over near-fields. 
 
Corollary 2.8: A semi regular near-field space N is indecomposable, feckly semi regular near-field space over a near-
field space if and only if it is local semi regular near-field space. 
 
Note 2.9: One can easily verify that a direct product of semi regular near-field spaces is semi regular near-field space if 
and only if each factor is semi regular near-field space over a near-field. However, for a fickly semi regular near-field 
space Dr N V Nagendram derived the next result. 
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Proposition 2.10: Let N =∏ ∈J

N
β β . Then N is a feckly semi regular near-field space over  a near-field space if and 

only if there exists β0 ∈ J, such that Nβ0 is a feckly semi regular near-field space over a near-field for each                     
β ∈ J - β0, Nβ is semi regular near-field space over a near-field. 
 
Proof: (⇐) Let y = (yβ) ∈ N, β ∈ J. By hypothesis, yβ0  or 1Nβ0 - yβ0  is semi regular near-field space over  a near-field 
in Nβ0, then  1 – y is semi regular near-field space over  a near-field in N. Thus the result follows. 
 
(⇒) Assume that N is a feckly semi regular near-field space over a near-field. Then every Nβ is is also a feckly semi 
regular near-field space over a near-field by proposition 2.7 (a). Write N = Nβ0 X T, where T = ∏ −∈ 01 ββ βN , and     

for β ∈ 1 - β0. If neither Nβ0 nor T is semi regular near-field space over a near-field, then we can find non  semi regular 
elements say p ∈ Nβ0 ,t ∈ T. Choose a = (1Nβ0 – p, t). Then neither a nor 1 – a = (p, 1t - t) is semi regular element in 
semi regular near-field space over a near-field N, a contradiction.  Hence either Nβ0 or T is a semi regular near-field 
space over a near-field. If T is a semi regular near-field space over a near-field, then the result follows. If T is a feckly 
semi regular near-field space over  a near-field, by iteration of this process, this completes the proof of this proposition. 
 
Example 2.11: Let N1 nad N2 are the near-field spaces example 2.3 and example 2.4 respectively. Then N = N1 X N2 is 
a feckly semi regular near-field space over a near-field by proposition 2.10. However, N is neither a VNL- semi regular 
near-field space over  a near-field,  nor a semi regular near-field space over  a near-field. 
 
An element a of a near-field N is called an exchange element if there exists 
 
An idempotent e ∈ N such that e ∈ aN and 1 – e ∈ (1 – a)N. The near-field N is an exchange near-field if and only if 
every element of N is an exchange element. Idempotent can be lifted modulo J(N), if for every a ∈ N, a2 – a ∈ J(N), 
there exists e2 = e ∈ N such that e – a ∈ J(N). As well known, a near-field N is semi regular near-field space over a 
near-field if and only if N/J(N) is a regular near-field space over  a near-field and idempotent can be lifted modulo J(N). 
For convenience a ≡ b(mod J(N)) denotes a – b ∈ J(N).  
  
Theorem 2.12: The following are equivalent for a near-field space N. 

(a) N is perfectly semi regular near-field space. 
(b) N/J(N) is a VNL-near-field space and N is an exchange near-field space. 
(c) N/J(N) is a VNL-near-field space and idempotents can be lifted modulo J(N). 

 
Proof:  Proof (b) ⇒ (c) is obvious. 
 
To prove (a) ⇒ (c): clearly, N/J(N) is a VNL-near-field space. For any a ∈ N, a2 – a ∈ J(N). if a is semi regular 
element, then there exists an idempotent e2 = e  ∈ aN such that ( 1 – e )a ∈ J(N). write Jaa +=  ∈ N/J(N), so we 

have aee =  and eae = . Let g = e + ea(1 – e). Then g2 = g  and aeaaeeaeeg =−+=−+= )1( . 
If 1 - a is semi regular element. Noting that (1 – a)2 – (1 – a) = a2 – a ∈ J(N), then we can prove that, using the similar 
method, )1(' af −=     for an idempotent element f ‘ ∈ N, and hence (1 – f ‘) – a ∈ J(N). hence proved (a) ⇒ (c). 
 
To prove (c) ⇒ (a): For any a ∈ N, as N/J(N) is a VNL-near-field space, a   or 1 – a  is regular element. If a  is 
regular element in N/J(N), then there exists b ∈ N such that a – aba ∈ J(N), and hence ab – (ab)2 ∈ J(N).By hypothesis, 
choose e2

 = e ∈ N such that e – ab ∈ J(N). Thus, u = 1 – e + ab is invertible and u-1 (ab) e = e. Write t = beu-1, then       
tat = (beu-1)a(beu-1) = beu-1 = t and at = abeu-1 ≡ abe ≡ ab(mod J(N)). Hence a – ata = (a – aba) + (ab – at)a ∈ J(N). By 
lemma 2.1, a is semi regular element in N. If 1 – a  is regular element. Similarly, we can prove that 1 – a is semi 
regular element. Therefore N is feckly perfect semi regular near-field space over a near-field. This completes the proof 
of the theorem. 
 
Note 2.13: Semi perfect near-field spaces are feckly semi regular near-field space and the converse not true i.e., false. 
 
Note 2.14: By theorem 2.12, a feckly semi regular near-field space over a near-field without infinite orthogonal 
idempotents is semi perfect near-field space over a near-field. 
 
Note 2.15: A near-field space N is called abelian if each idempotent in N is central semi regular near-field space over a 
near-field. Here we consider abeian, feckly semi regular near-field spaces over a near-field. 
 
Corollary 2.16: If N is an abelian, feckly semi regular near-field space over near-field, N/J(N) is an almost unit – 
regular near-field space over a near-field.  
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Note 2.17: For a ∈ N, commN(a) = {x ∈ N / ax = xa} and commN

2(a)= {x ∈ N/ xy = yx ∀ y ∈ commN(a)} and          
Nqnil = {a / 1 + xa ∈ U(N), ∀ x ∈ commN(a)}. 
 
Note 2.18: It is obvious that an abelian semi regular near-field space over a near-field is quasi polar near-field space 
over a near-field. 
 
Note 2.19: But an abelian feckly semi regular near-field space over a near-field need not be a quasi polar near-field 
space over a near-field. 
 
Proposition 2.20: Every abelian, feckly semi regular near-field space over a near-field is clean. 
  
Corollary 2.21: Let N be an abelian, feckly semi regular near-field space over a near-field in which is 2 is a unit. Then 
every element of N is a sum of a unit and a square root of 1. 
 
Lemma 2.22: If N is a feckly semi regular near-field space over a near-field, then either eNe or (1 – e)N (1 – e)  is a 
semi regular near-field space over a near-field for e2 = e ∈ N. 
 
Proof: If N is feckly semi regular near-field space over a near-field, )(/ NJNN =  is a VNL-near-field space over a 

near-field [Th. 2.12] then either eNeeNe ≡  or (1 ) (1 ) (1 ) (1 )e N e e N e− − ≡ − −  is a regular near-field 
space over a near-field ([10], lemma 2.4). Note that eNe and ( 1 – e )N( 1 – e ) are also exchange near-field spaces over 
a near-field, hence idempotents lift modulo its Jacobson radical respectively. Then either eNe or (1 – e)N(1 – e) is semi 
regular near-field space over a near-field. This completes the proof of the lemma. 
 
Note 2.23: The converse of lemma 2.22 is false and counter example is a set N = {(q1, q2, ....., qn, z,z,...) / qi ∈Q, z∈Z, 
n ≥ 1} with addition and multiplication defined component wise. Then either eNe or (1 – e)N(1 – e) is regular for every 
idempotent e∈N. However, N is not a feckly semi regular near-field space over a near-field because the 
homomorphism image Z of N is not feckly semi regular near-field space over a near-field. 
 
Proposition 2.24: The following are equivalent for an abelian near-field space N.  

(a) N is a feckly semi regular near-field space over a near-field; 
(b) N is an exchange near-field space such that for every e2 = e ∈ N, either eNe or  (1 – e )N(1 – e) is semi regular 

near-field space over a near-field. 
 
Proof: To prove (a) ⇒ (b): Proof is obvious with reference to theorem 2.12 and lemma 2.22. Proved (a) ⇒ (b). 
 
To prove (b) ⇒ (a): ∀ a ∈ N, as N is an exchange near-field space over a near-field, ∃ e2 = e ∈ N ∋ e ∈ aN and             
1 – e ∈ (1 – e)N. Now if eNe = eN is semi regular near-field space over a near-field, then e(1 – e) is semi regular 
element, and hence 1 – a is semi regular element.   
 
Similarly, if (1 – e)N(1–e) =  (1– e)N is semi regular near-field space over a near-field. Then a is semi regular element. 
Therefore, N is feckly semi regular near-field space over a near-field. Proved (b) ⇒ (a). This completed the proof of the 
proposition. 
 
Note 2.25: M(N) = {a ∈ N / (a) is a regular ideal in N} is the unique maximal regular ideal of N, where (a) stands for 
the principal ideal of N generated by a ∈ N. 
 
Lemma 2.26: Let N be a near-field space in which idempotent can e lifted modulo J(N). then M(M/M’(N)) = 0 
 
Proof: Without loss of generality, we write )(/ NJNN = . Then  

M′(N)/J(N) = { })(/ NinidealregularsemiaisaNa ∈  

      = { })(/ NinidealregularsemiaisaNa ∈  

      = M( N ) = M(N/J(N)). 

Thus M(N/M′(N)) ≡ 0
))(/(

)(/
)(/)(

)(/
=








=








′ NJNM

NJNM
NJNM

NJNM . This completes the proof of the lemma. 

 
Note 2.27:  If N is an abelian VNL-near-field space over a near-field and not regular N/M(N) is a local near-field space 
over a near-field. An abelian near-field space N is a VNL-near-field space over a near-field if and only if an SVNL-
near-field space over a near-field. 
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Theorem 2.28: The following hold for an abelian near-field space N. 

(a) If N is a feckly semi regular near-field space over a near-field, N/M’(N) is a local near-field space over a near-
field. 

(b) If N is an exchange near-field space over a near-field and N/M’(N) is a local near-field space over a near-field, 
N is a feckly semi regular near-field space over a near-field. 

 
Proof: To prove (a): Assume that N is abelian, feckly semi regular near-field space over a near-field. Then N/J(N) is an 

abelian VNL-near-field space and hence 
/ ( )

( ) / ( )
N J N

M N J N
 
 ′ 

 is a local near-field space and M(N/M′(N)) ≡ 

/ ( ) / ( )
( ) / ( ) ( / ( ))
N J N N J N

M N J N M N J N
   

=   ′   
, then N/M′(N) is a local near-field space over a near-field. Proved (a). 

To prove (b): If N/M′(N) is a local near-field space over a near-field, so is 
/ ( )

( ) / ( )
N J N

M N J N
 
 ′ 

, N/J(N) is a VNL-near-

field space over a near-field. Therefore, N is feckly semi regular near-field space over a near-field. Proved (b). This 
completes the proof of the theorem. 
 
Proposition 2.29: Let N be an abelian near-field space. Then the following are equivalent. 

(a) N is a feckly semi regular near-field space over a near-field. 
(b) Whenever (T)t = N for non-empty sub near-field space over a near-field T of N, at least one element in T is 

semi regular element, where (T) is a right ideal generated by T. 
 
Proof: To prove (b) ⇒ (a): ∀ a∈N, Let T = (a, 1 – a). Then (T)t = N and hence either a or 1 – a is semi regular element. 
Proved (b) ⇒ (a). 
 
To prove (a) ⇒ (b): If N is semi regular near-field space over a near-field, we are done. Then one suppose that N is a 
feckly semi regular near-field space over a near-field which is not semi regular near-field space over a near-field.  
 
For any non-empty sub near-field space T of N with (T)t = N, there exists t1, t2, ......, ts ∈ T such that  t1 N+ t2 N+ ......+ 
tsN=N. Thus there exists k1,k2,......,ks∈N satisfying t1k1+ t2k2+......+ tsks = 1. And so 1 1 2 2 s s t  k + t  k + ....+ t  k 1=  in 

N = N/M’(N). However N  is a local near-field space over a near-field. It follows that there exists an ks such that 

ks ∈ )NU( , hence ks  is a regular element in N . Assume that ks = ks x ks  for some x ∈ N . Then we have       
sk – skxsk ∈ M’(N) and skx – (skx)2∈M’(N). N is an exchange near-field space over a near-field, every right ideal of N is 
strongly lifting i.e., there exists e2 = e∈ skxN ⊆ skN such that e – skx ∈ M’(N) and so esk - skxsk ∈ M’(N). Then             
sk – esk = (esk - skxsk) – (esk - skxsk) ∈ M’(N) is semi regular element. Thus sk is semi regular element. Hence proved   
(a) ⇒ (b). 
 
This completes the proof of the proposition. 
 
SECTION 3: MAIN RESULTS AND EXTENSIONS ON FECKLY SEMI REGULAR NEAR-FIELD SPACES 
OVER NEAR-FIELD SPACE. 
 
A (P, Q, M, N, ϕ, ψ) consists of two near-field spaces P, Q, two sub near-field spaces PMQ, QNP and a pair of sub near-
field spaces homomorphism ψ : M ⊗Q N → P and homomorphism ϕ : N ⊗P M → Q which satisfy the following 
associativity : ψ( m ⊗ n)m’ = m ϕ(n ⊗ m’) and ϕ(n ⊗ m)n’ = nψ(m ⊗ n’) for any n, n’∈N, m, m’ ∈ M. 
 

Theorem 3.1: Let S = 







QN
MP  such that MN ⊆ J(N) and NM ⊆ J(T). Then S is feckly semi regular near-field space 

if and only if P and Q is semi regular near-field spaces over a near-field and the other is feckly semi regular near-field 
space over a near-field. 
 
Proof: S/J(S) ≅ P/J(P) X T/J(T). If S is feckly semi regular near-field space, then S/J(S) is a VNL-near-field space. S is 
also an exchange near-field space over a near-field. So P, Q are exchange near-field spaces over a near-field. So one of 
P and Q is semi regular near-field space over a near-field and the other is feckly semi regular near-field space over a 
near-field. Conversely, if one of P and Q is semi regular near-field spaces and the other is feckly semi regular, using the 
similar theorem. S is feckly semi regular near-field space over a near-field. This completes the proof of the theorem. 
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Corollary 3.2: Let Sn(N) be the near-field spaces of upper triangular matrices over N. Then the following are 
equivalent. 

(a) N is semi regular near-field space over a near-field. 
(b) Sn(N) is feckly semi regular near-field space over a near-field ∀ n≥ 1. 

 
Proof: is obvious. 
 
Note 3.3: A matrix near-field space over a near-field is a feckly semi regular near-field space over a near-field. 
 
Theorem 3.3:  Let N be a near-field space over a near-field. Then the following are equivalent. 

(a)  N is feckly semi regular near-field space over a near-field. 
(b) N[[x]] is a feckly semi regular near-field space over a near-field. 

 
Proof: To prove (a) ⇒ (b): As N[[x]]/J(N[[x]]) = N[[x]]/J(N)[[x]] ≅ N/J(N). By hypothesis, N[[x]]/J(N[[x]])  is a 
VNL-near-field space over a near-field and idempotents can be lifted modulo J(N[[x]]). Then N[[x]] is a feckly semi 
regular near-field space over a near-field. Proved (a) ⇒ (b). 
 
To prove (b) ⇒ (a): If N[[x]] is a feckly semi regular near-field space over a near-field, Then N[[x]]/J(N[[x]])  is a 
VNL-near-field space over a near-field and idempotents can be lifted modulo J(N[[x]]). Thus, N/J(N) is a VNL-near-
field space over a near-field and idempotents can be lifted modulo J(N). N is a feckly semi regular near-field space over 
a near-field. Proved (b) ⇒ (a). This completes the proof of the theorem. 
 
Proposition 3.4: Let C be a sub near-field space over a near-field of a near-field space D. Then the following are 
equivalent. 

(a) N[D, C] is a VNL-near-field space over a near-field. 
(b) D is a regular sub near-field space over a near-field and C is a VNL-near-field space over near-field. 

 
Proof: To prove (a) ⇒ (b): For convenience, let T = N[D, C]. We construct a homomorphism f: T → C given by f 
(a1,a2, .......,an,b,b,..... ) = b. Thus C is a VNL-near-field space because it is a homomorphic image of a VNL-near-field 
space over a near-field. 
 
Now we prove that D is regular sub near-field space over a near-field. Assume that D is not regular sub near-field space 
over a near-field. Then there exists a non regular element x ∈ D. Let β = (x, 1 – x, 1, 1,...) ∈ T. By hypothesis, β, 1T - β  
is regular element, which is also implies x is regular in D, a require contradiction. 
 
To prove (b) ⇒ (a): for any (a1,a2, .......,an,c,c,.....) ∈ T with ai ∈ D and c ∈ C. By hypothesis, ai is regular element, and 
hence we have some bi ∈ D such that ai = aibiai. As C is a VNL-near-field space over a near-field, c or 1 – c is regular 
element. If c is regular, then there exists an element b ∈ C such that c = cbc.  
 
Thus (a1,a2,...,an,c,c,..)=(a1,a2,....,an,c,c,..)(b1,b2,...,bn,c,c,.. )(a1,a2, ..,an,c,c,.. ). Thus it implies that (a1,a2, .......,an,c,c,.....) 
is regular in T. If 1 – c is regular, we get (1,1,...,1,1,1,...) – (a1,a2,...,an,c,c,...) = (1–a1,1–a2,..,1–an,1 – c,1 – c,..) is regular 
in T. As a result T is a VNL-near-field space over a near-field. Proved (b) ⇒ (a). This completes the proof of the 
proposition. 
 
Corollary 3.5: Let C be a sub near-field space over a near-field of a near-field space D. Then the following are 
equivalent. 

(a) N[D, C] is a feckly semi regular near-field space over  a near-field 

(b) D is semi regular 
)()( CJDJ

C
∩

 is a VNL-near-field space and idempotents in C can be lifted modulo      

J(D) ∩ J(C). 
 
Proof: It is obvious. 
 

Note 3.6:  Assume that 
)()( CJDJ

C
∩

 is a VNL-near-field space and idempotents in C can be lifted modulo J(D) ∩ 

J(C), one can prove C is feckly semi regular near-field space over  a near-field. Hence if N[D, C] is a feckly semi 
regular near-field space over  a near-field, D is semi regular near-field space over  a near-field and C is feckly semi 
regular near-field space over  a near-field. 
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Example 3.7:  

(a) Let F be a field, D = M2(F) and C = 







a
ba

0
 where a, b ∈ F. Then N[D, C] is a feckly semi regular near-field 

space over  a near-field which is not semi regular near-field space over  a near-field. 
(b) If T = N[Q, Z(2) ] where Q is the rational numbers and Z(2) is the localliation of Z at the prime ideal (2), then T 

is a VNL-near-field space over a near-field with J(T) = 0 which is not regular. Thus T is a feckly semi regular 
near-field space over  a near-field but not semi regular near-field space over  a near-field. 

Let N be a near-field space and M be bimodule over N. The trivial extension of N and M is N∝M ={|(x, m)|x ∈ N,    
m∈ M} with “+” defined component wise and “.” Defined by (x, m)(y, n) = (xy, xn + my). J(N ∝ M) = {(x, m)/x 
∈J(N), m ∈ M}. 
 
Lemma 3.8: The following are equivalent for a near-field space N and a bimodule M: 

(a) Idempotents of N can be lifted modulo J(N). 
(b) Idempotents of N ∝ M can be lifted modulo J(N ∝ M). 

 
Proof: To prove (a) ⇒ (b): for any (x, m)2 – (x, m) ∈  J(N ∝ M), x2 – x ∈ J(N). by hypothesis there exists e2

 = e ∈ N 
such that e – x ∈ J(N). Thus (e, 0)2 = (e, 0) ∈ N ∝ M and (e, 0) – (x, m)∈ J(N ∝ M). proved (a) ⇒ (b). 
 
To prove (b) ⇒ (a): for any x2–x∈J(N), (x, 0)2 – (x, 0)∈J(N ∝ M), by hypothesis there exists (e, m)2

 = (e, m) ∈ N ∝ M  
such that (e, m) – (x, 0) ∈  J(N ∝ M). Thus e)2 = e ∈  N and e  – x ∈  J(N). proved (b) ⇒ (a). This completes the proof 
of the lemma. 
 
Proposition 3.9: Let N be a near-field space and M be a bimodule over near-field space N. Then the following are 
equivalent. 

(a) N is feckly semi regular near-field space over a near-field. 
(b) N ∝ M is feckly semi regular near-field space over a near-field. 

 
Proof: is obvious. 
 
Note 3.10:  Let N be a near-field space. Then N is feckly semi regular near-field space over a near-field if and only if 
so is N ∝ N. 
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