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ABSTRACT
The aim of this paper is to apply the notion of £ semi- open sets to obtain a new class of {a)— closed sets via grills.
The properties of the above mentioned sets are investigated. Further the concept is extended to derive some
applications of é’a)— closed sets via Grills.
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1. INTRODUCTION AND PRELIMINARIES

The idea of grills on a topological space was first introduced by Choquet [2] in 1947. In [8], Roy and Mukherjee
defined and studied a typical topology associated rather naturally to the existing topology and a grill on a given
topological space. Hatir and Jafari [4] have defined new classes of sets in grill topological spaces. Ahmad Al-Omari

and Noiri [6] introduced and investigated the notions of {« - open sets, £ semi open sets and {,B open sets in grill
topological spaces.

Definition 1.1: [2] A collection { of non empty subsets of a topological spaces X is said to be a grill on X if
(1) Aed and Ac B impliesthatBe ¢,
(i) AB c X and AUB e impliesthat Ac¢ or Be( .

Definition 1.2: [8] Let (X,7) be a topological space and ¢ be a grill on X . We define a mapping®: P(X) — P(X)
denoted by (I)g(A, 7) (for AeP(X))or (Dg(A) or simply ®(A) called the operator associated with the grill

¢ and the topology 7 defined as follows: @ (A) = D (X,7,6) ={xe X| AnU e for all U € 7(X) for
each Ae P(X)} .

Definition 1.3: [8] Let¢ be a grill on X . We define a mapy : P(X) — P(X) by w(A) = AUD(A) for all
AeP(X).

Definition 1.4: [8] Corresponding to a grill { on topological space (X,z)there exist a unique topology T
(say) on Xgivenby 7. ={U < X :y(X \ A) = X \U} where for anyall Ac X,y (A)= AUD(A)=7,—Cl(A).

Definition 1.5: [10] Let X be a space and (¢ #) A< X. Then [A]={B < X : AnB # ¢}is a grill on X
called principal grill generated by A.
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2. {@- CLOSED SETS

Definition 2.1: Let (X, 7) be a topological space and ¢ be any grill on X . Then a subset A of X is called (@
- closed if w(A) < U whenever Ac U and U is £ semi- openin X . Asubset A of X iscalled (@ - open if
X\ A is {w- closed.

Theorem 2.2: Every closed setin (X, 7) is @ - closed in (X, 7,<) .

Proof: Let A be any closed setand U be any £ semi - open set such that cl(A) = A< U since A is closed. But
w(A) c cl(A),we have 7 (A) c U whenever A c U. Hence A is {w - closed.

The converse of the above Theorem is not true as seen from the following Example.
Example 2.3: Let X ={a,b,c}, 7= {¢, {b} : {b, C}, X} with ¢ ={ {a},{c}.{a,c}.{a,b}, {b,C}} . Let

X,
A={b} and U = {b}where U is ¢ semi open in X . Therefore, d(A) = {¢} and w(A) = AUD(A) ={blcU.
Then the set {b} is @ - closed but not closed.

Theorem 2.4: Every Ts- closed setin (X, 7,¢) is Cw-closed in (X, 7,¢) .

Proof: Let A bea 7 - closed and then ®(A) < A implies AUD(A)c AUA=A..Let AcU where U is
¢ semi open. Hence, 7 (A) cU whenever Ac U and U is £ semi- open. Therefore, A is {@ - closed.

The converse of the above Theorem is not true as seen from the following Example.

Example 2.5: Let X :{a,b,c} ,r:{¢,{a},{b,c},X} and g“:{{a},{b},{a,b}, {a,c}, {b,C}, X} .
Then the set {a,b} is - closed but not T - closed.

Theorem 2.6: Every @ - closed setin (X,7) is - closed in (X, 7,¢).

Proof: Let A be any @ - closed set and U be any £ semi open set containing A. Since every £ semi open set is
semi open and A is @ - closed we have, Cl(A) cU. But w(A) < cl(A). Thus we have, w(A) cU whenever
Ac U .Hence A is {w - closed.

The converse of the above Theorem is not true as seen from the following Example.

Example 2.7: In Example 2.3, the set {b} is @ - closed but not @ - closed.

Remark 2.8: In a grill space (X,7,¢), - closed sets are generalization of @ - closed sets which itself is a
generalization of the closed set.

Theorem 2.9: Every (@ - closed setin (X ,7,¢)is £ -closed in(X,7,{).

Proof: Let Ac U , U is open and hence it is  semi open. Since A is @ - closed, we have (A) cU. But
®(A) cw(A) cU. Hence A is Q- closed.

The converse of the above Theorem is not true as seen from the following Example.

Example 2.10: Let X ={a,b,c}with7 = {¢,{a}, X } and ¢ :{{a},{b},{a,b}, {a,c}, {b,c}, X}. Then
the set {a,b} is £'g —closed but not {@ - closed.
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Remark 2.11: In the case [X]principal grill generated by X, it is known [8] that 7 = T[X] sothatany [ X]- -

closed set becomes simply an @ closed set and vice —versa.

Theorem 2.12: Let (X,7,<) be a topological space and ¢ be a grill on X . Then for a subset A of X , the
following are equivalent:

(1) Ais ¢ - closed.

(i) w(A) < U for £ semi open set U containing A .

(iii) Foreach x ew (A),Sscl({x}n A) = ¢.

(iv) w(A)\ A contains no non empty ¢ semi closed setof (X,7,¢).

(v) ®(A)\ A containsnonon empty ¢ semi closed set of (X, 7,4).

Proof:
(i) = (ii): Let A bea {w - closed. Then clearly, y(A) U whenever Ac U and U is  semiopenin X .

(if) = (iii) : Suppose X e w(A). If Sscl({xFNA)=¢ , then Ac X \Zscl({x}) where X \ ¢scl({x}
is a & semi open set. By assumptiony (A)\ A< X \{'scl({x}), which is a contradiction to x € 7 (A). Hence
gscl({x}) n A= ¢. This proves (iv) .

(iii) = (iv) : Assume that F — ®(A)\ A where F is ¢ semi closed and F # ¢. This gives F < ®(A). This
contradicts (iV) .

(iv) = (v): It follows from the fact that w (A)\ A= D(A)\ A.

(V)= (i): Let AcU where U is  semi - open such that ®(A) zU. This gives ®(A)N (X -U)=¢
or ®(A)\[X\(X\U)]=¢. This gives ®(A)\ A= ¢@. Moreover, D(A)\A=D(A)N (X \U) is £ semi
closed set in X since ®(A) =cl(D(A))is closed in X and X \U e {sSC(X). Also, ®(A)\U c ®(A)\ A
This gives that ®(A) \ A contains a non empty £ semi closed set . This contradicts (V).

This completes the proof.

Corollary 2.13: Let (X,7) bea Ty spaceand & beagrillon X . Then every S - closed set is T - closed.

Corollary 2.14: Let (X,7,¢) be a grill topological space and A be a {w - closed set. Then the following are
equivalent:
(i) Ais 7 - closed.

(i) w(A)\Ais ¢ semi-closedsetin (X,7,¢).

(iii) ®(A)\ A is £ semi-closed setin (X,7,¢).

Proof:

()= (ii):Let Abe a 7 ~closed. Then®(A)\ A =y (A)\ A gives y(A)\A = @. This proves that y/(A)\ A is

¢ semi- closed.
(ii) = (iii) : Since ®(A)\A=w(A)\ A andso ®(A)\ A is ¢ semi closed in X .

(iii) = (i) : Let D(A)\ A be a & semi- closed set. Now, A is (@ - closed and by Theorem 2.12 (V), ®(A)\ A
contains no non empty £ semi - closed set. Therefore, ®(A) \ A= ¢@. This proves ®(A) = A and hence A is Ty

- closed.
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Theorem 2.15: In a grill topological space (X, 7, g“) an {w - closed set and T - dense set in itself is @ - closed.

Proof: Suppose A is Ty - dense in itself and {w- closed in X . Let U be any ¢ semi open set containing A,
then w(A) c U . Since A is 7 - dense in itself by [3, Lemma 2.12], D(A) =cl(D(A) =y (A) =cl(A), we
get cl(A) < U whenever A c U. This proves that A is @ - closed.

Corollary 2.16: If (X,7,£) is any grill space where £ = P(X)\{@} then Ais {o - closed if and only if A is
- closed.

Proof: The proof follows from the fact that ' = P(X)\{¢}, ®(A)=cl(A) > A and so every subset of X is

T - dense set in itself.

The following theorem gives another characterization of (@ - closed set.

Theorem 2.7: Let (X, 7,¢) be a grill topological space. Then A(< X) is {w - closed if and only if A=F \N,
where F is T - closed and N contains no non empty ¢ semi- closed set

Proof: Necessity - If A is {w - closed set then by Theorem 2.12, N =/ (A) \ (A) contains no non - empty ¢
semi-closed set. Let F =y (A), then F is 7y - closed setand F—N = AU (@(A)\ (D(A)\A) =A

Sufficiency -Let U be any ¢ semi - open set in X containing A , then F\N cU implies
FAX\U)c FNA(X\(F\N)=FNn(X\F)UN=FNNcN. By hypothesis AcF and
O(F)cF as F is 7p - closed gives DA N(X\WU)c O(F)n(X\U)c Fn(X\U)< N where
D(A)N(X\U) is & semi- closed set. By hypothesis ®(A) (X \U)=¢ or (A) cU implies that A
is S - closed set.

Theorem 2.8: Let (X,7,¢) be a grill topological space. Then every subset of X is {@- closed if and only if
every £ semi-open set is To- closed.

Proof: Necessity - Suppose every subset of X is {@ - closed. Let U be a ¢ semi- open set then U is {w -
closed and 7 (U) cU. Hence U is 7 - closed.

Sufficiency - Suppose that every £ semi- open set is T closed. Let A be non empty subset of X contained in a

¢ semi- openset U . Then y(A) < w(U) implies w(A) < U. This proves that A is {w - closed.

Theorem 2.9: A set A is {w — open if and only if F cr —int(A) whenever F is ¢ semi closed and
FcA

Proof: Necessity - Suppose that F < 7 —int(A), where F is¢ semi closed and F < A. Let A° c U,
where U is ¢ semi open. Then U® < A and UC is ¢ semi closed. Therefore, U° c7s —int(A) .Since

Utc o —Int(A), we have (z, —int(A))® cU .Thatis, y(A°) cU, since w(A®) = (z, —int(A)° . Thus AC
is S - closed, thatis A is @ - open.

Sufficiency - Suppose that A is (@ - open. F < A and F is ¢ semi closed. Then FCis ¢ semi - open and
A® = F€. Therefore, w(A°) c F€ andso F < Ty —int(A), since y(A®) = (2'{ —int(A))°.
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3. SOME CHARACTERIZATIONS OF é/a) -NORMAL AND é/a) —-REGULAR SPACES
In this section we introduce {@ - regular and {@ -normal spaces via grills.

Definition 3.1: A grill space (X,7,¢) issaidtobean {@ - normal if for every pair of disjoint closed sets A
and B , there exist (@ —opensets U and V suchthat AcU and BV .

Theorem 3.2: Let X bea normal space and ¢ be agrill on X then for each pair of disjoint closed sets A and
B, there exist disjoint (- opensets U and V suchthat AcU and BV .

Proof: It is obvious since every open set is @ - open.

Theorem 3.3: Let X be a normal space and £ be a grill on X , then for each closed set A and an open set V
containing A, there exists a {w- openset U suchthat Ac U cwU)cV.

Proof: Let A be a closed set and V be an open set containing A. Since A and X \V are disjoint closed sets,
there exist disjoint {@ - open sets U and W such that Ac U and X \V W . Again U "W = ¢ implies that

Unz, -intW)=¢ and so w(U)c X -z, -int(W) . Since X \V is closed and W is {w - open,
X\V cW implies that X \V < 7, -int(W)and so X \ 7, -int(W) V. Thus, we have,
AcUcyU)c X\z -int(W) =V where U isa (- open set.

Remark 3.4: The following Theorem gives characterizations of a normal space in terms of @ — open sets, which is a
consequence of Theorems 3.2, 3.3 and Remark 2.11 if one takes ¢ =[X].

Theorem 3.5: Let X bea normal space and £ be a grill on X then for each pair of disjoint closed sets A and
B , there exist disjoint @ - open sets U and V suchthat AcU and B V.

Theorem 3.6: Let X be a normal space and ¢ be a grill on X then for each closed set A and an open set V
containing A, there exists an @ - openset U suchthat Ac U c cl(U) V.

Definition 3.7: A grill space (X,7,¢) is said to be (- regular if for each pair consisting of a point X and a
closed set B not containing X, there exist disjoint {@ - opensets U and V suchthat xeU andB V.

Remarks 3.8: It is obvious that every regular space is {w - regular.

Theorem 3.9: Let (X, 7,¢") agrill space. Then the following are equivalent:

() (X,7,¢) is o - regular .

(ii) For every closed set B not containing x € U , there exists disjoint {@ - openset U and V of X such that
xeUand BCV.

(iiii) For every open set V' containing x € X , there exists an {@ - openset U such that xeU cw(U) V.

Proof:
(i) = (ii) : Itis clear, since every open set is S - open.

(ii) = (iii) : Let V be an open subset such that such thatx €V . Then X \V is a closed set not containing X .
Therefore, there exist disjoint @ - open sets U and W such that xeU and X \V < W . Now, X \V cW
implies that X \V cz, —int(W) and so X\z,—intW)cV. Again UNW =¢ implies that
U Nz, —intW)=gandso, w(U)c X \z, —int(W). Thereforex eU < w(U) < V. This proves (iii)

© 2016, IJMA. All Rights Reserved 70



N. Chandramathi*/ A New Class of Generalized Closed Sets Using Grills / IIMA- 7(7), July-2016.

(iii) = (i) : Let B be a closed set not containing X . By hypothesis, there exists a {@ - open set U of X such
thatxeU cywy(U) < X \B. If W = X \w(U) then U and W are disjoint @ - open sets such that X € U
and B =W . This proves (i) .

Theorem 3.10: If every £ semi open subset of a grill space (X,7,¢) is 7, - closed, then (X,7,¢) is {o -

regular.

Proof: Suppose every { semi open subset of a grill space (X, 7, $)is Ty closed.

Then by Theorem 2.8, every subset of X is (@ - closed and hence every subset of X is {@- open. If B is a

closed set not containing X , then {X} and B are the required disjoint (@ — open sets containing X and B

respectively. Therefore, (X,7,¢) is (@ - regular.
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