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ABSTRACT

The topic deals with the effect of hall currents, radiation absorption and chemical reaction on transient mixed
convective heat and mass transfer flow in a vertical wavy channel under an inclined magnetic field. We investigate the
effect of chemical reaction Hall currents on unsteady mixed convective heat and mass transfer flow of a viscous,
electrically conducting fluid in a vertical channel under the influence of an inclined magnetic fluid with heat sources.
The equations governing the flow, heat and mass transfer are solved by employing perturbation technique with aspect
ratio & as perturbation parameter. The velocity, temperature and concentration distributions are investigated for
different values of G, M, m, k, N, & and x +x. The rate of heat and mass transfer are numerically evaluated for
different variations of the governing parameters.
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1. INTRODUCTION

There are many physical processes in which buoyancy forces resulting from combined thermal and species diffusion
play an important role in the convective transfer of heat and mass. The engineering applications include the chemical
distillatory processes, formation and dispersion of fog, design of heat exchangers, channel type solar energy collectors,
and thermo-protection systems. Therefore, the characteristics of natural convection heat and mass transfer are relatively
important. Convection flows driven by temperature and concentration differences have been studied extensively in the
past.

The study of heat and mass transfer from an irregular surface has many applications. It is often encountered in heat
transfer devices to enhance heat transfer. For examples, flat-plate solar collectors and flat-plate condensers in
refrigerators. The natural convective heat transfer from an isothermal vertical wavy surface was first studied by Yao
[64, 65]. Vajravelu and Nayfeh [61] have investigated the influence of the wall waviness on friction and pressure drop
of the generated coquette flow. Vajravelu and Sastry [59] have analysed the free convection heat transfer in a viscous,
incompressible fluid confined between long vertical wavy walls in the presence of constant heat source. Later
Vajravelu and Debnath [60] have extended this study to convective flow in a vertical wavy channel in four different
geometrical configurations. This problem has been extended to the case of wavy walls by McMichael and Deutsch
[33], Deshikachar et al. [19], Rao et al. [47, 48] and Sree Ramachandra Murthy [57]. Hyan Goo Kwon et al. [24] have
analyzed that the Flow and heat/mass transfer in a wavy duct with various corrugation angles in two dimensional flow
regimes. Kumar [31] has studied heat transfer with radiation and temperature dependent heat source in MHD free
convection flow confined between two vertical wavy walls. Mahdy [32] have studied the mixed convection heat and
mass transfer on a vertical wavy plate embedded in a saturated porous media (PST/PSE). Comini et al. [13] have
analyzed the Convective heat and mass transfer in wavy finned-tube exchangers. Jer-Huan Jang et al. [27] have
analyzed that the Mixed convection heat and mass transfer along a vertical wavy surface. Cheng [9, 10] has
investigated coupled heat and mass transfer by natural convection flow along a wavy conical surface and vertical wavy
surface in a porous medium.

Corresponding Author: K. Madhu Sudhana*!

International Journal of Mathematical Archive- 7(7), July — 2016 72


http://www.ijma.info/�

K. Madhu Sudhana*l, Dr. B. Sreenivasa Reddyz, Dr. M. Sreedhar Babu® /
The effect of hall currents, radiation absorption and chemical reaction on transient... / IIMA- 7(7), July-2016.

Heat generation in a porous media due to the presence of temperature dependent heat sources has number of
applications related to the development of energy resources. It is also important in engineering processes pertaining to
flows in which a fluid supports an exothermic chemical or nuclear reaction. Proposal of disposing the radioactive waste
material b burying in the ground or in deep ocean sediment is another problem where heat generation in porous medium
occurs, Foroboschi and Federico [20] have assumed volumetric heat generation of the type

g 6, (T-T,) for T=T,
0 for T <T,

David Moleam [16] has studied the effect of temperature dependent heat source Q = 1/ a + bT such as occurring in the
electrical heating on the steady state transfer within a porous medium. Chandrasekahr [6], Palm et al. [41] reviewed the
extensive work and mentioned about several authors who have contributed to the force convection with heat generating
source. Mixed convection flows have been studied extensively for various enclosure shapes and thermal boundary
conditions. Due to the super position of the buoyancy effects on the main flow there is a secondary flow in the form of
a vortex recirculation pattern.

x
T=TrH{ Tr—T)Sinimzl)
Cc=C;
X
x =_Li{521) x =+ L5 z1)
g

Configuration of the Problem
2. FORMULATION AND SOLUTION OF THE PROBLEM

We consider the unsteady flow of an incompressible, viscous ,electrically conducting fluid confined in a vertical
channel bounded by two wavy walls under the influence of an inclined magnetic field of intensity Ho lying in the plane
(x-z).The magnetic field is inclined at an angle o; to the axial direction and hence its components are

(0, H,Sin(e;), H,Cos(er,)) .In view of the traveling thermal wave imposed on the wall X =+Lf(mz) the
velocity field has components(u,0,w)The magnetic field in the presence of fluid flow induces the current(
(J 0, J Z) .We choose a rectangular Cartesian co-ordinate system O(x,y,z) with z-axis in the vertical direction and

the walls at X = +Lf (mz).

When the strength of the magnetic field is very large we include the Hall current so that the generalized Ohm’s law is
modified to

J+,r,JXH = (E + 4,GxH) (2.1)
where { is the velocity vector. H isthe magnetic field intensity vector. E is the electric field, J is the current density

vector, @, is the cyclotron frequency, 7, is the electron collision time,c is the fluid conductivity and g, is the

e
magnetic permeability. Neglecting the electron pressure gradient, ion-slip and thermo-electric effects and assuming the
electric field E=0, equation (2.1) reduces

J,—mH,J, Sin(e ;) =—ou,H,wSin(e, ) (2.2)
J,+mH,J Sin(a ) = ou,HuSin(e,) 2.3)
where m=@,7, is the Hall parameter.
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On solving equations (2.2) & (2.3) we obtain

S s
__ouH, Sin(a,)

* T 1+m? HESin? (o)

where u, w are the velocity components along x and z directions respectively,

(u+mH,wSin(e,))

The Momentum equations are

ou ou _ou  op o’u  ou .
—+U—+W—=——"-+ | —+— [+ 4, (—H,J, Sin
ot ox ez ax X (8x2 azZJ He(~Ho. Sin(e)

ow oW oW op (azvv oW
—U—FW—=——""+u

ot ox 01 0z

+

6X2 5‘22 }+:ue(H0‘JxSin(a1))

Substituting Jyand J, from equations (2.4) & (2.5) in equations (2.6) & (2.7) we obtain
2 2 2 a2

a_u+ua_u+W6_u=_a_p+ﬂ a l;_|_a l: _ J/Uetloozsm 2(0(1)

ot 0Ox 0z OX ox" oz 1+ m°H; Sin“(e,)

ow, oW W _ dp [az\/\/ azwj o Hg Sin *(ar)

(u+mH,wSin(e,)) - p9

(w—mH_uSin(e,))

— tU——+W 2t 7 |” 2112 Qin2
ot OX oz 0z ox~ oz 1+ m°H; Sin“(¢,)

The energy equation is

or or oT o°T o°T '
C | —+u—+w— |=K,| —+—|+Q+Q, (C-C
P p( at o oz j f [axz 622 ] Q Ql ( o)

The diffusion equation is
oC oC oC
—+U—+W—

ot OX 0z

D 62_C+82C
lox? oz

j—kl(C —Co)

The equation of state is

p=po==p =T,)=p(C-C,))

2.4)

(2.5)

(2.6)

@.7)

(2.8)

(2.9)

(2.10)

(2.11)

(2.12)

Where T, C are the temperature and concentration in the fluid. k¢ is the thermal conductivity, Cp is the specific heat
constant pressure, k is the permeability of the porous medium, S is the coefficient of thermal expansion, S°is the
volumetric coefficient of expansion with mass fraction coefficient, D, is the molecular diffusivity, Q is the strength of

1
the heat source, k; is the chemical reaction coefficient, Q1 is the radiation absorption coefficient.,

The flow is maintained by a constant volume flux for which a characteristic velocity is defined as

Lf
q:% dez

—Lf

The boundary conditions are
u=0, w=0 T=T,, C=C; on X =—Lf (mz)
w=0, w=0, T=T,+ ((T1-T) Sin(mz+nt), C=C, on X = —Lf (mz)

Eliminating the pressure from equations (2.8) & (2.9) and introducing the Stokes Stream function v as
Loy v

u= , =
oz 19)4
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The equations (2.8)-(2.11) in terms of  are

2 2 2 2112 iR 2
o(Vy) oy o(Vy) oy o(Viy) _ N+ By o _T°)+ﬁ"g d(C-C,) Gﬂe:'OZSH:] 2(061) V2
ot 07 OX ox oz OX OX 1+m"H, Sin“(e,)
(2.18)
oT oy dT oy oT T oT
C +—_——-——=k + c-C 2.19
» p[at x o1 axj (az o | TerQC-C) (219)
2 2
(3 2w ). p(7C,7¢) ke, -
ot ox oz 0z oX OX Z

On introducing the following non-dimensional variables
. 2)=(x/Lmz) oy =2 g1 T2 o C=C
gL’ = T,-T, C,-C,

The equation of momentum, energy and diffusion in the non-dimensional form are
2 2
V“!//—MfVZ!/H%(% 5Cj 5R(5 (Vz )+ (al// o(Viy) Oy oV l//)J 221)

0z 0z oz  oX oX 0z
2 2
5P( a4 a‘/’%—a—‘/’%J 99,599 arqc (2.22)
ot ox oz oz ox OX 0z
2 2
o2, Q0TI (TC ) e 02
ot oOx 0z 01 oX OX 0z
v 529
o ar
3
where G = w (Grashof Number) , 0 =mL (Aspect ratio)
v
21422 M 2Qin2
M? = M (Hartman Number), M 12 = Lﬁal)
1% 1+m
C
R= a (Reynolds Number) , Y (Prandt! Number)
v f
QL
=————— (Heat Source Parameter), SC =— (Schmidt Number)
k.C (T -T ) D,
'B (C 2) (Buoyancy ratio), k= k L (Chemical reaction parameter)
AT -T,) D,
! 2 B
Q = QLG -Cp) (Radiation absorption parameter)
kf (Tl _Tz)
The corresponding boundary conditions are
y(D)-w(-1)=1,
oy oy
=0,—/—=0,0=1,C=1 atx=-1(2)
oz OX
o =0,—/— oy =0,0=Sin(z+yt), C=0 at x=+1(2) (2.24)
oz OX
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3. ANALYSIS OF THE FLOW

On introducing the transformation

n=—rrs 61
f(2)

The equations (2.21)-(2.23) reduce to
3 2 2
F4y/—(Mff2)F2w+(%](% zcj (ORI~ (F2 )+ (a"’ oFy) ov a(g '/’)] (3.2)
Z Z

0z oz on on
0,0y 00 oy 00) (&0 ., zae
SPf 90 oy 00 1290 (2 12)1(Q f2)C 33
( )( Y 677 e 577] [677 (af?)+(Qf7) (3.3)
(sscf)| 6§29C , Qv C 2y ac) _(oC 52fzac _(F?)C < (3.4)
ot on oz 0z On 877 oz’

Assuming the aspect ratio & to be small we take the asymptotic solutions as
w (X 2,t) =y (X% 2,1) + Sy, (X, 2, 1) + 52w, (X, 2,1) +.....

0(x,2,t) = 0,(X, 2,t) + 66,(X, 2,t) + 6°6,(X, Z,1) +......
C(x,2,t) =C,(X,2,t) + 6C, (X, Z,t) + 5°C, (X, Z,t) +..... (3.5)

Substituting (3.5) in equations (3.2)-(3.4) and equating the like powers of & the equations and the respective boundary
conditions to the zero th order are

0? 9

=—~(af?)=-(Qf")C, (3.6)
0°C
—2—(kf*)C, =0 3.7)
4 3
'y CA7VEY )a Vo __ Gf (86’0+NOCO] 8
on R oz oz
With

wo(+D) -y, (-) =1

W _g, Wo_g g -1C =1at y=-1 (39)
on 0z
Vo _o, VYo _p g =Sin(z+yt), C,=0 at 5=+1

on

and to the first order are

2
0 9 _ (PRf) dy, 06, Oy, 96, (3.10)
on 0L 07 On

— (kf 2)C, = (SCRf) 5"’0 o€y _ 0¥, 9C, (3.11)
oz 0z 0On
4 2 3
ch ‘”:—(lvlffZ)—6 G- ( N£J++(Rf) a%a"? Vo Vs (.12
on on 0z 0z on oz 0z onoz
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With

v, (+1) -y, (-1 =0

Wi o Vg g-0C=0at n=-1 (3.13)
on oz

%:0, %:0, 6,=0, C =0 at n=+1
on oz

4. SOLUTIONS OF THE PROBLEM

Solving the equations (3.6) - (3.8) and (3.10) — (3.12) subject to the boundary conditions (3.9) & (3.13) we obtain
6y, = 0.5a(x* —1) +0.5Sin(z + yt)(1+ x) + 0.5(1 - x)
c, - O.S(Ch(ﬂlx) S (ﬁax)j+ a, [Ch(ﬁm _1j
Ch(s) Sh(B) Ch(5,)
=a, Cosh(M,x) +a,, Sinh(M,x) +a,,x+a,, + ¢ (X)
@, (X) = —ax+a,x’ —ax’

Similarly the solutions to the first order are

6 = ass(xz -1+ Ay (X3 —X)+ 338(X4 -1+ A9 (X5 —X)+ Ay (X6 -1)
+(a,, + Xa,;)(Ch(M x)—-Ch(M,) + a,,(Sh(M,x)—xSh(M,))
+ay, (XSh(MIX) o Sh(Ml))

Cl:au(l_crnwlx)}aw[ Sh(ﬂlx)]+a49( Chwlx)]
ch(s,) sh(A,) Ch(A,)

Sh(4,) Ch(ﬂl Ch(ﬂl)
ra, | Sh(Mx)— Sh(l\/ll)sshh(éj)j [XCh(M X)= Ch(Ml)zhh(gs)J
| (M)~ S(M,) G X))] b{Sh(ﬂzx)‘Sh(ﬁz)Zhh((ﬂﬂllx))]
+b,] (8- Sn(A) Shh((ﬂllx))j b, LCh(ﬁ}X) ~Ch(s,) %hh(élx))j
1b, Ch(ﬁ3X)—Ch(ﬂ2)céhh(fﬂllX))j +0; (XSh(ﬁlx)_Sh(ﬂ 1)%%)J
+b, | x2Sh(Bx) - sm&)%} +b, (XzSh(ﬁlx) ~ShiA 1)%}
ny (xch(ﬂlx) ~Ch(g,) Sshh((%lx))] +by, (X°Ch(3x) - Ch(4)

, (X3Ch(ﬁlx) ~ch(g) S’Shh((%lx))j

w, =d, Cosh(M,x) +d, Sinh(M,x) +d,x+d; + ¢,(X)
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@, (X) = b X + g X% + g, X° + b X* + b X® + b, X° +1, X" + (b,,x ++b,,x* + b,,x*) Cosh(M, )
+(b,,X + b, X* +1,,x*) Sinh(M, x) + b, Cosh(3,x) +b,, Sinh( A, X)

5. NUSSELT NUMBER and SHERWOOD NUMBER

The rate of heat transfer (Nusselt Number) on the walls has been calculated using the formula

1 (@6’)
NU=———| —
(Hm _ew) OX X=+1

1
where 6, =0.5[ 9dx
-1

1
Nu = b,, + ob
(Nu),_, 6?m—Sin(2+yt)(24+ r2)
1
(Nu),_, = (Hm——l)(bzs +0b,;)

6, =b,s+5b,,

The rate of mass transfer (Sherwood Number) on the walls has been calculated using the formula

(s
(Cm_cw) OX x=+1

1
where  C,, =0.5[ C dx
-1

(sh), ., =C—t(b18+5b16)
1
(Cm _1)

C.,=b,+5b,
where ay, a,,...,a90, b1, by,...,b79 are constants given in the appendix

(Sh)xz—l = (b19 +6 b17)

6. DISCUSSION OF THE NUMERICAL RESULTS

We investigate the effect of Hall currents on the unsteady convective heat and mass transfer flow in a vertical wavy
channel in the presence of heat generating sources under the influence of an inclined magnetic field. The equations
governing the flow, heat and mass transfer are solved by employing a perturbation technique with the aspect ratio 5 as a
perturbation parameter. The unsteadiness in the flow is due to the traveling thermal waves imposed on the walls.

Figs.2-12 represent the axial velocity (w)for different variations of G, R, M, D%, m, B, A. a, x+yt The actual axial flow
is in the vertically downward direction and hence w>0 represents the reversal flow. Fig.2 represents ‘w’ with ‘G’ and
Reynolds number ‘R’. It is found that w exhibits a reversal flow with G<0 and the region of reversal flow enlarges with
increase in G. The maximum |w| occurs at n=0. |w| experiences an enhancement with increase in |G|. An increase in ‘R’
enhances |w| in the entire region. Fig-3 represents w with Hartman number M and Hall parameters m. It is found that at
M =5, w exhibits a reversal flow in the region -0.8 < < 0.4 and as M increases, the region of reversal flow reduces in
its size. |w| reduces with M<5 and for higher M = 7, |w| depreciates in the region -0.8 <n < 0 .2 and enhances in the
remaining region and for still higher M = 9, |w| enhances in the regions adjacent to n = +1 and reduces in the central
region. The variation of w in m shows that w exhibits a reversal flow for m>2.5 and region of reversal flow reduces
with increase in m. |w| enhances with increase in m<2.5 and reduces with m>2.5. Lesser the permeability of the porous
medium larger the axial velocity in the flow region (fig.4).Fig-6 represents the variation of w with buoyancy ratio N. It
is found that when the molecular buoyancy force dominates over the thermal buoyancy force |w| enhances in the flow
region when buoyancy forces act in the same direction and for the forces acting in opposite directions, |w| depreciates
in the flow region. An increase in a<4 enhances |w| and reduces with higher o>6 (fig.9). Fig-5 represents w with
Schmidt number Sc. It is found that lesser the molecular diffusivity larger |w| and for further lowering of the diffusivity
smaller |w| and for still lowering of diffusivity larger |w|. Fig-10 represents the effect of wall waviness on w. It is found
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that the higher the dilation of the channel walls lesser |w| in the flow region and for further higher dilation larger |w|.
Fig-7 represents w with chemical reaction parameter k. Higher the chemical reaction parameter k larger |w|. An
increase in Q; results in an enhancement in |w| (fig.8). Fig-11 represents the variation of w with inclination A of the

T
magnetic field. It is found that |w| depreciates with increase in A < Eand enhances with higher A = © and again
depreciates with still higher A = 2zn. Fig-12 represents variation of w with phase x+yt of boundary temperature. An

increase in X+ # < E enhances |w| and depreciates with higher x+yt > .

The average Nusselt number (Nu) is exhibited in tables. 1-6 for different values of G, R, M, D™,m, Sc, B, a, N, k, Q,
and x+yt. It is found that average Nusselt number enhances with increases in |G|. The variation of Nu with Hartmann
number M shows that higher the Lorentz force smaller |Nu| and for further higher Lorentz force (M>10) larger |[Nu| at
both the walls. An increase in m<1.5 reduces |Nu| and enhances with higher m>2.5 at = +1. With reference to D™ we
find that the rate of heat transfer increases with increase in D™ at both the walls. With respect to Schmidt number Sc we
find that lesser the molecular diffusivity larger [Nu| at both the walls. The variation of 6 with B shows that higher the
dilation of the channel walls larger |Nu| for G>0 and for higher |B] > 0.7 larger |[Nu| in the heating case and smaller |Nu|
in the cooling case at = 1 and at n} = -1, larger |Nu] for all G (tables. 1&4). The variation of 8 with o shows that an
increase in o reduces [Nu| at n = 1 and enhances at n = -1. When the molecular buoyancy force dominates over the
thermal buoyancy force, the rate of heat transfer reduces at n = +1, when buoyancy forces act in same direction and for
the forces acting in opposite directions |[Nu| enhances at n = 1 and reduces at n = -1. An increase in the chemical
reaction parameter k<1.5 enhances |[Nu| at n = -1 and reduces at = -1 and for higher k>2.5 it reduces at n = -1 and
enhances at n = +1. An increase in the radiation absorption parameter Q; enhances [Nujat n =1 and at n = -1, |Nu|
enhances with Q;<1.5 and reduces with Q;>2.5 (tables. 2&5). From tables 3&6 we find that the rate of heat transfer

reduces at 1 = 1 and enhances at n = -1 with increase in X+ # < E and for higher x+yt > &, |[Nu| enhances at 1 = 1

and reduces at ) = -1.

The rate of mass transfer (Sherwood number) (Sh) at = £1 is shown in tables.7-12, for different variations. It is found
that the rate of mass transfer enhances with increase in |G| at = +1.With respect to M, we find that the rate of mass
transfer at n = 1 reduces with M<5 and enhances with M>10 and at n| = -1, it enhances with M for all G. An increase in
m<1.5 reduces |Sh| at n = +1 and enhances with higher m>2.5. With reference to D™ we find that the rate of mass
transfer increases at both the wall with increase in D™ .The variation of Sh with Sc shows that lesser the molecular
diffusivity larger |Sh| at 1 = 1 and at n = -1 larger |Sh| and for further lowering of the diffusivity smaller |Sh|. Higher
the of dilation of the channel walls larger |Sh| at n = 1. At ny = -1, for |B| < 0.5, larger |Sh| for G>0 and smaller |Sh| for
G<0 and for still higher |B| > 0.7, larger |Sh| for all G (tables.7&10). The variation of Sh with o shows that |Sh|
depreciates with o at m =1. A n = -1, |Sh| depreciates with a.<4 and enhances with a.>6 in heating case and in cooling
case |Sh| depreciates with a..The rate of mass transfer enhances with increase in N>0 and reduces with N<0. The
variation of |Sh| with chemical reaction parameter k shows that |[Sh| at n = 1 reduces with k<1.5 and enhances with
higher k>2.5 while at n = -1, |Sh| depreciates for all G (tables. 8&11). From tables 8&12, the rate of mass transfer

depreciates with increase in X+t < E and enhances with higher at x+yt > & at both the walls.

CONCLUSION

The impact of chemical reaction on boundary layer flow, heat and mass transfer analysis over wavy channel by taking
inclined magnetic field, heat source/sink and heat generation /absorption into the account. The governing partial
differential equations with represents the flow, temperature and concentration equations are transformed into the
ordinary differential equations using non-dimensional variables. These equations together with boundary conditions are
solved using perturbation method. The important findings of the problem are listed below.

» It is observed that the primary velocity exhibits reversal flow in the regions y = -1 and y = 1. As the values of
M increases the fluid velocity decreases in the region left side of y=0, whereas the primary velocity of the
fluid elevates in the right side of y = 0.
It is found that the higher the dilation of the channel walls lesser |w| in the flow region and for further higher
dilation larger |w|.
The primary velocity |w| enhances with the improving values of chemical reaction parameter (k).
As the values of heat source parameter increases the |w| also increases in the fluid region.
The temperature of the fluid enhances with the higher values of M.

VVYV V
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»  With respect to M, we find that the rate of mass transfer at n = 1 reduces with M<5 and enhances with M>10
and at n = -1, it enhances with M for all G.

» The variation of Nu with Hartmann number M shows that higher the Lorentz force smaller |[Nu| and for further
higher Lorentz force (M>10) larger |[Nu| at both the walls.

> Anincrease in X+ /1 < E leads to an enhancement in the actual temperature and for further higher x+yt = =

depreciates in the flow region and for still higher x+yt = 2x we notice an enhancement in the actual
temperature in the entire region

Table — 1: Nusselt number (Nu) atn =-1

© 2016, IIMA. All Rights Reserved

G | I i v \ VI VII VIII
10° | 0.84807 | 8.49226 | 18.46640 | 0.49555 | 0.31766 | 0.24111 | 9.414443 | 34.77412
3x10° | 0.64259 | 8.46882 | 12.87020 | 0.24784 | 0.04344 | -0.04589 | 9.390341 | 34.48839
-10° | 1.05343 | 8.51569 | 24.06260 | 0.74313 | 0.59173 | 0.52794 | 9.43850 | 35.05983
-3x10° | 1.25868 | 8.53909 | 29.65880 | 0.99056 | 0.86563 | 0.81461 | 9.46255 | 35.34553
M 2 5 10 2 2 2 2 2
m 0.5 0.5 0.5 15 25 3.5 0.5 0.5
D" 10° 10 10 10° 10 10 2x10° 3x10°
Table — 2: Nusselt number (Nu) at  =-1
G | I v \ VI VII
10° -9.23091 | -12.11372 | 0.84807 | 45.48327 | 0.74990 | 12.65173 | 16.55357
3x10° | -6.88343 | -9.08440 | 0.64259 | 46.84024 | -2.46809 | -5.57878 | -8.68947
-10° | -11.57849 | -15.14316 | 1.05343 | 44.12621 | 3.96778 | 6.88212 | 9.79648
-3x10° | -13.92616 | -18.17271 | 1.25868 | 42.76904 | 7.18555 | 13.11242 | 19.03929
Sc 0.24 06. 1.3 2.01 1.3 1.3 1.3
Q 0.5 0.5 0.5 0.5 1.5 2.5 35
Table — 3: Nusselt number (Nu) at  =-1
G [ Il i v \Y VI VII VI
10° | 0.84807 | 2.36200 | 2.69940 | 4.84361 | 7.66118 | 0.59982 | -6.01953 | 3.02482
3x10° | 0.64259 | 1.56700 | 2.30140 | 3.97976 | 6.52332 | 0.45450 | -4.56108 | 2.29195
-10° | 1.05343 | 2.15700 | 2.69730 | 2.70732 | 2.79882 | 0.74507 | -7.47719 | 3.757229
-3x10° | 1.25868 | 1.95200 | 2.49530 | - 3.42912 | -4.06378 | 0.94900 | -8.93404 | 4.48939
K 0.5 15 2.5 0.5 0.5 05. 0.5 0.5
o 2 2 2 4 6 2 2 2
X+yt /4 /4 /4 /4 /4 /2 2n
Table — 4: Nusselt number (Nu) atn =-1
G [ 1 1l v \ VI
10° | 0.84807 | 1.61045 | 3.14310 | -0.73323 | -5.94848 | -4.00712
3x10° | 0.64259 | 1.41270 | 2.97655 | -0.65632 | -5.07739 | -2.92070
-10° | 1.05343 | 1.80814 | 3.0963 | 0.18982 | -6.81964 | -5.09359
-3x10° | 1.25868 | 2.00577 | 3.47613 | 1.11282 | -7.69088 | -6.18011
R 35 70 140 35 35 35
N 1 1 1 2 -0.5 -0.8
Table — 5: Nusselt number (Nu) atn = +1
G [ 1 1l v \ VI
10° | 0.84807 | 1.53567 | 0.15299 | 0.12513 | -0.41718 | 1.12052
3x10° | 0.64259 | 1.38720 | -0.14992 | -0.10000 | -0.33156 | 0.92891
-10° | 1.05343 | 1.68406 | 0.45572 | 0.4009 | -0.50292 | 1.81203
-3x10° | 1.25868 | 1.83237 | 0.75826 | 0.70487 | -0.68877 | 2.50344
A /4 /2 i 21 /4 /4
B 0.5 0.5 0.5 0.5 0.3 0.7
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Table — 6: Nusselt number (Nu) at n =-1

G [ I " v V VI VI VIII
10° 2.21259 | 2.04264 | 2.44740 | 2.38630 | 2.47162 | 2.50776 | -2.58156 | -18.00035
3x10° | 3.94029 | 4.85867 | 16.95600 | 3.99265 | 4.01571 | 4.02485 | 1.54687 | -8.65330
-10° | 0.48481 | 5.94396 | 6.93870 | 0.77986 | 0.92743 | 0.99054 | -10.83836 | -36.69445
-3x10° | -1.24305 | 9.84530 | 10.43010 | -1.82668 | -2.61688 | -0.52679 | -10.83836 | -36.69445
M 2 5 10 2 2 2 2 2
m 0.5 0.5 0.5 15 2.5 3.5 0.5 0.5
D" 10° 10 10° 10° 10 10 2x10° 3x10°
Table — 7: Nusselt number (Nu) at = +1
G I 1 " v V VI VI
10° | 9.33545 | 11.51723 | 2.21259 | -28.13209 | 2.04689 | 1.88119 | 1.71550
3x10° | 9.30579 | 11.15669 | 3.94029 | -27.12052 | 5.71409 | 7.48788 | 6.26169
-10° | 9.36505 | 11.87769 | 0.48481 | -29.14372 | -1.62038 | -3.72557 | -5.83076
-3x10° | 9.39457 | 12.23807 | -1.24305 | -30.15543 | -5.28774 | -9.33242 | -13.37711
Sc 0.24 06. 1.3 2.01 1.3 1.3 1.3
Q: 0.5 0.5 0.5 0.5 15 2.5 3.5
Table — 8: Nusselt number (Nu) atn =+
G I 1 " v V VI VII VIII
10° | 2.21259 | 3.38200 | 4.93080 | 0.56032 | -0.33580 | 2.20259 | 2.61259 | 1.91259
3x10° | 3.94029 | 4.83300 | 6.67840 | -0.87561 | -0.46892 | 3.34029 | 4.04029 | 3.24029
-10° | 0.48481 | 0.93000 | 1.18330 | 1.19614 | -0.20285 | 0.40481 | 0.68481 | 0.42481
-3x10° | -1.24305 | -2.47900 | -2.43570 | 1.83186 | -0.67006 | -1.19310 | -1.64305 | -1.20305
K 0.5 15 2.5 0.5 0.5 05. 0.5 0.5
o 2 2 2 4 6 2 2 2
X+yt /4 /4 /4 /4 /4 /2 2n
Table — 9: Nusselt number (Nu) at n = +1
G [ Il 1l v V VI
10° 2.21259 | 1.60420 | 0.38096 | 3.68095 | 6.49449 | 5.01648
3x10° | 3.94029 | 3.32768 | 2.08300 | 6.61623 | 6.41093 | 4.57067
-10° | 0.48481 | -0.11932 | -1.32110 | 0.74564 | 6.57800 | 5.46224
-3x10° | -1.24305 | -1.84288 | -3.02319 | -2.18969 | 6.66145 | 5.90797
R 35 70 140 35 35 35
N 1 1 1 2 -0.5 -0.8
Table — 10: Nusselt number (Nu) at n = +1
G I 1 1l v V VI
10° | 2.21259 | 1.86088 | 2.54886 | 2.56927 | 5.48769 | -9.75756
3x10° | 3.94029 | 3.81750 | 4.03475 | 4.13010 | 6.35225 | -6.68952
-10° | 0.48481 | -0.09579 | 1.06284 | 1.22831 | 4.62305 | -12.82568
-3x10° | -1.24305 | -1.05252 | -2.42331 | -1.57276 | 3.75833 | -15.89386
A /4 /2 T 21 /4 /4
B 0.5 0.5 0.5 0.5 0.3 0.7
Table — 11: Sherwood number (Sh) atn =-1
G I Il 1l v vV VI VI VIII
10° | -0.60283 | 01.48065 | 2.27096 | -0.60956 | -0.70510 | -0.72088 | 0.89160 | 3.14650
3x10° | 0.91369 | 4.19855 | 7.03995 | 0.71001 | 0.90117 | 0.55272 | 4.53455 | 12.26601
-10° | -2.01728 | -3.08903 | -4.72418 | -1.95171 | -2.01691 | -1.90149 | -3.19892 | -5.73169
-3x10° | -3.33961 | -6.51917 | -7.96411 | -3.14641 | -3.24416 | -2.998964 | -6.84567 | -14.37800
M 2 5 10 2 2 2 2 2
m 0.5 0.5 0.5 15 2.5 35 0.5 0.5
D" 10° 10° 10 10° 10° 10° 2x10° 3x10°
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Table — 12: Sherwood number (Sh) atn =-1

G | ] 11 v \Y VI VIl
10° -0.05300 | -0.07553 | -0.60283 | -1.53381 | -0.61283 | -0.62283 | -0.66283
3x10° | 0.71485 | 1.05916 | 2.91369 | 02.02094 | 0.92369 | 0.94369 | 0.96368
-10° | -0.80454 | -1.20237 | -2.01728 | -3.02698 | -2.02728 | -2.21728 | -2.61728
-3x10° | -1.54027 | -2.32142 | -3.33961 | -4.46216 | -3.36961 | -3.43961 | -3.63961
Sc 0.24 06. 1.3 2.01 1.3 1.3 1.3
Q. 0.5 0.5 0.5 0.5 15 2.5 35
5 3
——| I
—— | ——||
W —— |
——\/
5 =3
n l
Fig. 1: Variation of w with G, R Fig. 2: Variation of w with M
| ] 1l v \V VI | I Il v
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R 35 35 35 35 70 140
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