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ABSTRACT

The aim of the present paper is to discuss integral properties of Aleph function with two general class of polynomials.
During the course of finding, here we establish certain double integral relations pertaining to a product involving two
general class of polynomials and the Aleph function. For the sake of illustration, we record here some particular cases
of our main results.
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1. INTRODUCTION

The Aleph function () introduced by Sudlend et al. [10]. The notation and complete definition is presented here in the
following manner in terms of Mellin-Barnes type integrals.
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where the integration path L = L, v € R extends from y—iw to y+icw, and is such that the poles, assumed to be simple, of
I'(l-a;—A;s),j=1,...,ndo not coincide with the pole of [(b;+Bjs),j = 1,...,m the parameter X;’Y; are non-
negative integers satisfying
0<M <x,1<M <y, ;>0 fori = 1,..r

the parameters Aj, Bj’Aij’ Bji >0and aj, bj’aji , bji eC. The empty product in (1.2) is interpreted as unity.
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The existence conditions for defining integral (1) are given as

¢, > 0,]arg(z) I<%¢,,,, V=11

(l)[ 20,|arg(z)|<g¢f and R{&Z}+1<O

where
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and

j=M+1 j=N+1
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The general class of polynomial defined by Srivastava [9] are defined as
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and
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2. THE MAIN INTEGRAL

We shall establish the following integral
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Provided
Trx
Re(a+pB+b;/p]1>0, [argv]<7.

m and m' are arbitrary positive integer and coefficients A, (n,k >0)and B'n,yk1 (n',k, >0) are arbitrary constants, real
or complex.

Proof: We have the following expression:
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2.2)
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To prove the given integral, we multiply both sides of (2.2) by
a B
{ (1-%) y} {(ky)} { (1-xy) }
(1-xy) (I-xy) ] [(1-x)(1-y)

and on integrating with respect to x and y between 0 and 1 for both the variables, we get the desired result by making use
of known result [2,p.145].

B. Here we shall establish the following integral
_[ _[ @(u+V) u“ v/'SM[u] S?[uZ]Ng’._"NT [v] du dv
0 %o irTis

[n/m] (_n)mk o [nim] (_n)

m'k, B J' ¢(é;)§a+ﬂ+k+2k1—l

- n,k
LTk A T
(1-B1).@j Ao [7 (@5 Al
M,N Pt TR AN G
X;+Ly;+1,7,;t |:(b Bj)um L7 (i Bji My e (1-k-2kp-a) §i|d§ (2.3)

Provided that Re(a+f+b,/f,)>0,mand m'are arbitrary positive integer and coefficients A, and B'n.’kl

(n,k >0, n"k; > 0) are arbitrary constants, real or complex.

Proof: We have
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[putting value of left hand side of above expression from equations (1.2),(1.3),(1.4)] to prove the integral, we multiply
both sides of (2.4) by @(U+V) u®*t.v/and integrating with respect to u and v from both sides between 0 to oo for
both variables, we will get the required result.

3. PARTICULAR CASES

a) By applying the results obtained (2.1), (2.3) to the case of Hermite polynomial [9 ] and [12 ] and by setting

2 n/2 1
Sn(X)—)X Hn|:m and

S2(x?)—>x" Hn[i}

2X
Here we have taken m = m'=2,A, = (-1), B'n.'kl = (~1)*, we have the following consequences
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valid under same conditions as obtained from (2.1).
(2) Now taking
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valid under the same conditions as required for (2.3).

b) For Laguerre polynomial [9] and [12], setting
S, () =L (%)
and
1 2 (@) (2
S, (X)” > L7 (x7),

Here m=m'=1A = n+a ;,B' = n+o ;
n, no)(a+l),” "k 0t (o),
The results obtained (2.1), (2.3) reduces to following expression
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valid under same conditions as required for (2.1).
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(2) We have
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valid under same conditions as required for (2.3).

CONCLUSION

The results here are basic in nature and are likely to find useful applications in several fields notably electrical networks,
statistical mechanics and probability theory.
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