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ABSTRACT 
The concept of quaternion- k-normal (q-k-normal) matrices is introduced. Some basic theorems of q-k-normal and     
q-k-unitary matrices are discussed. 
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1. INTRODUCTION 
 
Let H be the set of all quaternion numbers. Let n nH ×  be the set of all quaternion square matrix over H called by 

quaternion matrix [6], for a matrix n nA H ×∈ . * 1, , ,TA A A A− and †A denotes conjugate, transpose, Conjugate transpose, 
inverse and Moore-Penrose inverse of A  respectively. Let k be a fixed product of disjoint transpositions in 

{ }1,2,3...nS n=  and let K be the permutation matrix associated with k. The concept of q-k-normal matrices is 
introduced as generalization of q-k-real and q-k-hermitian and q-k-normal matrices [3, 5]. The q-k-unitary is also 
discussed in this paper. Clearly K  satisfies 2 *,  TK I K K K KI= = = = . 
 
2. DEFINITIONS AND SOME THEOREMS 
 
Definition 2.1: A matrix n nA H ×∈  is said to be quaternion-k-normal denoted by q-k-normal if * *AKA K KA KA=  

where K is a permutation matrix associated with k ( )x  in nS . 
 

Example 2.2: A = 
6 2 3

2 6 4
i

i
+ 

 + 
  is an q-k-normal matrix 

 
Theorem 1: Let , n nA B H ×∈ . If A and B  are q-k-normal with * *AKB K KB KA=  and * *BKA K KA KB=  

then A + B  is q-k-normal. 
 
Proof: 

  
( ) ( ) ] ( ) ( )* * *A B K A B K A B K A B K+ + = + +  

( )( )* *A B KA K KB K= + +   
* * * *AKA K AKB K BKA K BKB K= + + +       

( ) ( ) ( ) ( )* * * *KA K A KB K A KA K B KB K B= + + +
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( ) ( )* * * *KA K KB K A KA K KB K B= + + +  

( )( )* *KA K KB K A B= + +  

( ) ( )*K A B K A B = + +   

( ) ( ) ( ) ( )* *A B K A B K K A B K A B   + + = + +     
Therefore A + B  is q-k-normal. 
 
Theorem 2: If A  is q-k-normal then 1A−  is q-k-normal. 
 
Proof: 

 
( ) ( )* *A KA K KA K A=

 

  
( ) ( ) ( )* 11 1 1 *A K A K A K A K

−− − −=  

( ) 11 1 * 1A K A K
−− − −= 1K K − =   

( ) 1*AKA K
−

=  

( ) 11 * 1 1K A K A
−− − −=  

( ) ( )*1 1K A K A− −=
 

( ) ( ) ( ) ( )* *1 1 1 1A K A K K A K A− − − −=
 

Therefore  1A−  is q-k-normal. 
                  
Theorem 3: If A  is q-k-normal then  TA  is q-k-normal. 
 
Proof: 

( ) ( )* *A KA K KA K A=  

( ) ( )* * TT T TA K A K A K A K=  

( )* TT T TA K A K= TK K =   

( )* T
AKA K=  

( ) ( )* TT T TK A K A=  

( ) ( )*T T T TK A K A=  

( ) ( ) ( ) ( )* *T T T TA K A K K A K A=  

Therefore  TA  is q-k-normal.  
 
Theorem 4: If A  is q-k-normal then *A  is q-k-normal. 
 
Proof: 

( ) ( )* *A KA K KA K A=  

( ) ( ) ( ) ( )* ** * * * * *A K A K A K A K=   *K K =   

( )**AKA K=  

( )** * * *K A K A=  
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( ) ( )** *K A K A=  

( ) ( ) ( ) ( )* ** * * *A K A K K A K A=  

Therefore *A is q-k-normal. 
 
Theorem 5: If A  is q-k-normal then  2A  is q-k-normal. 
 
Proof: 

( ) ( )* *A KA K KA K A=  

 ( ) ( )* 22 2 2 *A K A K A K A K  =  
 

( )( )* *AA KA K KA K=  

( ) ( )* *A KA K A KA K=  

( ) ( )* *KA K A KA K A=  

( )( )* *KA K KA K AA=  

( ) ( )2* 2K A K A =   
 

( ) ( )*2 2K A K A=  

 ( ) ( ) ( ) ( )* *2 2 2 2A K A K K A K A=  

Therefore  2A  is q- k -normal. 
 
Theorem 6: If A  is q-k-normal then tA  is q-k-normal. 
 
Proof: 

* *AKA K KA KA=  

( ) ( ) ( )* * * * *.... ...    t tA K A K AAA A t times K A A A A t times K=     

           ( )( ) ( )* * *... ....AAA A KA K KA K KA K=  

Therefore tA is q-k-normal. 
 
Theorem 7: If A is q-k-normal then †A is q-k-normal. 
 
Proof: 

( ) ( )* *A KA K KA K A=  

 ( ) ( ) ( )* †† † † † * †A K A K A K A K=    †K K =   

( )†*AKA K=  

( )†† * † †K A K A=  

( )†* †K A KA=  

( ) ( )*† †K A K A=  

 ( ) ( ) ( ) ( )* *† † † †A K A K K A K A=  

Therefore †A is q-k-normal. 
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Theorem 8: If A is q-k-normal then Aα is q-k-normal.  
 
Proof: 

( ) ( )* *A KA K KA K A=  

( ) ( )* *A K A K AK A Kα α α α=  

( )*AKA Kαα=  

( )*KA KAαα=  

*K A KAαα=  

( ) ( )*K A K Aα α=  

( ) ( )*K A K Aα α=  

 

( ) ( ) ( ) ( )* *A K A K K A K Aα α α α=  

Therefore Aα is q-k-normal. 
 
Theorem 9: Let A  and B  are q-k-normal in n nH ×  then AB  is q-k-normal if ( ) ( )* *A KB K KB K A=  and 

( ) ( )* * .B KA K KA K B=  

 
Proof: 

( ) ( )* *A KA K KA K A=  

( ) ( ) ( )* * *AB K AB K AB KB A K  =   

( )( )( )* *AB KB K KA K=  

( )* *A KB KB KA K=  

( ) ( )* *KB K A KA K B=  

( )( )* *KB K KA K AB=  

( )( )* *KB A K AB=  

( ) ( )*K AB K AB =    

( ) ( ) ( ) ( )* *AB K AB K K AB K AB   ==     

Therefore AB  is q-k-normal. 
 
Definition 2.3: A  matrix n nA H ×∈  is said to be quaternion-k-unitary (q-k-unitary) if  * * .AKA K KA KA I= =  

 

Example 2.4: A=   

1
2 2

1
2 2

i

i

 
 
 
 
  

   is an q-k-unitary matrix. 

 
Definition 2.5: Let , n nA B H ×∈ . The matrix B  is said to be quaternion-k-unitarily equivalent (q-k-unitarily 

equivalent) to A  if there exists an q-k-unitary matrix U such that * .B KU KAU=  
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Example 2.6: Let 
1 2
3 2 3

i i
A

i
+ 

=  + 
 and 

2 2 2 3
2 2 3 2

i i
B

i i
+ + 

=  − + − + 
 

Then if we take 

1
2 2

1
2 2

i

U
i

 
 
 =
 
  

 it can be verified that * *UKU K KU KU I= =  and *B KU KAU=  

 
Hence B  is q-k-unitarily equivalent to A . 
 
3. EQUIVALENT CONDITIONS ON Q-K-NORMAL MATRICES 
 
Theorem 3.1: Let n nA H ×∈ .  If A  is q-k-unitarily equivalent to a diagonal matrix, then A  is q-k- normal.  
 
Proof: Let n nA H ×∈ . If A  is q-k-unitarily equivalent to a diagonal matrix D , then there exists an q-k-unitary matrix 

P  such that *KP KAP D=  Which implies that   
* * *PKP KAPKP K PDKP K=  

*A PDKP K=   as *PKP K I=  

( )** *A PDKP K=  

       * * * * * *K PK D P KPKD P= =  
  
Now   ( ) ( )* * * *AKA K PDKP K K KPKD P K=  

( )* * *PDKP K KK PKD P K=  

( )* 2 * *PDKP K K PKD P K=     2K I =   

( )* * *PD KP KP KD P K=       *KP KP I =   

* *PDIKD P K=  
* *PDKD P K=  

( )( )* *PD KD K KP K=  

 

  ( ) ( )* * * *KA KA K KPKD P K PDKP K=  

( )2 * * *K PKD KK P KPDKP K=  

( )* * *PKD K KP KP DKP K=  

( )* *P KD K DKP K=  

* *( ) ( )P KD K D KP K=  

 
 Therefore D  and  *KD K   are each diagonal  ( )* *( )D KD K KD K D=   and hence  * *AKA K KA KA=  so that 

A  is q-k-normal. 
 
Theorem 3.2: If A  is q-k-hermitian then 1 *A KA K− is q-k-unitary. 
 

Proof: ( ) ( ) ( )* *1 * 1 * 1 1A KA K K A KA K K A AK A A K− − − −=  

                  * IK I K=  
                  .I=  
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Theorem 3.3: If A  is q-k-normal then 1 *A KA K− is q-k-unitary.  
 

Proof: ( ) ( ) ( ) ( ) ( )* * *1 * 1 * 1 * * * * 1A KA K K A KA K K A KA KK K A K A K− − − −=  

( ) ( )*1 * * 1A KA KA K A K− −=  

( )*1 * 1A AKA KK A K− −=  

( )** 1KA A K−=  

( )*1K A A K−=  

( )*K I K=  

.I=  
 

Remark 3.4: From, theorem 3.2 and 3.3 if  A  is either q-k-hermitian or q-k-normal then 1 *A KA K− is q-k-unitary.  
 
Theorem 3.5: Let , n nH N H ×∈   be invertible. If ,B HNH=  where H  is q-k-hermitian and N is q-k-normal then 

1 *B KB K−  is similar to an  q-k- unitary matrix.  
 
Proof: Let , n nH N H ×∈  then be invertible. If B HNH=  then  

 ( ) ( )1 *1 *B KB K HNH K HNH K−− =  
1 1 1 * * *H N H KH N H K− − −=  

( )1 1 1 * * *H N H KH KK N H K− − −=  

( )1 1 1 * * *H N H KH K KN H K− − −=    [H is q-k-hermitian] 

( )1 1 1 * *H N H H KN H K− − −=           *H KH K =   

1 1 * *H N KN H K− −=  
1 1 * *H N KN KKH K− −=  

( )( )1 1 * *H N KN K KH K− −=  

 
Since N  is q-k- normal from remark 3.4 1 *N KN K−  is q-k- unitary and hence the result follows. 
 
Theorem 3.6: If A is q-k-normal and 0AB =   then   * 0KA KB = .  
 
Proof: 

( ) ( )* *A KA K KA K A=  

( ) ( )* *A KA K B KA K AB=  

( )* 0KA K=     [ ]0AB =  

0=  

( )* 0A KA K B =  

 Therefore * 0KA KB =    [ ]0 .A ≠  
 
Theorem 3.7: If X is an q-k-eigenvector of an q-k-normal matrix A  corresponding to an q-k-eigenvalue λ , then X is 

also an q-k-eigenvector of *KA K corresponding to the q-k-eigenvalue λ .  
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Proof:  Let n nA H ×∈  be q-k-normal. Since X is an q-k-eigenvector of A  corresponding to an q-k-eigenvalue ,λ  

.AX Xλ=  Since A  is q-k-normal, it can be easily seen that A Iλ−  and ( )*K A I Kλ− commute and hence 

A Iλ−   is  q-k-normal. Now  

( ) 0.AX X A I Xλ λ= ⇒ − =         
  
Since A Iλ−  is q- k - normal by the above theorem 3.6  

( ) ( )* 0 * 0K A I K X K A I K Xλ λ   − = ⇒ − =    

* 0KA K K IK Xλ − =   

( )*KA K X K KXλ=  

( )*KA K X KKXλ=  

( )*KA K X Xλ=  

Which leads to the result. 
  
Theorem 3.8: If n nA H ×∈  is q-k-unitary and λ  is an q-k-eigenvalue of  A, then 1.λ =   
 
Proof: Since n nA H ×∈  is q-k-unitary, A  is q- k - normal.  Since λ  is an q-k-eigenvalue of A, there exists an q-k-

eigenvector 0V ≠  such that AV Vλ= which implies *KA KV Vλ=  as A  is q-k-normal. 

Now *V IV KA KAV= =  which leads to   
* 0V KA KA V − =   

*1 0V KA KA − =   

*1 0V AKA K − =   

1 0V λλ − =   

Since      0V ≠ , 1 0λλ− =  

          1.λ⇒ =  

 
Theorem 3.9: Let .n nA H ×∈  Assume that ,A XP=  where X  is q-k-unitary and P  is non –singular and q-k-

hermition such that if  2P   commutes with X , then P  also commutes with X . Then the following conditions are 
equivalent. 

(i) A  is q- k-normal 
(ii) XP PX=  
(iii) AX VX=  
(iv) AP PA=  

 

Proof: Let .A XP=  Since X  is q-k-unitary * *XKX K KX KX I= =  and since P  is q-k-hermitian * .KP K P=  

( ) ( )i ii⇔  If A is q-k-normal then * *AKA K KA KA=  

Since .A XP=  ( ) ( ) ( ) ( )* *XP K XP K K XP K XP=  

* * * *XPKP X K KP X KXP=  

( )* * * *XPKP KK X K KP KKX KXP=  

( ) ( )* * *XP KP K KX K P KX KX P=  
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* 2XPPKX K P=     

*KX KX I =   

2 * 2XP KX K P=  
 
Post multiply by X , 
 

We have    ( )2 * 2XP KX KX P X=  

    
2 2XP P X=  

 
and hence XP PX=  by our assumption. 
 

Conversely, if  XP PX=  then ( )( ) ( )( )* * * *KP K KX K KX K KP K=  

                                                      
* * * *KP X K KX P K⇒ =  

                                                      
* * * *P X X P⇒ =  

 

Now ( ) ( )**AKA K XP K XP K=  

* *XPKP X K=  
* *XPKX P K=  

( )( )* *XP KX K KP K=  

( )( )( )* * *X KP K KX K KP K=         
*P KP K =   

( )( ) ( )* * *KP K KX K X KP K=  

( )* *KP X K XP=  

( ) ( )*K XP K XP=  

( ) ( ) :i iv⇔  If A is q-k-normal, then ( )AP XP P=  

     PXP=  
     ,PA=  
 
Conversely, if ,AP PA=  then ( ) ( )XP P P XP= post multiply by 1,P−     
 
We have XP PX= and so that A is q-k-normal. 
 
Theorem 3.10: Let .n nA H ×∈  Assume that A XP= , where X is q-k-unitary and A is non singular and q-k-

hermition such that if 2P  commutes with X  then A also commutes with X . Then the following conditions are 
equivalent.  

(i) A is q-k-normal.  
(ii) Any q-k-eigenvector of X  is an q-k-eigenvector of A  (as long as X  has distinct q-k-eigenvalues). 
(iii) Any q-k-eigenvector of A is an q-k-eigenvector of X  (as long as A has distinct q-k-eigenvalues). 
(iv) Any q-k-eigenvector of X  is an q-k-eigenvector of A  (as long as  X  has  distinct q-k-eigenvalues). 
(v) Any q-k-eigenvector of A  is an q- k-eigenvector of X (as long as A has distinct q-k-eigenvalues). 
(vi) Any q- k-eigenvector of P is an q-k-eigenvector of A (as long as A has distinct q-k-eigenvalues). 
(vii) Any q- k-eigenvector of A  is an q-k-eigenvector of P  (as long as A  has distinct q-k-eigenvalues).. 

 
Proof: 
( ) ( ) :i ii⇔  Let X  have distinct q-k-eigenvalues. If we prove XP PX= ⇔  any q-k-eigenvector of X  is an q-

k-eigenvector of ,P  then  ( ) ( )i ii⇔  follows by theorem 3.7. Assume that any q-k-eigenvector of X is an  
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q-k-eigenvector of P . If Y  is an q-k-eigenvector of ,X  then X  is also an q-k-eigenvector of P .  Therefore there  
exists  q-k-eigenvalues λ  and µ  such that XY Yλ=  and PY Yµ= . Now XY Yλ=  implies PXY PXY Yλµ= = . 

Similarly PY Yµ= implies .XPY Yλµ=  Therefore ( ) 0PXY XPY PX XP Y= ⇒ − =  which implies as 

PX XP=  as 0.Y ≠     
  
Conversely, assume that XP PX= .   If Y  is an q-k-eigenvector of X , then there exists an q-k-eigenvalue λ  such 
that XY Yλ= .   Let  µ  be an e q-k-eigenvalue of X such that  .XY Yµ=  .λ µ∴ ≠  Now  XP PX=  

implies   ( ) 0XP PX Y− =  which shows that  .XPY PYλ=   Similarly  XY Yµ=   implies .XPY PYµ=    
  
Therefore ( ) 0 0PY PY PY PYλ µ λ µ= ⇒ − = ⇒ =  as 0.λ µ− ≠ 0PY Y∴ = and hence Y  is an q-k-

eigenvector of P  corresponding to the q-k-eigenvalue 0. In general, if µ  is any q-k-eigenvalue of X , then we can 

prove that Y  is also an q-k-eigenvector of P . Therefore any q-k-eigenvector of X  is also an q-k-eigenvector of  P .  
 
Similar proof holds for other equivalent conditions. 
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