ABSTRACT

A set D of a graph $G = (V, E)$ is a dominating set, if every vertex in $V(G) - D$ is adjacent to some vertex in D. The domination number $\gamma(G)$ of G is the minimum cardinality of a dominating set. A dominating set D is called a complementary tree nil dominating set, if the induced subgraph $< V(G) - D >$ is a tree and also the set $V(G) - D$ is not a dominating set. The minimum cardinality of a complementary tree nil dominating set is called the complementary tree nil domination number of G and is denoted by $\gamma_{ctnd}(G)$. The connectivity $\kappa(G)$ of G is the minimum number of vertices whose removal results in a disconnected or trivial graph. In this paper, an upper bound for the sum of the complementary tree nil domination number and connectivity of a graph is found and the corresponding extremal graphs are characterized.

Key words: Domination number, Complementary tree nil domination number, Connectivity.

1. INTRODUCTION

Graphs discussed in this paper are finite, undirected and simple connected graphs. For a graph G, let $V(G)$ and $E(G)$ denote its vertex set and edge set respectively. A graph with p vertices and q edges is denoted by $G(p, q)$. The concept of domination in graphs was introduced by Ore [5]. A set $D \subseteq V(G)$ is said to be a dominating set of G, if every vertex in $V(G) - D$ is adjacent to some vertex in D. The cardinality of a minimum dominating set in G is called the domination number of G and is denoted by $\gamma(G)$. Muthammai, Bhanumathi and Vidhya [4] introduced the concept of complementary tree dominating set. A dominating set $D \subseteq V(G)$ is said to be a complementary tree dominating set (ctd-set) if the induced subgraph $< V(G) - D >$ is a tree. The minimum cardinality of a ctd-set is called the complementary tree domination number of G and is denoted by $\gamma_{ctd}(G)$. The connectivity $\kappa(G)$ of G is the minimum number of vertices whose removal results in a disconnected or trivial graph. Any undefined terms in this paper may be found in Harary[1].

The concept of complementary tree nil dominating set is introduced in [3]. A dominating set $D \subseteq V(G)$ is said to be a complementary tree nil dominating set (ctnd-set) if the induced subgraph $< V(G) - D >$ is a tree and the set $V(G) - D$ is not a dominating set. The minimum cardinality of a ctnd-set is called the complementary tree nil domination number of G and is denoted by $\gamma_{ctnd}(G)$.

In this paper, we find an upper bound for the sum of the complementary tree nil domination number and connectivity of a graph is found and the corresponding external graphs are characterized.

2. PRIOR RESULTS

Theorem 2.1: [1] For any connected graph G, $\kappa(G) \leq \delta(G)$.

Theorem 2.2: [3] For any connected graph G with p vertices, $2 \leq \gamma_{ctnd}(G) \leq p$, where $p \geq 2$.
Theorem 2.3: [3] Let G be a connected graph with p vertices. Then $\gamma_{ctnd}(G) = 2$ if and only if G is a graph obtained by attaching a pendant edge at a vertex of degree $p - 2$ in $T + K_1$, where T is a tree on $(p - 2)$ vertices.

Theorem 2.4: [3] For any connected graph G, $\gamma_{ctnd}(G) = p$ if and only if $G \cong K_p$, where $p \geq 2$.

Theorem 2.5: [3] Let G be a connected graph with $p \geq 3$ and $\delta(G) = 1$. Then $\gamma_{ctnd}(G) = p - 1$ if and only if the subgraph of G induced by vertices of degree at least 2 is K_2 or K_1.

That is, G is one of the graphs $K_{1,p-1}$ or $S_{m,n}$ ($m + n = p$, $m, n \geq 1$), where $S_{m,n}$ is a bistar which is obtained by attaching $m-1$ pendant edges at one vertex of K_2 and $n-1$ pendant edges at other vertex of K_2.

Theorem 2.6: [3] Let G be a connected noncomplete graph with $\delta(G) \geq 2$. Then $\gamma_{ctnd}(G) = p - 1$ if and only if each edge of G is a dominating edge.

Theorem 2.7: [3] Let T be a tree on p vertices such that $\gamma_{ctnd}(T) \leq p - 2$. Then $\gamma_{ctnd}(T) = p - 2$ if and only if T is one of the following graphs.

(i) T is obtained from a path P_n ($n \geq 4$ and $n < p$) by attaching pendant edges at least one of the end vertices of P_n.
(ii) T is obtained from P_3 by attaching pendant edges either at both the end vertices or at all the vertices of P_3.

Notation 2.8: [3] Let G be the class of connected graphs G with $\delta(G) = 1$ having one of the following properties.

(a) There exist two adjacent vertices u, v in G such that $\text{deg}_{G}(u) = 1$ and $\langle V(G) - \{u, v\} \rangle$ contains P_3 as an induced subgraph such that end vertices of P_3 have degree at least 2 and the central vertex of P_3 has degree at least 3.

(b) Let P be the set of all pendant vertices in G and let there exist a vertex $v \in V(G) - P$ having minimum degree in $V(G) - P$ and is not a support of G such that $V(G) - (N_{v,p}[v] - P)$ contains P_3 as an induced subgraph such that the end vertices of P_3 have degree at least 2 and the central vertex of P_3 has degree at least 3.

Theorem 2.9: [3] Let G be a connected graph with $\delta(G) = 1$ and $\gamma_{ctnd}(G) \neq p - 1$. Then $\gamma_{ctnd}(G) = p - 2$ if and only if G does not belong to the class G of graphs.

Theorem 2.10: [3] Let G be a connected, noncomplete graph with p vertices ($p \geq 4$) and $\delta(G) \geq 2$. Then $\gamma_{ctnd}(G) = p - 2$ if and only if G is one of the following graphs.

(a) A cycle on at least five vertices.
(b) A wheel with six vertices.
(c) G is the one point union of complete graphs.
(d) G is obtained by joining two complete graphs by edges.
(e) G is a graph such that there exists a vertex $v \in V(G)$ such that $G - v$ is a complete graph on $(p - 1)$ vertices.
(f) G is a graph such that there exists a vertex $v \in V(G)$ such that $G - v$ is $K_{p-1} - e$, $(e \in E(K_{p-1}))$ and $N(v)$ contains at least one vertex of degree $(p - 3)$ in $K_{p-1} - e$.

3. MAIN RESULTS

Theorem 3.1: For any connected graph G, $\gamma_{ctnd}(G) + \kappa(G) \leq 2p - 1$, equality holds if and only if $G \cong K_p$.

Proof: $\gamma_{ctnd}(G) + \kappa(G) \leq p + \delta(G) \leq p + p - 1 = 2p - 1$.

Let $\gamma_{ctnd}(G) + \kappa(G) = 2p - 1$. Then $\gamma_{ctnd}(G) = p$ and $\kappa(G) = p - 1$ and G is a complete graph on p vertices.

Hence $G \cong K_p$.

Conversely, if $G \cong K_p$, then $\gamma_{ctnd}(G) + \kappa(G) = 2p - 1$.
Theorem 3.2: For any noncomplete graph G, \(\gamma_{ctnd}(G) + \kappa(G) \leq 2p - 3 \)

Proof: Since G is not complete, by Theorem 3.1 \(\gamma_{ctnd}(G) + \kappa(G) \leq 2p - 2 \), by Theorem 3.1.
Assume \(\gamma_{ctnd}(G) + \kappa(G) = 2p - 2 \). Then either \(\gamma_{ctnd}(G) = p \) and \(\kappa(G) = p - 2 \) or \(\gamma_{ctnd}(G) = p - 1 \) and \(\kappa(G) = p - 1 \).

Case-1:
\(\gamma_{ctnd}(G) = p \) and \(\kappa(G) = p - 2 \).
\(\gamma_{ctnd}(G) = p \) if and only if $G \cong K_p$ on p vertices. But \(\kappa(K_p) = p - 1 \). Therefore, no connected graph exists with \(\gamma_{ctnd}(G) = p \) and \(\kappa(G) = p - 2 \).

Case-2: \(\gamma_{ctnd}(G) = p - 1 \) and \(\kappa(G) = p - 1 \).
\(\kappa(G) = p - 1 \) if and only if $G \cong K_p$ on p vertices. But \(\gamma_{ctnd}(K_p) = p \).
From Case 1 and Case 2, no connected graph G exists with \(\gamma_{ctnd}(G) + \kappa(G) = 2p - 2 \).
Hence \(\gamma_{ctnd}(G) + \kappa(G) \leq 2p - 3 \).

Theorem 3.3: For any connected graph G, \(\gamma_{ctnd}(G) + \kappa(G) = 2p - 3 \) if and only if G is isomorphic to the graph $K_p - Y$, where Y is a matching in K_p ($p \geq 3$).

Proof: Let \(\gamma_{ctnd}(G) + \kappa(G) = 2p - 3 \). Then there are three cases to consider
(i) \(\gamma_{ctnd}(G) = p \) and \(\kappa(G) = p - 3 \)
(ii) \(\gamma_{ctnd}(G) = p - 1 \) and \(\kappa(G) = p - 2 \)
(iii) \(\gamma_{ctnd}(G) = p - 2 \) and \(\kappa(G) = p - 1 \)

Case-1:
\(\gamma_{ctnd}(G) = p \) and \(\kappa(G) = p - 3 \) or \(\gamma_{ctnd}(G) = p - 2 \) and \(\kappa(G) = p - 1 \).
\(\gamma_{ctnd}(G) = p \) if and only if $G \cong K_p$ on p vertices. But \(\kappa(K_p) = p - 1 \). Therefore, no connected graph exists with \(\gamma_{ctnd}(G) = p \) and \(\kappa(G) = p - 3 \).
\(\kappa(G) = p - 1 \) if and only if $G \cong K_p$ on p vertices. But \(\gamma_{ctnd}(K_p) = p \). Therefore, no connected graph exists with \(\gamma_{ctnd}(G) = p - 2 \) and \(\kappa(G) = p - 1 \).
Therefore there exists no connected graph in this case.

Case-2: \(\gamma_{ctnd}(G) = p - 1 \) and \(\kappa(G) = p - 2 \).
Since \(\kappa(G) = p - 2 \), \(\delta(G) \geq p - 2 \). If \(\delta(G) = p - 1 \), then G is a complete graph. Hence \(\delta(G) = p - 2 \). Then G is isomorphic to $K_p - Y$, where Y is a matching in K_p. But if \(\delta(G) = 1 \), then \(\gamma_{ctnd}(G) = p - 1 \) if and only if G is isomorphic to $K_{1,p-1}$ or $S_{m,n}$ and if \(\delta(G) \geq 2 \), then \(\gamma_{ctnd}(G) = p - 1 \) if and only if G is a graph in which each edge is a dominating edge.

Subcase-2.1: \(\delta(G) = 1 \)
Since \(\delta(G) = p - 2 \), \(p = 3 \). G is isomorphic to $K_3 - Y$, where Y is a matching in K_3. That is, $G \cong P_3$. But \(\gamma_{ctnd}(G) = p - 1 \) if and only if G is isomorphic to $K_{1,p-1}$ or $S_{m,n}$. Since \(p = 3 \), $G \cong K_{1,2} \cong P_3$ and $G \not\cong S_{m,n}$ (m, n \(\geq 2 \)). Hence $G \cong P_3$.

Subcase-2.2: \(\delta(G) \geq 2 \)
Then G is isomorphic to $K_p - Y$, where Y is a matching in K_p ($p \geq 4$). But \(\gamma_{ctnd}(G) = p - 1 \) if and only if G is a graph in which each edge is a dominating edge.
Hence G is isomorphic to $K_p - Y$ where Y is a matching in K_p ($p \geq 3$).

Conversely, if G is isomorphic to $K_p - Y$ where Y is a matching in K_p ($p \geq 3$), then $\gamma_{ctnd}(G) = p - 1$ and $\kappa(G) = p - 2$. Hence $\gamma_{ctnd}(G) + \kappa(G) = 2p - 3$.

Notation 3.4: Following notations are used in this paper.

(i) $K_3(1,0,0)$ is a graph obtained by attaching a pendant edge at one of the vertices of K_3.

(ii) G_1 is a graph obtained from $K_2, 3$ by joining the vertices of degree 3 by an edge.

(iii) G_2 is a graph obtained from $K_3, 3$ by joining any three independent vertices by at least two edges.

(iv) G_3 is a graph with at least 7 vertices such that $V(G)$ can be partitioned into two sets X and $V - X$ such that $|X| = p - 3$, each edge of $<X>$ is a dominating edge and $<V - X>$ is independent.

(v) G_4 is a graph with at least 6 vertices such that $V(G)$ can be partitioned into two sets X and $V - X$ such that $|X| = p - 4$ and each edge of $<X>$ is a dominating edge and $<V - X>$ is independent.

(vi) G_5 is a graph obtained from $K_4, 4$ by joining any four independent vertices by at least five edges.

Theorem 3.5: For any connected graph G, $\gamma_{ctnd}(G) + \kappa(G) = 2p - 4$ if and only if G is one of the following graphs. $K_{1,3}, P_4, K_2, 3, K_3, 3, G_1, G_2$ and G_3.

Proof: Let $\gamma_{ctnd}(G) + \kappa(G) = 2p - 4$. Then there are four cases to consider

(i) $\gamma_{ctnd}(G) = p$ and $\kappa(G) = p - 4$

(ii) $\gamma_{ctnd}(G) = p - 1$ and $\kappa(G) = p - 3$

(iii) $\gamma_{ctnd}(G) = p - 2$ and $\kappa(G) = p - 2$

(iv) $\gamma_{ctnd}(G) = p - 3$ and $\kappa(G) = p - 1$

Case-1:

$\gamma_{ctnd}(G) = p$ and $\kappa(G) = p - 4$ or $\gamma_{ctnd}(G) = p - 3$ and $\kappa(G) = p - 1$.

$\gamma_{ctnd}(G) = p$ if and only if $G \cong K_p$ on p vertices. But $\kappa(K_p) = p - 1$. Therefore no connected graph exists with $\gamma_{ctnd}(G) = p$ and $\kappa(G) = p - 4$.

$\kappa(G) = p - 1$ if and only if $G \cong K_p$ on p vertices. But $\gamma_{ctnd}(K_p) = p$. Therefore, no graph exists with $\gamma_{ctnd}(G) = p - 3$ and $\kappa(G) = p - 1$.

Therefore there exist no connected graphs in this case.

Case-2:

$\gamma_{ctnd}(G) = p - 1$ and $\kappa(G) = p - 3$.

Since $\kappa(G) = p - 3$, $\delta(G) \geq p - 3$. If $\delta(G) = p - 1$, then G is a complete graph. If $\delta(G) = p - 2$, then G is isomorphic to $K_p - Y$, where Y is a matching in K_p and $\gamma_{ctnd}(G) = p - 1$. But $\kappa(G) = p - 2$. Therefore no connected graph exists.

Hence $\delta(G) = p - 3$.

Subcase-2.1: $\delta(G) = 1$.

Since $\gamma_{ctnd}(G) = p - 1$, $G \cong K_{1,p-1}$ or $S_{m,n}$.

If $G \cong K_{1,p-1}$, then $\kappa(K_{1,p-1}) = 1$ and $\kappa(G) = p - 3$ implies $p = 4$ and hence $G \cong K_{1,3}$ and $G \cong S_{m,n}$. $\kappa(S_{m,n}) = 1$ and $\kappa(G) = p - 3$ implies $p = 4$ and hence $G \cong S_{2,2}$. But $S_{2,2} \cong P_4$.

Subcase-2.2: $\delta(G) \geq 2$.

Then G is a connected graph in which each edge is a dominating edge.

Let $X = \{v_1, v_2, \ldots, v_{p_3}\}$ be a vertex cut of G and let $V - X = \{x_1, x_2, x_3\}$. Then $<V - X> \cong K_{3,3}$, $K_1 \cup K_2$ or K_3. If $<V - X> \cong K_4 \cup K_2$, then the edge in K_2 is not a dominating edge.
Subcase-2.2.1: \(<V − X> \cong \overline{K}_3\)
Since each edge of \(G\) is a dominating edge, every vertex of \(V − X\) is adjacent to all the vertices in \(X\). If \(|X| = 2\), then \(G \cong K_{2,3}\) or \(G\) is a graph obtained from \(K_{2,3}\) by joining the vertices of degree 3 by an edge. Therefore \(G \cong K_{2,3}\) or \(G_1\).

If \(|X| = 3\), then \(G \cong K_{3,3}\) or \(G\) is a graph obtained from \(K_{3,3}\) by joining the vertices of degree 3 by edges.

If \(G\) is isomorphic to a graph obtained from \(K_{3,3}\) by joining any three independent vertices by exactly one edge, then \(\gamma_{ctnd}(G) = p - 2\).

Therefore \(G\) is a graph \(K_{3,3}\) or to the graph obtained from \(K_{3,3}\) by joining any three independent vertices by at least two edges and hence \(G \cong K_{3,3}\) or \(G_2\).

If \(|X| \geq 4\), then \(p - 3 \geq 4\) implies \(p \geq 7\). If \(X\) is independent, then \(\kappa(G) = 3 \neq p - 3\).

If \(X\) is not independent and if there exists at least one edge in \(<X>\) which is not a dominating edge, then either \(\gamma_{ctnd}(G) = p - 2\) or \(\kappa(G) = 3 \neq p - 3\).

Therefore each edge of \(<X>\) is a dominating edge and \(G \cong G_3\).

Subcase-2.2.2: \(<V − X> \cong K_3\)
Since each edge of \(G\) is a dominating edge, every vertex of \(V − X\) is adjacent to all the vertices in \(X\).

If \(|X| = 2\), then \(G \cong K_5, G_1\) if \(<X> \cong K_2\) or \(G \cong K_5 - e\) if \(<X> \cong 2K\). If \(G \cong K_5\), then \(\gamma_{ctnd}(G) = p\).

If \(G \cong K_5 - e\), \(\gamma_{ctnd}(G) = 3 \neq p - 3\). Therefore, no connected graph exists in this case.

If \(|X| \geq 3\), then \(p - 3 \geq 3\) implies \(p \geq 6\). Let \(X\) can be partitioned into two sets \(S\) and \(V - S\). Assume \(S = \{v_1, v_2, v_3\}\) be a set of three independent vertices in \(X\) and \(V - S = (X - S) \cup (V - X)\). As in the Subcase 2.2.1, each edge in \(V - S\) is a dominating edge and \(G \cong K_{2,3}, K_{3,3}, G_1, G_2\) or \(G_3\).

Case-3: \(\gamma_{ctnd}(G) = p - 2\) and \(\kappa(G) = p - 2\).
Since \(\kappa(G) = p - 2\), \(\delta(G) \geq p - 2\). If \(\delta(G) = p - 1\), then \(G\) is a complete graph. Hence \(\delta(G) = p - 2\). Then \(G\) is isomorphic to \(K_p - Y\), where \(Y\) is a matching in \(K_p (p \geq 3)\). But in this case \(\gamma_{ctnd}(G) = p - 1\). Therefore, no connected graph exists in this case.

Hence \(G \cong K_{1,3}, P_4, K_{2,3}, K_{3,3}, G_1, G_2\) or \(G_3\).

Conversely, if \(G \cong K_{1,3}, P_4, K_{2,3}, K_{3,3}, G_1, G_2\) or \(G_3\), then \(\gamma_{ctnd}(G) = p - 1\) and \(\kappa(G) = p - 3\) and hence \(\gamma_{ctnd}(G) + \kappa(G) = 2p - 4\).

Theorem 3.6: For any connected graph \(G\), \(\gamma_{ctnd}(G) + \kappa(G) = 2p - 5\) if and only if \(G\) is isomorphic to one of the following graphs
(a) \(K_{1,4}, S_{2,3}, K_{2,4}, K_{3,4}, K_{4,4}, G_4, G_5, G_6, K_{4,(1,0,0)}, C_5, W_6\).
(b) \(G\) is a graph obtained from \(K_{p-1}\) by joining a vertex \(v \notin V(K_{p-1})\) to exactly \(p - 3\) vertices of \(K_{p-1}\).
(c) \(G\) is a graph obtained from \(K_{p-1} - e\) by joining a vertex \(v \notin V(K_{p-1} - e)\) to exactly \(p - 3\) vertices of \(K_{p-1} - e\).

Proof: Let \(\gamma_{ctnd}(G) + \kappa(G) = 2p - 5\). Then there are four cases to consider
(i) \(\gamma_{ctnd}(G) = p\) and \(\kappa(G) = p - 5\)
(ii) \(\gamma_{ctnd}(G) = p - 1\) and \(\kappa(G) = p - 4\)
(iii) \(\gamma_{ctnd}(G) = p - 2\) and \(\kappa(G) = p - 3\)
(iv) \(\gamma_{ctnd}(G) = p - 3\) and \(\kappa(G) = p - 2\)
(v) \(\gamma_{ctnd}(G) = p - 4\) and \(\kappa(G) = p - 1\)
Case-1:
\[\gamma_{ctnd}(G) = p \text{ and } \kappa(G) = p - 5 \text{ or } \gamma_{ctnd}(G) = p - 4 \text{ and } \kappa(G) = p - 1. \]

\[\gamma_{ctnd}(G) = p \text{ if and only if } G \cong K_p \text{ on } p \text{ vertices. But } \kappa(K_p) = p - 1. \text{ Therefore, no connected graph exists with } \gamma_{ctnd}(G) = p \text{ and } \kappa(G) = p - 5. \]

\[\kappa(G) = p - 1 \text{ if and only if } G \cong K_p \text{ on } p \text{ vertices. But } \gamma_{ctnd}(K_p) = p. \text{ Therefore, no graph exists with } \gamma_{ctnd}(G) = p - 4 \text{ and } \kappa(G) = p - 1. \]

Therefore there exist no connected graphs in this case.

Case-2: \[\gamma_{ctnd}(G) = p - 1 \text{ and } \kappa(G) = p - 4. \]

Since \[\kappa(G) = p - 4, \delta(G) \geq p - 4. \] If \[\delta(G) = p - 1, \text{ then } G \text{ is a complete graph. If } \delta(G) = p - 2, \text{ then } G \text{ is isomorphic to } K_{p - 1, y}, \text{ where } Y \text{ is a matching in } K_p. \text{ But } \kappa(G) = p - 2. \text{ Therefore no connected graph exists.} \]

Suppose \[A(G) = p - 3. \text{ Let } X = \{v_1, v_2, \ldots, v_{p - 4}\} \text{ be a vertex cut of } G \text{ and let } V - X = \{x_1, x_2, x_3, x_4\}. \]

If \[<V - X> \text{ contains an isolated vertex, then } \delta(G) \leq p - 4. \]

If \[<V - X> \cong 2K_2, \text{ then } \gamma_{ctnd}(G) \leq p - 2. \text{ Therefore no connected graph exists.} \]

Hence \[A(G) = p - 4. \]

Subcase-2.1: \[A(G) = 1. \]

Since \[\gamma_{ctnd}(G) = p - 1, \text{ G } \cong K_{1,p-1} \text{ or } S_{m,n}. \]

If \[G \cong K_{1,p-1} \text{ or } S_{m,n}, \text{ then } \kappa(K_{1,p-1}) = \kappa(S_{m,n}) = 1 \text{ and } \kappa(G) = p - 4 \text{ implies } p = 5 \text{ and hence } G \cong K_{1,4} \text{ or } S_{2,3}. \]

Subcase-2.2: \[\delta(G) \geq 2. \]

Then \[G \text{ is a graph in which each edge is a dominating edge. Let } X = \{v_1, v_2, \ldots, v_{p - 4}\} \text{ be a vertex cut of } G \text{ and let } V - X = \{x_1, x_2, x_3, x_4\}. \text{ Then } <V - X> \cong K_4, K_2 \cup K_2, P_3 \cup K_1, 2K_2, K_3 \cup K_3, P_4, K_{1,3}, K_{3,1,0,0}, C_4, K_4 - e, K_4. \]

If \[<V - X> \cong K_2 \cup K_2, P_3 \cup K_1, 2K_2, K_3 \cup K_3, P_4, K_{1,3}, K_{3,1,0,0}, \text{ then } \gamma_{ctnd}(G) \leq p - 2, \text{ since in these graphs each edge is not a dominating edge. Therefore no connected graph exists in this case.} \]

Subcase-2.2.1: \[<V - X> \cong K_4. \]

Since each edge of \[G \text{ is a dominating edge, } \text{ every vertex of } V - X \text{ is adjacent to all the vertices in } X. \text{ If } \mid X \mid = 2, \text{ then } G \cong K_{2,4} \text{ or } G \text{ is a graph obtained from } K_{2,4} \text{ by joining the vertices of degree } 4 \text{ by an edge. Therefore } G \cong K_{2,4} \text{ or } G_4. \]

If \[\mid X \mid = 3, \text{ then } G \cong K_{3,4} \text{ or } G \text{ is a graph obtained from } K_{3,4} \text{ by joining the vertices of degree } 4 \text{ by edges.} \]

If \[G \text{ is isomorphic to the graph obtained from } K_{3,4} \text{ by joining any three independent vertices by exactly one edge, then } \gamma_{ctnd}(G) = p - 2. \]

Therefore \[G \text{ is isomorphic to the } K_{3,4} \text{ or a graph obtained from } K_{3,4} \text{ by joining any three independent vertices by at least two edges. Therefore } G \cong K_{3,4} \text{ or } G_4. \]

If \[\mid X \mid = 4, \text{ then } G \cong K_{4,4} \text{ or } G \text{ is a graph obtained from } K_{4,4} \text{ by joining the independent vertices by edges.} \]

If \[G \text{ is isomorphic to a graph obtained from } K_{4,4} \text{ by joining any four independent vertices by at most four edges then } \gamma_{ctnd}(G) \leq p - 2. \]

Therefore \[G \text{ is isomorphic to } K_{4,4} \text{ or the graph obtained from } K_{4,4} \text{ by joining any four independent vertices by at least five edges. Therefore } G \cong K_{4,4} \text{ or } G_4. \]
If \(|X| \geq 5\), then \(p - 4 \geq 5 \implies p \geq 9\).

If \(X\) is independent then \(\kappa(G) = 4 \neq p - 4\). If \(X\) is not independent and if there exists at least one edge in \(<X>\) which is not a dominating edge, then \(\gamma_{ctnd}(G) = p - 2\).

Therefore each edge of \(<X>\) is a dominating edge. Therefore \(G \cong G_4\).

Subcase-2.2.2: \(<V - X> \cong C_4, K_{1,3}, K_4 - e>\).

Since each edge of \(G\) is a dominating edge, every vertex of \(V - X\) is adjacent to all the vertices in \(X\).

If each edge of \(<X>\) is a dominating edge, then \(\kappa(G) \neq p - 4\).

If \(X\) is independent and \(|X| \neq 4\), then \(\kappa(G) = 4 \neq p - 4\).

If \(X\) is independent and \(|X| = 4\), then \(G \cong G_5\).

If \(X\) is not independent and if there exists at least one edge in \(<X>\) which is not a dominating edge, then \(\gamma_{ctnd}(G) = p - 2\).

If \(|X| \geq 4\), then \(p - 4 \geq 4 \implies p \geq 8\). Let \(G\) be a graph such that \(X\) can be partitioned into two sets \(S\) and \(V - S\). Let \(S = \{v_1, v_2, v_3, v_4\}\) be a set of four independent vertices in \(X\) and \(V - S = (X - S) \cup (V - X)\). As in the subcase 2.2.1, if each edge in \(V - S\) is a dominating edge, then \(G \cong G_4\).

Subcase-2.2.3: \(<V - X> \cong K_4\).

Since each edge of \(G\) is a dominating edge, every vertex of \(V - X\) is adjacent to all the vertices in \(X\). If \(<X>\) is complete, then \(G \cong K_4\). But \(\gamma_{ctnd}(K_4) = p\).

As in the subcase 2.2.2, if \(X\) is independent and \(|X| = 4\), then \(G \cong G_5\).

As in the subcase 2.2.1, if each edge in \(V - S\) is a dominating edge, then \(G \cong G_4\).

Hence \(G\) is isomorphic to the graph \(K_{1,4}, S_{2,3}, K_{2,4}, K_{3,4}, K_{4,4}, G_4, G_5\).

Case-3: \(\gamma_{ctnd}(G) = p - 2\) and \(\kappa(G) = p - 3\).

Since \(\kappa(G) = p - 3\), \(\delta(G) \geq p - 3\). If \(\delta(G) = p - 1\), then \(G\) is a complete graph. If \(\delta(G) = p - 2\), then \(G\) is isomorphic to \(K_p - Y\), where \(Y\) is a matching in \(K_p\) and \(\kappa(G) = p - 2\). But \(\gamma_{ctnd}(G) = p - 1\). Therefore no connected graph exists.

By Theorem 2.7, Notation 2.8, Theorem 2.9, and Theorem 2.10, \(\gamma_{ctnd}(G) = p - 2\) if and only if

1. \(G \cong T\), where \(T\) is a tree either obtained from a path \(P_n\) (\(n \geq 4\) and \(n < p\)) by attaching pendant edges at least one of the end vertices of \(P_n\).

 Or obtained from \(P_3\) by attaching pendant edges at either both the end vertices or all the vertices of \(P_3\).

2. \(G \not\in \mathcal{G}\), if \(\delta(G) = 1\)

3. If \(\delta(G) \geq 2\), then \(G\) is one of the following graphs.

 (i) A cycle on at least five vertices.
 (ii) A wheel with six vertices.
 (iii) \(G\) is the one point union of complete graphs.
 (iv) \(G\) is obtained by joining two complete graphs by an edge.
 (v) \(G\) is a graph such that there exists a vertex \(v \in V(G)\) such that \(G - v\) is a complete graph on \((p - 1)\) vertices.
 (vi) \(G\) is a graph such that there exists a vertex \(v \in V(G)\) such that \(G - v\) is \(K_{p - 1} - e\), \((e \in E(K_{p - 1}))\) and \(N(v)\) contains at least one vertex of degree \((p - 3)\) in \(K_{p - 1} - e\).
Case-3.1: $G \cong T$,
$\kappa(T) = 1$ and $\kappa(G) = p - 3$ implies $p = 4$. But this case is not possible, since $p \geq 5$.

Therefore no connected graph exists in this case.

Case-3.2: $G \not\cong T$ and $\delta(G) = 1$
$\kappa(G) = p - 3$ implies $p = 4$. Therefore $G \cong K_1(1,0,0)$.

Case-3.3: $\delta(G) \geq 2$.

Subcase-3.3.1: A cycle on at least five vertices.
$\kappa(C_p) = 2$ and $\kappa(G) = p - 3$ implies $p = 5$. Hence $G \cong C_5$.

Subcase-3.3.2: A wheel with six vertices.
In this case, $\kappa(G) = p - 3$. Hence $G \cong W_6$.

Subcase-3.3.3: G is the one point union of complete graphs.
In this case, $\kappa(G) = 1 = p - 3$ implies $p = 4$. Therefore no connected graph exists in this case, since $p \geq 5$.

Subcase-3.3.4: G is obtained by joining two complete graphs by an edge.
In this case, $\kappa(G) = 2 = p - 3$ implies $p = 5$. Therefore no connected graph exists in this case, since $p \geq 6$.

Subcase-3.3.5: G is a graph such that there exists a vertex $v \in V(G)$ such that $G - v$ is a complete graph on $(p - 1)$ vertices.
In this case, $\kappa(G) = \deg(v) = p - 3$. Therefore G is a graph obtained from K_{p-1} by joining a vertex $v \not\in V(K_{p-1})$ to exactly $(p - 3)$ vertices of K_{p-1}.

Subcase-3.3.6: G is a graph such that there exists a vertex $v \in V(G)$ such that $G - v$ is $K_{p-1} - e$, $(e \in E(K_{p-1}))$ and $N(v)$ contains at least one vertex of degree $(p - 3)$ in $K_{p-1} - e$.

Since $\kappa(G) = p - 3$, G is a graph obtained from $K_{p-1} - e$ by joining a vertex $v \not\in V(K_{p-1} - e)$ to exactly $(p - 3)$ vertices of $K_{p-1} - e$.

Case-4: $\gamma_{ctnd}(G) = p - 3$ and $\kappa(G) = p - 2$.

Since $\kappa(G) = p - 2$, $\delta(G) \geq p - 2$. If $\delta(G) = p - 1$, then G is a complete graph. If $\delta(G) = p - 2$, then G is isomorphic to $K_p - Y$, where Y is a matching in K_p and $\kappa(G) = p - 2$. But $\gamma_{ctnd}(G) = p - 1$.

Therefore no connected graph exists in this case.

Hence G is isomorphic to one of the following graphs
(a) $K_{1,4}, S_{2,1}, K_{2,4}, K_{3,4}, K_{4,4}, G_4, G_5, K_5(1,0,0), C_5, W_6$.
(b) G is a graph obtained from K_{p-1} by joining a vertex $v \not\in V(K_{p-1})$ to exactly $(p - 3)$ vertices of K_{p-1}.
(c) G is a graph obtained from $K_{p-1} - e$ by joining a vertex $v \not\in V(K_{p-1} - e)$ to exactly $(p - 3)$ vertices of $K_{p-1} - e$.

Conversely, if $G \cong K_{1,4}, S_{2,1}, K_{2,4}, K_{3,4}, K_{4,4}, G_4, G_5, C_5, W_6$, then $\gamma_{ctnd}(G) = p - 1$ and $\kappa(G) = p - 4$.

If $G \cong K_5(1,0,0), C_5, W_6$, G is a graph obtained from K_{p-1} by joining a vertex $v \not\in V(K_{p-1})$ to exactly $(p - 3)$ vertices of K_{p-1}, or G is a graph obtained from $K_{p-1} - e$ by joining a vertex $v \not\in V(K_{p-1} - e)$ to exactly $(p - 3)$ vertices of $K_{p-1} - e$, then $\gamma_{ctnd}(G) = p - 2$ and $\kappa(G) = p - 3$.

Hence $\gamma_{ctnd}(G) + \kappa(G) = 2p - 5$.

© 2016, IJMA. All Rights Reserved
REFERENCES

1. F. Harary, Graph Theory, Addison-Wesley, Reading Mass, 1972.
3. S. Muthammai and G. Ananthavalli, Complementary tree nil domination number of a graph. (Submitted).

Source of support: Nil, Conflict of interest: None Declared

[Copy right © 2016. This is an Open Access article distributed under the terms of the International Journal of Mathematical Archive (IJMA), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.]