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ABSTRACT 

Stock market analysis is one of the most important and hard problems in finance analysis field. Recently, the usage of 
intelligent systems for stock market prediction has been widely established. In this study, we aim to design a 
mathematical model for Stock price prediction which can provide an accurate direction for financial firms and private 
investors. With knowledge of the movement of stock price, an investor can make profitable decision and reduce risk 
return trade-off. In this paper, the Best Replacement Optimization algorithm is proposed, which is used for the S&P 
CNX NIFTY stock index analysis. The results provide better forecasting accuracy than previous methods.  
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I. INTRODUCTION 
 
Prediction is a kind of estimation about the development mode that how things are going on in the future. As an 
essential guidance towards social production, prediction has always been a highlight in academic research field. As for 
Stock price prediction, the widely applied methods have been limited to the traditional ones, such as time serial 
analysis, regression analysis, and gray prediction model and so on. However, with the scale of data becoming larger 
and requirement for prediction accuracy becoming higher, limitations of these traditional methods appear to be obvious. 
Therefore, many researchers have paid attention to the prediction model optimization.  
 
Predicting the trend of the stock market is considered as a tough and challenging task in financial time-series 
forecasting. The main reason is because of the uncertainties involved in the movement of the stock market. Various 
factors affect the stock market and some of them include traders' expectations, events related to the government and 
economic conditions. Hence, predicting the movement of stock market price is quite a difficult job.  
 
In the past years several models and techniques had been developed to stock price prediction. Among them are artificial 
neural networks (ANNs) model which are very popular due to its ability to learn patterns from data and infer solution 
from unknown data. Few related works that engaged ANNs model to stock price prediction are [2, 3, 8]. Akhter 
Mohiuddin Rather [2011], in his work, used prediction based neural networks approach for stock returns. An 
autoregressive neural network predictor was used to predict future stock returns. Various error metrics have been used 
to evaluate the performance of the predictor. Experiments with real data from National stock exchange of India (NSE) 
were employed to examine the accuracy of this method. Data from date 02-01-2007 till 22-03-2010 for: TCS, BHEL, 
Wipro, Axis Bank, Maruthi and Tata Steel were taken. The result was not accurate but he suggested the use of better 
neural predictive systems and training methods for minimizing the prediction errors for the future work. D. Ashok 
kumar et al. [2013] discussed some basic ideas of time series data, need of ANN, importance of stock indices, survey of 
the previous works and it investigates neural network models for time series in forecasting. In their study, for 
performance of between BSE100 stock market index and NIFTY MIDCAP50 stock market index is studied by neural 
network model and measured aggregation where observed viz., MAE, MAPE, PMAD, MSE and RMSE. The result 
shows that the performance is comparatively best. From the result they observed that an optimal feedback weighting 
factor learning rate is 0.28, momentum is 0.5 and epoch is 2960. The model achieved the lower prediction error and it 
may be fit into any stock market data. Aditya Nawani et al. [2013] discuss how data mining techniques can be applied 
to design a market capital prediction system for trading firms. Their study shows how neural networks can be utilized,  
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in combination with the Graphical user Interface of MATLAB, GUIDE, to make accurate predictions. When 
implemented, the trained system can be used to forecast the market capital for a particular combination of input 
parameters. The accuracy of this method was high because the results obtained were found to be comparable to the 
output expected.  
 
Rest of the paper is organized as follows. In Section 2, we have presented a brief overview for Best Replacement 
Optimization Model. In Section 3, we have presented prediction based algorithm and experimental results are given in 
Section 4. Finally, some concluding remarks are given in Section 5 
 
A. The Best Replacement Optimization Model Development 
 
The Best Replacement Optimization Model (abbreviated as BRO) is a novel population-based stochastic Prediction 
algorithm and an alternative solution to the complex non-linear optimization problem. The PSO algorithm was first 
introduced by Dr. Kennedy and Dr. Eberhart in 1995 and its basic idea was originally inspired by simulation of the 
social behavior of animals such as bird flocking, fish schooling and so on. It is based on the natural process of group 
communication to share individual knowledge when a group of birds or insects search food or migrate and so forth in a 
searching space, although all birds or insects do not know where the best position is. But from the nature of the social 
behavior, if any member can find out a desirable path to go, the rest of the members will follow quickly. 
 
The PSO algorithm basically learned from animal’s activity or behavior to solve optimization problems. In PSO, each 
member of the population is called a particle and the population is called a swarm. Starting with a randomly initialized 
population and moving in randomly chosen directions, each particle goes through the searching space and remembers 
the best previous positions of itself and its neighbors. Particles of a swarm communicate good positions to each other as 
well as dynamically adjust their own position and velocity derived from the best position of all particles. The next step 
begins when all particles have been moved.  
 
Finally, all particles tend to fly towards better and better positions over the searching process until the swarm move to 
close to an optimum of the fitness function. The PSO method is becoming very popular because of its simplicity of 
implementation as well as ability to swiftly converge to a good solution. It does not require any gradient information of 
the function to be optimized and uses only primitive mathematical operators. 
 
Best replacement Optimization Algorithm as a modified version of PSO Algorithm. In addition, there are few 
parameters to adjust in BRO Algorithm. That’s BRO is an ideal optimization problem solver in optimization problems. 
As compared with other optimization methods, it is faster, cheaper and more efficient. BRO is well suited to solve the 
non-linear, non-convex, continuous, discrete, integer variable type problems. 
 
The Basic Model of BRO algorithm 
 
This chapter discusses a conceptual overview of the BRO algorithm and its parameters selection strategies and 
mathematical explanation. Consider the global optimum of an n-dimensional function defined by 

𝑓𝑓(𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3, … . , 𝑥𝑥𝑛𝑛) = 𝑓𝑓(𝑥𝑥∗)                                                                            (1) 
 

where 𝒙𝒙𝒊𝒊 is the search variable, which represents the set of free variables of the given function. The aim is to find a 
value 𝒙𝒙∗such that the function 𝒇𝒇(𝒙𝒙∗)is either a maximum or a minimum in the search space. 
 
Derivation of the BRO Equations  
 
The kinematic equation by which a particle’s final position vector can be calculated from its initial position and 
velocity if acceleration is constant over the time period:  

�⃗�𝑥 = �⃗�𝑥𝑜𝑜 + �⃗�𝑣0𝑡𝑡 + 1
2
�⃗�𝑎𝑡𝑡2                                                                             (2) 

 
𝑡𝑡  between position updates is 1 iteration; hence, and 𝑡𝑡 the corresponding dimensional analysis can be dropped to 
simplify iterative computations. Instead, authors generally use 𝑘𝑘 to denote values of the current iteration and 𝑘𝑘 + 1 for 
values of the ensuing iteration. Using this notation, the basic position update equation of physics can be rewritten for 
iterative computation as  

�⃗�𝑥(𝑘𝑘 + 1) = �⃗�𝑥(𝑘𝑘) + �⃗�𝑣(𝑘𝑘) + 1
2
�⃗�𝑎(𝑘𝑘)                                                                                                       (3)   

 
The global best, which the best solution is found by the swarm through the current iteration, 𝑘𝑘. Modeling cognition, 
each particle also iteratively accelerates toward its personal best, which is the best solution that it personally has found.   
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The cognitive and social acceleration constants, 𝑐𝑐1and 𝑐𝑐2 respectively, determine how aggressively particles accelerate 
based on the cognitive and social information available to them: these can be set identically, or a preference can be 
given to either acceleration type. The subtraction in Equation (3) ensures that any particle which is distant from the 
social best will accelerate toward it more strongly than a particle nearby. Similarly, the subtraction in Equation (3) 
ensures that any particle that is distant from its cognitive best will accelerate toward it more strongly than were it 
nearby. As a conceptual example, one could imagine children playing both indoors and out when their mother 
announces that dinner is ready: those farther away might be expected to run more quickly toward the dinner table. 
 
Social acceleration: 

𝑐𝑐2(�⃗�𝑔(𝑘𝑘) − �⃗�𝑥𝑖𝑖(𝑘𝑘))                                                                                                                                   (4) 
where 

𝑐𝑐2  𝑖𝑖s the social acceleration constant , 
�⃗�𝑥𝑖𝑖(𝑘𝑘) 𝑖𝑖s theposition vector of particle"𝑖𝑖"  at iteration"𝑘𝑘", 
�⃗�𝑔(𝑘𝑘) is the global best of all particles at  iteration "𝑘𝑘" 

 
Cognitive acceleration:  

 𝑐𝑐1(�⃗�𝑔(𝑘𝑘) − �⃗�𝑥𝑖𝑖(𝑘𝑘))                                                                                                                     (5)                 
where: 

𝑐𝑐1 is the cognitive acceleration constant,  
�⃗�𝑥𝑖𝑖(𝑘𝑘) is the position vector of particle"𝑖𝑖" at iteration"𝑘𝑘",  
𝑃𝑃𝑖𝑖(𝑘𝑘) is the personal best of particle "𝑖𝑖" at iteration "𝑖𝑖" 

 
Equation (3) defines the social acceleration of Global Best (Gbest). Local Best (Lbest) limits each particle’s social 
sphere to knowledge of the best solution found by its neighbors instead of immediately granting each particle 
knowledge of the best solution found so far by the entire search team. 
 
Substituting the sum of these two acceleration terms for �⃗�𝑎(𝑘𝑘)in Equation (3), while applying the subscript adopted in 
(4) and (5), produces Equation (6).  

�⃗�𝑥𝑖𝑖(𝑘𝑘 + 1) = �⃗�𝑥𝑖𝑖(𝑘𝑘) + �⃗�𝑣𝑖𝑖(𝑘𝑘) + 1
2
𝑐𝑐1 �𝑃𝑃�⃗𝑖𝑖(𝑘𝑘) − �⃗�𝑥𝑖𝑖(𝑘𝑘)� + 1

2
𝑐𝑐2��⃗�𝑔(𝑘𝑘) − �⃗�𝑥𝑖𝑖(𝑘𝑘)�                               (6)   

 
Having replaced physical acceleration in the position update equation of physics with social and cognitive modeling, 
the next step toward producing a stochastic search algorithm is the replacement of with a pseudo-random number 
sampled per dimension from the uniform distribution between 0  and 1, 𝑈𝑈(0,1). Note that the expected or mean value 
of the distribution is still. Designating the first vector of pseudo-random numbers as 𝑟𝑟1𝑖𝑖   and the second as 𝑟𝑟2𝑖𝑖  produces 
Equation (6).  

�⃗�𝑥𝑖𝑖(𝑘𝑘 + 1) = �⃗�𝑥𝑖𝑖(𝑘𝑘) + �⃗�𝑣𝑖𝑖(𝑘𝑘) + 𝑐𝑐1𝑟𝑟1𝑖𝑖 ° �𝑃𝑃�⃗𝑖𝑖(𝑘𝑘) − �⃗�𝑥𝑖𝑖(𝑘𝑘)� + 𝑐𝑐2𝑟𝑟2𝑖𝑖 °��⃗�𝑔(𝑘𝑘) − �⃗�𝑥𝑖𝑖(𝑘𝑘)�                                            (7) 
 
For convenience, the rather long Equation (7) is separated into a velocity update equation (8) and a position update 
equation (9). This primarily helps with record keeping since each value can be stored separately for post-simulation 
analysis. Substituting Equation (8) into (9) shows equivalency to (7). 
 
For convenience, the rather long Equation (7) is separated into a velocity update equation (8) and a position update 
equation (9). This primarily helps with record keeping since each value can be stored separately for post-simulation 
analysis. Substituting Equation (6.8) into (6.9) shows equivalency to (7). 

�⃗�𝑣𝑖𝑖(𝑘𝑘 + 1) = �⃗�𝑣𝑖𝑖(𝑘𝑘) + 𝑐𝑐1𝑟𝑟1,𝑖𝑖 ° �𝑃𝑃�⃗𝑖𝑖(𝑘𝑘) − �⃗�𝑥𝑖𝑖(𝑘𝑘)� + 𝑐𝑐2𝑟𝑟2,𝑖𝑖 °��⃗�𝑔(𝑘𝑘) − �⃗�𝑥𝑖𝑖(𝑘𝑘)�                                                          (8) 
�⃗�𝑥𝑖𝑖(𝑘𝑘 + 1) = �⃗�𝑥𝑖𝑖(𝑘𝑘) + �⃗�𝑣𝑖𝑖(𝑘𝑘 + 1)                                                                                                       (9) 

 
Since its conception, Equation (8) has developed two mechanisms by which to improve search behavior. The inertia 
weight, 𝜔𝜔 roughly simulates friction in a computationally inexpensive manner by 𝜔𝜔𝜔𝜔(−1,1) carrying over to the next 
iteration only a user-specified percentage of the current iteration’s velocity. This is done by multiplying the velocity of 
the current iteration by 1 as shown in the first term of Equation (10). The constriction models use a constriction 
coefficient instead, but the popular Type 1” parameters can be converted to Clerc’s Equivalents for use in Equation 
(10).  

�⃗�𝑣𝑖𝑖(𝑘𝑘 + 1) = 𝜔𝜔�⃗�𝑣𝑖𝑖(𝑘𝑘) + 𝑐𝑐1𝑟𝑟1,𝑖𝑖 ° �𝑃𝑃�⃗𝑖𝑖(𝑘𝑘) − �⃗�𝑥𝑖𝑖(𝑘𝑘)� + 𝑐𝑐2𝑟𝑟2,𝑖𝑖 °��⃗�𝑔(𝑘𝑘) − �⃗�𝑥𝑖𝑖(𝑘𝑘)�                             (10) 

𝜔𝜔 = 𝜔𝜔𝑚𝑚𝑎𝑎𝑥𝑥 −
(𝜔𝜔𝑚𝑚𝑎𝑎𝑥𝑥 − 𝜔𝜔𝑚𝑚𝑖𝑖𝑛𝑛 ) × 𝑖𝑖𝑡𝑡𝑖𝑖𝑟𝑟

𝑀𝑀𝑎𝑎𝑥𝑥 𝑖𝑖𝑡𝑡𝑖𝑖𝑟𝑟
 

where  
𝜔𝜔𝑚𝑚𝑎𝑎𝑥𝑥 = 𝑖𝑖𝑛𝑛𝑖𝑖𝑡𝑡𝑖𝑖𝑎𝑎𝑖𝑖 𝑤𝑤𝑖𝑖𝑖𝑖𝑔𝑔ℎ𝑡𝑡,𝜔𝜔𝑚𝑚𝑖𝑖𝑛𝑛 = 𝑓𝑓𝑖𝑖𝑛𝑛𝑎𝑎𝑖𝑖 𝑤𝑤𝑖𝑖𝑖𝑖𝑔𝑔ℎ𝑡𝑡, 𝑖𝑖𝑡𝑡𝑖𝑖𝑟𝑟 = 𝑐𝑐𝑐𝑐𝑟𝑟𝑟𝑟𝑖𝑖𝑛𝑛𝑡𝑡 𝑖𝑖𝑡𝑡𝑖𝑖𝑟𝑟𝑡𝑡𝑎𝑎𝑡𝑡𝑖𝑖𝑜𝑜𝑛𝑛 𝑛𝑛𝑐𝑐𝑚𝑚𝑛𝑛𝑖𝑖𝑟𝑟, 
𝑀𝑀𝑎𝑎𝑥𝑥 𝑖𝑖𝑡𝑡𝑖𝑖𝑟𝑟 = 𝑚𝑚𝑎𝑎𝑥𝑥𝑖𝑖𝑚𝑚𝑐𝑐𝑚𝑚  𝑖𝑖𝑡𝑡𝑖𝑖𝑟𝑟𝑡𝑡𝑎𝑎𝑡𝑡𝑖𝑖𝑜𝑜𝑛𝑛 𝑛𝑛𝑐𝑐𝑚𝑚𝑛𝑛𝑖𝑖𝑟𝑟 
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The equation (10) is enhanced by limiting the iteration using threshold level of global fitness value where the Global 
Fitness Value ranges from Global Fitness± 1. 

�⃗�𝑣𝑖𝑖(𝑘𝑘 + 1) = ∑ �𝜔𝜔�⃗�𝑣𝑖𝑖(𝑘𝑘) + 𝑐𝑐1𝑟𝑟1,𝑖𝑖 ° �𝑃𝑃�⃗𝑖𝑖(𝑘𝑘) − �⃗�𝑥𝑖𝑖(𝑘𝑘)� + 𝑐𝑐2𝑟𝑟2,𝑖𝑖 °��⃗�𝑔(𝑘𝑘) − (𝑘𝑘)��𝑖𝑖=𝐺𝐺𝐺𝐺+1
𝑖𝑖=𝐺𝐺𝐺𝐺−1                             (11) 

 

 
Figure-1: Concepts of BRO 

 
Xk  : Current searching point 
Xk+1  : Modified searching point 
Vk  : Current velocity 
Vk+1  : Modified velocity 
V pbest: Velocity based on pbest 
V gbest: Velocity based on gbest 
GF  : Global fitness value 

 
The equation (11) improves the efficiency of the iteration and reduces the processing. The other restriction imposed on 
velocity is essentially a speed limit. Rather than limiting the vector magnitude itself, the computationally simpler 
approach of limiting each component is implemented as shown in Equation (11), which limits the magnitude indirectly. 

�⃗�𝑣𝑖𝑖 ,𝑗𝑗 (𝑘𝑘 + 1) = 𝑠𝑠𝑖𝑖𝑔𝑔𝑛𝑛 ��⃗�𝑣𝑖𝑖,𝑗𝑗 (𝑘𝑘 + 1)� × 𝑚𝑚𝑎𝑎𝑥𝑥���⃗�𝑣𝑖𝑖 ,𝑗𝑗 (𝑘𝑘 + 1)�, 𝑣𝑣𝑗𝑗𝑚𝑚𝑎𝑎𝑥𝑥 �                                            (12) 
where 𝑗𝑗 ∈ {1,2, … . ,𝑛𝑛 − 1,𝑛𝑛}, and 𝑛𝑛 denotes the problem dimensionality 
 
This limits the maximum step size on dimension 𝑗𝑗 by clamping: (𝑖𝑖) values greater than𝑣𝑣𝑗𝑗𝑚𝑚𝑎𝑎𝑥𝑥 to amaximum value 
of 𝑣𝑣𝑗𝑗𝑚𝑚𝑎𝑎𝑥𝑥  , and (ii) values less than −𝑣𝑣𝑗𝑗𝑚𝑚𝑎𝑎𝑥𝑥 to a minimum of −𝑣𝑣𝑗𝑗𝑚𝑚𝑎𝑎𝑥𝑥 . From a physical perspective, particles with clamped 
velocities are analogous to birds with limited flying speeds. Considering the psychological aspects of the algorithm, 
clamped velocities could also be considered analogous to self-limited emotive responses. 
 
Concerning the calculation of 𝑣𝑣𝑗𝑗𝑚𝑚𝑎𝑎𝑥𝑥 , suppose the feasible candidates for an application problem are [12, 20] on some 
dimension to be optimized. Clamping velocities to 50%, for example, of 𝑥𝑥𝑚𝑚𝑎𝑎𝑥𝑥 would allow particles to take excessively 
large steps relative to the range of the search space on that dimension; in this case, the maximum step size would be 
0.5*20 =10 . But stepping 10 units in any direction when the search space is only 8 units wide would be nonsensical. 
Since real-world applications are not necessarily centered at the origin of Euclidean space, it is preferable to clamp 
velocities based on the range of the search space per dimension in order to remove dependence on the frame of 
reference; hence, subscript j is included in Equation (11) for sake of generality; but it can be dropped for applications 
with the same range of values per dimension. 
 
Swarm Initialization  
 
The optimization process begins by randomly initializing positions between a minimum and maximum per dimension 
as per Relation (12). The most common benchmarks use the same minimum and maximum per dimension. For 
application problems, however, these might differ depending on the characteristics being optimized; hence, the general 
formula is provided, which uses subscript 𝑗𝑗 to indicate the dimension.  

𝑥𝑥𝑖𝑖 ,𝑗𝑗 (𝑘𝑘 = 0)𝜔𝜔𝑈𝑈�𝑥𝑥𝑗𝑗𝑚𝑚𝑖𝑖𝑛𝑛 , 𝑥𝑥𝑗𝑗𝑚𝑚𝑎𝑎𝑥𝑥 �                                                                          (13) 
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Velocities are similarly initialized according to Relation (13). For application problems with a different range of 
feasible values on one dimension than on another, different step sizes per dimension would make sense; hence, the 
general form is presented, which avoids unnecessarily imposing the same range of feasible values on all characteristics 
to be optimized.  

𝑣𝑣𝑖𝑖 ,𝑗𝑗 (𝑘𝑘 = 0)𝜔𝜔𝑈𝑈�−𝑣𝑣𝑗𝑗𝑚𝑚𝑎𝑎𝑥𝑥 ,𝑣𝑣𝑗𝑗𝑚𝑚𝑎𝑎𝑥𝑥 �                                                                                       (14) 
 
Each particle’s personal best is initialized to its starting position as shown in Equation (15).  

𝑃𝑃�⃗𝑖𝑖(𝑘𝑘 = 0) = �⃗�𝑥𝑖𝑖(𝑘𝑘 = 0)                                                                                                                   (15) 
 
The global best is always the best of all personal bests as shown in Equation (16).   

g�⃑ (𝑘𝑘) = arg𝑚𝑚𝑖𝑖𝑛𝑛∀𝑝𝑝𝑡𝑡(𝑘𝑘) 𝑓𝑓| �𝑃𝑃𝑡𝑡(𝑘𝑘)�                                                                                       (16) 
  
Iterative Optimization Routine  
 
Once the swarm has been initialized, particles iteratively: (i) accelerate (i.e. adjust their velocity vectors) toward the 
global best and their own personal bests, (ii) update and clamp their velocities, (iii) update their positions, and (iv) 
update their personal bests and the global best. This routine is repeated until reaching a user-specified termination 
criterion.  
 
For convenience, the relevant equations are restated below as needed in order of implementation.  

�⃗�𝑣𝑖𝑖(𝑘𝑘 + 1) = ∑ �𝜔𝜔�⃗�𝑣𝑖𝑖(𝑘𝑘) + 𝑐𝑐1𝑟𝑟1,𝑖𝑖 ° �𝑃𝑃�⃗𝑖𝑖(𝑘𝑘) − �⃗�𝑥𝑖𝑖(𝑘𝑘)� + 𝑐𝑐2𝑟𝑟2,𝑖𝑖 °��⃗�𝑔(𝑘𝑘) − �⃗�𝑥𝑖𝑖(𝑘𝑘)��𝑖𝑖=𝐺𝐺𝑃𝑃+1
𝑖𝑖=𝐺𝐺𝑃𝑃−1                                     (11) 

�⃗�𝑣𝑖𝑖(𝑘𝑘 + 1) = 𝑠𝑠𝑖𝑖𝑔𝑔𝑛𝑛��⃗�𝑣𝑖𝑖(𝑘𝑘 + 1)� × 𝑚𝑚𝑎𝑎𝑥𝑥�|�⃗�𝑣𝑖𝑖(𝑘𝑘 + 1)|, 𝑣𝑣𝑗𝑗𝑚𝑚𝑎𝑎𝑥𝑥 �                                                                             (12) 
�⃗�𝑥𝑖𝑖(𝑘𝑘 + 1) = �⃗�𝑥𝑖𝑖(𝑘𝑘) + �⃗�𝑣𝑖𝑖(𝑘𝑘 + 1)                                                                                                                         (9) 

 
A particle’s personal best is only updated when the new position offers a better function value: 

𝑃𝑃�⃗𝑖𝑖(𝑘𝑘 + 1) = ��⃗�𝑥𝑖𝑖(𝑘𝑘 + 1)𝑖𝑖𝑓𝑓 𝑓𝑓��⃗�𝑥𝑖𝑖(𝑘𝑘 + 1)� < 𝑓𝑓�𝑃𝑃�⃗𝑖𝑖(𝑘𝑘)�
�⃗�𝑥𝑖𝑖(𝑘𝑘 + 1) 𝑜𝑜𝑡𝑡ℎ𝑖𝑖𝑟𝑟𝑤𝑤𝑖𝑖𝑠𝑠𝑖𝑖 

�                                                                        (17) 

 
The global best is always the best of all personal bests:  

g�⃑ (𝑘𝑘 + 1) = arg𝑚𝑚𝑖𝑖𝑛𝑛∀𝑝𝑝𝑡𝑡(𝑘𝑘) 𝑓𝑓 �𝑃𝑃𝑡𝑡(𝑘𝑘 + 1)�                                                                         (18) 
  
Rather than accelerating due to external physical forces, particles adjust toward solutions of relative quality. Each 
position encountered as particles swarm is evaluated and compared to existing bests. Though the behavior of each 
individual is simple, the collective result is an optimization algorithm capable of maximizing or minimizing problems 
that would be difficult to tackle with straightforward mathematical analyses, either because the problem is not well 
understood in advance or simply because the problem is quite complicated.  
 
The acceleration coefficients 𝑐𝑐1and 𝑐𝑐2, together with the random values 𝑟𝑟1 and 𝑟𝑟2, maintain the stochastic influence of 
the cognitive and social components of the particle’s velocity respectively. The constant 𝑐𝑐1expresses how much 
confidence a particle has in itself, while 𝑐𝑐2expresses how much confidence a particle has in its neighbors. There are 
some properties of 𝑐𝑐1 and 𝑐𝑐2 : 
 
Case-1: When, 𝑐𝑐1 = 𝑐𝑐2 = 0 then all particles continue flying at their current speed until they hit the search space’s 
boundary. Therefore, from the equations (5) and (6), the velocity update equation is calculated as 
 

�⃗�𝑣𝑖𝑖(𝑘𝑘 + 1) = �⃗�𝑣𝑖𝑖(𝑘𝑘)                                                                                                      (19) 
 
Case-2: When 𝑐𝑐1 > 0 and 𝑐𝑐2 = 0, all particles are independent. The velocity update equation will be   

�⃗�𝑣𝑖𝑖(𝑘𝑘 + 1) = ∑ �𝜔𝜔�⃗�𝑣𝑖𝑖(𝑘𝑘) + 𝑐𝑐1𝑟𝑟1,𝑖𝑖 ° �𝑃𝑃�⃗𝑖𝑖(𝑘𝑘) − �⃗�𝑥𝑖𝑖(𝑘𝑘)��𝑖𝑖=𝐺𝐺𝑃𝑃+1
𝑖𝑖=𝐺𝐺𝑃𝑃−1                                                                        (20) 

 
On the contrary, when 𝑐𝑐2 > 0 and 𝑐𝑐1 = 0, all particles are attracted to a single (𝑖𝑖. 𝑖𝑖.𝐺𝐺𝑛𝑛𝑖𝑖𝑠𝑠𝑡𝑡 ) point in the entire swarm and 
the update velocity will become 

�⃗�𝑣𝑖𝑖(𝑘𝑘 + 1) = ∑ �𝜔𝜔�⃗�𝑣𝑖𝑖(𝑘𝑘) + 𝑐𝑐2𝑟𝑟2,𝑖𝑖 °��⃗�𝑔(𝑘𝑘) − �⃗�𝑥𝑖𝑖(𝑘𝑘)��𝑖𝑖=𝐺𝐺𝑛𝑛+1
𝑖𝑖=𝐺𝐺𝑛𝑛−1                                                                        (21) 

�⃗�𝑣𝑖𝑖(𝑘𝑘 + 1) = ∑ �𝜔𝜔�⃗�𝑣𝑖𝑖(𝑘𝑘) + 𝑐𝑐2𝑟𝑟2,𝑖𝑖 °�𝐺𝐺𝑛𝑛𝑖𝑖𝑠𝑠𝑡𝑡 − �⃗�𝑥𝑖𝑖(𝑘𝑘)��𝐺𝐺𝑛𝑛+1
𝐺𝐺𝑛𝑛−1                                                                        (22) 

for 𝑔𝑔𝑛𝑛𝑖𝑖𝑠𝑠𝑡𝑡 BRO.   
or 

�⃗�𝑣𝑖𝑖(𝑘𝑘 + 1) = ∑ �𝜔𝜔�⃗�𝑣𝑖𝑖(𝑘𝑘) + 𝑐𝑐2𝑟𝑟2,𝑖𝑖 °�𝐿𝐿𝑛𝑛𝑖𝑖𝑠𝑠𝑡𝑡 − �⃗�𝑥𝑖𝑖(𝑘𝑘)��𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑎𝑎𝑥𝑥
𝑖𝑖=0                                                          (22) 

for 𝑖𝑖𝑛𝑛𝑖𝑖𝑠𝑠𝑡𝑡 BRO     
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Case-3: When 𝑐𝑐1 = 𝑐𝑐2, all particles are attracted towards the average 𝑃𝑃𝑛𝑛𝑖𝑖𝑠𝑠𝑡𝑡 ,𝑖𝑖

𝑡𝑡 and 𝐺𝐺𝑛𝑛𝑖𝑖𝑠𝑠𝑡𝑡 . 
 
Case-4: When𝑐𝑐1 ≫ 𝑐𝑐2, each particle is more strongly influenced by its personal best position, resulting in excessive 
wandering. In contrast, when 𝑐𝑐1 ≫ 𝑐𝑐2 then all particles are much more influenced by the global best position, which 
causes all particles to run prematurely to the optimal. 
 
Normally, 𝑐𝑐1 𝑎𝑎𝑛𝑛𝑎𝑎 𝑐𝑐2 are static, with their optimized values being found empirically. Wrong initialization of 𝑐𝑐1 𝑎𝑎𝑛𝑛𝑎𝑎 𝑐𝑐2 
may result in divergent or cyclic behavior. From the different empirical researches, it has been proposed that the two 
acceleration constants should be 𝑐𝑐1 = 𝑐𝑐2 = 2 
 
Therefore, in a BRO method, all particles are initiated randomly and evaluated to compute fitness together with finding 
the personal best (best value of each particle) and global best (best value of particle in the entire swarm). After that a 
loop starts to find an optimum solution. In the loop, first the particles’ velocity is updated by the personal and global 
bests, and then each particle’s position is updated by the current velocity. The loop is ended with a stopping criterion 
predetermined in advance. 
 
Basically, two BRO algorithms, namely the Global Best (gbest) and Local Best (lbest) BRO, have been developed 
which differ in the size of their neighborhoods. Originally, there are two differences between the ‘𝑔𝑔𝑛𝑛𝑖𝑖𝑠𝑠𝑡𝑡’ BRO and the 
‘𝑖𝑖𝑛𝑛𝑖𝑖𝑠𝑠𝑡𝑡’ BRO: One is that because of the larger particle interconnectivity of the 𝑔𝑔𝑛𝑛𝑖𝑖𝑠𝑠𝑡𝑡 BRO, sometimes it converges 
faster than the 𝑖𝑖𝑛𝑛𝑖𝑖𝑠𝑠𝑡𝑡 BRO. Another is due to the larger diversity of the 𝑖𝑖𝑛𝑛𝑖𝑖𝑠𝑠𝑡𝑡 BRO; it is less susceptible to being 
trapped in local minima. 
 
B. BRO Algorithm: 

 
Figure-2: General flowchart for PRO 
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Input: 
𝑚𝑚: The swarm size; 𝑐𝑐1, 𝑐𝑐2: positive acceleration constants;  
𝑤𝑤: inertia weight 
𝑀𝑀𝑎𝑎𝑥𝑥𝑀𝑀: Maximum velocity of particles 
𝑀𝑀𝑎𝑎𝑥𝑥𝐺𝐺𝑖𝑖𝑛𝑛: Maximum generation 
𝑀𝑀𝑎𝑎𝑥𝑥𝐺𝐺𝑖𝑖𝑡𝑡:Maximum fitness value 
Output: 
𝑃𝑃𝑔𝑔𝑛𝑛𝑖𝑖𝑠𝑠𝑡𝑡: Global best position 
Begin  
Swarms {𝑥𝑥𝑖𝑖𝑎𝑎 ,𝑣𝑣𝑖𝑖𝑎𝑎 } = 𝐺𝐺𝑖𝑖𝑛𝑛𝑖𝑖𝑟𝑟𝑎𝑎𝑡𝑡𝑖𝑖(𝑚𝑚); /* Initialize a population of particles with random positions and velocities on S 
dimensions*/ 
𝑃𝑃𝑛𝑛𝑖𝑖𝑠𝑠𝑡𝑡(𝑖𝑖) = 0;  𝑖𝑖 = 1, … ,𝑚𝑚,𝑎𝑎 = 1, … , 𝑆𝑆 
𝐺𝐺𝑛𝑛𝑖𝑖𝑠𝑠𝑡𝑡 = 0;  𝐼𝐼𝑡𝑡𝑖𝑖𝑟𝑟 = 0; 
𝑊𝑊ℎ𝑖𝑖𝑖𝑖𝑖𝑖(𝐼𝐼𝑡𝑡𝑖𝑖𝑟𝑟 < 𝑀𝑀𝑎𝑎𝑥𝑥𝐺𝐺𝑖𝑖𝑛𝑛 𝑎𝑎𝑛𝑛𝑎𝑎 𝐺𝐺𝑛𝑛𝑖𝑖𝑠𝑠𝑡𝑡 < 𝑀𝑀𝑎𝑎𝑥𝑥𝐺𝐺𝑖𝑖𝑡𝑡) 
{𝐺𝐺𝑜𝑜𝑟𝑟(𝑖𝑖𝑣𝑣𝑖𝑖𝑟𝑟𝑒𝑒 𝑝𝑝𝑎𝑎𝑟𝑟𝑡𝑡𝑖𝑖𝑐𝑐𝑖𝑖𝑖𝑖 𝑖𝑖) 

{𝐺𝐺𝑖𝑖𝑡𝑡𝑛𝑛𝑖𝑖𝑠𝑠𝑠𝑠(𝑖𝑖) = 𝐸𝐸𝑣𝑣𝑎𝑎𝑖𝑖𝑐𝑐𝑎𝑎𝑡𝑡𝑖𝑖(𝑖𝑖); 
𝐼𝐼𝐺𝐺�𝐺𝐺𝑖𝑖𝑡𝑡𝑛𝑛𝑖𝑖𝑠𝑠𝑠𝑠(𝑖𝑖) > 𝑃𝑃𝑛𝑛𝑖𝑖𝑠𝑠𝑡𝑡(𝑖𝑖)� 

{𝑃𝑃𝑛𝑛𝑖𝑖𝑠𝑠𝑡𝑡(𝑖𝑖) = 𝐺𝐺𝑖𝑖𝑡𝑡𝑛𝑛𝑖𝑖𝑠𝑠𝑠𝑠(𝑖𝑖); 𝑝𝑝𝑖𝑖𝑎𝑎 =  𝑥𝑥𝑖𝑖𝑎𝑎 ;  𝑎𝑎 = 1, . . . , 𝑆𝑆 } 
𝐼𝐼𝐺𝐺(𝐺𝐺𝑖𝑖𝑡𝑡𝑛𝑛𝑖𝑖𝑠𝑠𝑠𝑠(𝑖𝑖) > 𝐺𝐺𝑛𝑛𝑖𝑖𝑠𝑠𝑡𝑡) 

{𝐺𝐺𝑛𝑛𝑖𝑖𝑠𝑠𝑡𝑡 = 𝐺𝐺𝑖𝑖𝑡𝑡𝑛𝑛𝑖𝑖𝑠𝑠𝑠𝑠(𝑖𝑖);  𝑔𝑔𝑛𝑛𝑖𝑖𝑠𝑠𝑡𝑡 = 𝑖𝑖; 
} 
} 

𝐼𝐼𝑡𝑡𝑖𝑖𝑟𝑟 = 𝐼𝐼𝑡𝑡𝑖𝑖𝑟𝑟 + 1; 
}/∗ 𝑅𝑅1 𝑎𝑎𝑛𝑛𝑎𝑎 𝑅𝑅2 𝑎𝑎𝑟𝑟𝑖𝑖 𝑡𝑡𝑤𝑤𝑜𝑜 𝑟𝑟𝑎𝑎𝑛𝑛𝑎𝑎𝑜𝑜𝑚𝑚 𝑓𝑓𝑐𝑐𝑛𝑛𝑐𝑐𝑡𝑡𝑖𝑖𝑜𝑜𝑛𝑛𝑠𝑠 𝑖𝑖𝑛𝑛 𝑡𝑡ℎ𝑖𝑖 𝑟𝑟𝑎𝑎𝑛𝑛𝑔𝑔𝑖𝑖 [0,1] ∗/ 

𝐷𝐷𝑖𝑖𝑡𝑡𝑖𝑖𝑐𝑐𝑡𝑡{𝑔𝑔𝑛𝑛𝑖𝑖𝑠𝑠𝑡𝑡} 
𝑊𝑊ℎ𝑖𝑖𝑖𝑖𝑖𝑖(𝐺𝐺𝐺𝐺 − 1) 
𝑣𝑣𝑖𝑖𝑎𝑎 =  𝑤𝑤 ∗ 𝑣𝑣𝑖𝑖𝑎𝑎 + 𝑐𝑐1 ∗ 𝑅𝑅1 ∗ (𝑝𝑝𝑖𝑖𝑎𝑎 − 𝑥𝑥𝑖𝑖𝑎𝑎 ) + 𝑐𝑐2 ∗ 𝑅𝑅2 ∗ (𝑝𝑝𝑔𝑔𝑎𝑎 − 𝑥𝑥𝑖𝑖𝑎𝑎 ) 
} 
𝑎𝑎𝑜𝑜  
𝐺𝐺𝐺𝐺 = 𝐺𝐺𝐺𝐺 + 1 
𝑈𝑈𝑠𝑠𝑖𝑖 𝑡𝑡ℎ𝑟𝑟𝑖𝑖𝑠𝑠ℎ𝑜𝑜𝑖𝑖𝑎𝑎 𝑖𝑖𝑖𝑖𝑣𝑣𝑖𝑖𝑖𝑖 𝑜𝑜𝑓𝑓 𝑔𝑔𝑖𝑖𝑜𝑜𝑛𝑛𝑎𝑎𝑖𝑖 𝑓𝑓𝑖𝑖𝑡𝑡𝑛𝑛𝑖𝑖𝑠𝑠𝑠𝑠 𝑣𝑣𝑎𝑎𝑖𝑖𝑐𝑐𝑖𝑖 𝑤𝑤ℎ𝑖𝑖𝑟𝑟𝑖𝑖 𝑡𝑡ℎ𝑖𝑖 𝐺𝐺𝑖𝑖𝑜𝑜𝑛𝑛𝑎𝑎𝑖𝑖 𝐺𝐺𝑖𝑖𝑡𝑡𝑛𝑛𝑖𝑖𝑠𝑠𝑠𝑠 𝑀𝑀𝑎𝑎𝑖𝑖𝑐𝑐𝑖𝑖 𝑟𝑟𝑎𝑎𝑛𝑛𝑔𝑔𝑖𝑖𝑠𝑠 𝑓𝑓𝑟𝑟𝑜𝑜𝑚𝑚 𝐺𝐺𝑖𝑖𝑜𝑜𝑛𝑛𝑎𝑎𝑖𝑖 𝐺𝐺𝑖𝑖𝑡𝑡𝑛𝑛𝑖𝑖𝑠𝑠𝑠𝑠 

±  1. 

�⃗�𝑣𝑖𝑖(𝑘𝑘 + 1) = � (  𝑣𝑣𝑖𝑖𝑎𝑎 =  𝑤𝑤 ∗ 𝑣𝑣𝑖𝑖𝑎𝑎 + 𝑐𝑐1 ∗ 𝑟𝑟𝑎𝑎𝑛𝑛𝑎𝑎() ∗ (𝑝𝑝𝑖𝑖𝑎𝑎 − 𝑥𝑥𝑖𝑖𝑎𝑎 ) + 𝑐𝑐2 ∗ 𝑅𝑅𝑎𝑎𝑛𝑛𝑎𝑎() ∗ (𝑝𝑝𝑔𝑔𝑎𝑎 − 𝑥𝑥𝑖𝑖𝑎𝑎 )
𝐺𝐺𝐺𝐺+1

𝐺𝐺𝐺𝐺−1

 

𝐼𝐼𝑚𝑚𝑝𝑝𝑟𝑟𝑜𝑜𝑣𝑣𝑖𝑖𝑠𝑠 𝑡𝑡ℎ𝑖𝑖 𝑖𝑖𝑓𝑓𝑓𝑓𝑖𝑖𝑐𝑐𝑖𝑖𝑖𝑖𝑛𝑛𝑐𝑐𝑒𝑒 𝑜𝑜𝑓𝑓 𝑡𝑡ℎ𝑖𝑖 𝑖𝑖𝑡𝑡𝑖𝑖𝑟𝑟𝑎𝑎𝑡𝑡𝑖𝑖𝑜𝑜𝑛𝑛 𝑎𝑎𝑛𝑛𝑎𝑎 𝑟𝑟𝑖𝑖𝑎𝑎𝑐𝑐𝑐𝑐𝑖𝑖 𝑡𝑡ℎ𝑖𝑖 𝑝𝑝𝑟𝑟𝑜𝑜𝑐𝑐𝑖𝑖𝑠𝑠𝑠𝑠𝑖𝑖𝑛𝑛𝑔𝑔. 
𝐸𝐸𝑛𝑛𝑎𝑎 
 
Function Evaluate() 
𝐺𝐺𝑜𝑜𝑟𝑟(𝑖𝑖𝑣𝑣𝑖𝑖𝑟𝑟𝑒𝑒 𝑝𝑝𝑎𝑎𝑟𝑟𝑡𝑡𝑖𝑖𝑐𝑐𝑖𝑖𝑖𝑖 𝑖𝑖) 
{ 
𝐺𝐺𝑜𝑜𝑟𝑟(𝑖𝑖𝑣𝑣𝑖𝑖𝑟𝑟𝑒𝑒 𝑎𝑎 ) 
{  𝑣𝑣𝑖𝑖𝑎𝑎 =  𝑤𝑤 ∗ 𝑣𝑣𝑖𝑖𝑎𝑎 + 𝑐𝑐1 ∗ 𝑅𝑅1 ∗ (𝑝𝑝𝑖𝑖𝑎𝑎 − 𝑥𝑥𝑖𝑖𝑎𝑎) + 𝑐𝑐2 ∗ 𝑅𝑅2 ∗ (𝑝𝑝𝑔𝑔𝑎𝑎 − 𝑥𝑥𝑖𝑖𝑎𝑎 ) 
𝐼𝐼𝐺𝐺(𝑣𝑣𝑖𝑖𝑎𝑎 > 𝑀𝑀𝑎𝑎𝑥𝑥𝑀𝑀 ) 
{𝑣𝑣𝑖𝑖𝑎𝑎 =  𝑀𝑀𝑎𝑎𝑥𝑥𝑀𝑀 ; } 
𝐼𝐼𝐺𝐺(𝑣𝑣𝑖𝑖𝑎𝑎 < −𝑀𝑀𝑎𝑎𝑥𝑥𝑀𝑀 ) 
{𝑣𝑣𝑖𝑖𝑎𝑎 = −𝑀𝑀𝑎𝑎𝑥𝑥𝑀𝑀 ; } 
𝑥𝑥𝑖𝑖𝑎𝑎 =  𝑥𝑥𝑖𝑖𝑎𝑎 +  𝑣𝑣𝑖𝑖𝑎𝑎 
} 
} 
 
Pseudo code: 
 
Step-1: The Input dataset S is taken from Nifty fifty Companies,  
 
Step-2: Initialize position and velocity of all the particles randomly in the N dimension space from dataset S.  
 
Step-3: Evaluate the fitness value of each particle, and update the global optimum position.  
 
Step-4: According to changing of the gathering degree and the steady degree of particle swarm, determine whether all 
the particles are re-initialized or not.  
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Step-5: Determine the individual best fitness value. Compare the 𝑖𝑖𝑝𝑝  of every individual with its current fitness value. If 
the current fitness value is better, assign the current fitness value to 𝑖𝑖𝑝𝑝 .  
 
Step-6: Determine the current best fitness value in the entire population. If the current best fitness value is better than 
the 𝑔𝑔𝑝𝑝  , assign the current best fitness value to 𝑔𝑔𝑝𝑝  .  
 
Step-7: For each particle, update particle velocity,  
 
Step-8: Repeat the iteration of the particle using 𝑔𝑔𝑛𝑛𝑖𝑖𝑠𝑠𝑡𝑡 fitness value and limit the Iteration of the particle.  
 
Step-9: Update particle position.  
 
Step-10: Repeat Step2 - 7 until a stop criterion is satisfied or a predefined number of iterations are completed. While 
maximum iterations or minimum error criteria is not attained Particles' velocities on each dimension are clamped to a 
maximum velocity𝑣𝑣𝑚𝑚𝑎𝑎𝑥𝑥 . If the sum of accelerations would cause the velocity on that dimension to exceed 𝑣𝑣𝑚𝑚𝑎𝑎𝑥𝑥 , which 
is a parameter specified by the user. Then the velocity on that dimension is limited to 𝑣𝑣𝑚𝑚𝑎𝑎𝑥𝑥 . 
 
It is necessary to prevent the explosion of the swarm using the parameter  𝑣𝑣𝑚𝑚𝑎𝑎𝑥𝑥 , where  𝑣𝑣𝑚𝑚𝑎𝑎𝑥𝑥  is the point of saturation 
of the velocity, if the velocity of a particle isgreater than 𝑀𝑀𝑚𝑚𝑎𝑎𝑥𝑥 or smaller than − 𝑣𝑣𝑚𝑚𝑎𝑎𝑥𝑥 it is valorized as  𝑣𝑣𝑚𝑚𝑎𝑎𝑥𝑥 . If 𝑀𝑀𝑚𝑚𝑎𝑎𝑥𝑥 
is toosmall there is not enough exploration beyond locally good regions (may fall into local optimal), if too large can be 
overcome with good solutions. Other parameters to consider are: 

- The number of particles (swarm size). 
- The number of generations or iterations. 
- The inertia weight (w). 
- The reason for cognitive learning (𝑐𝑐1). 
- The reason of social learning (𝑐𝑐2). 

 
The recommended values for the parameters are the following: 
 
The number of particles is between 10 and 40. The number of generations is between 100 and 200. While more higher 
are the values of these parameters increases grows the chance of finding the optimum, it increases grows the 
computational cost. It is recommended that 𝑐𝑐1 = 𝑐𝑐2 = 1.5 or 𝑐𝑐1 = 𝑐𝑐2 = 2, since the low values allow to explore more 
regions before going to the objective. The weight of the inertia (w) controls the impact of the historical velocity; high 
values facilitate the global exploration and the small ones the local exploration while an appropriate value produces a 
balance between global and local search by reducing the amount of generations required. The rule is to give a high 
initial value and gradually decrease, 

𝑤𝑤(𝑘𝑘)  =  𝑊𝑊𝑚𝑚𝑎𝑎𝑥𝑥 −  (𝑊𝑊𝑚𝑚𝑎𝑎𝑥𝑥 −  𝑊𝑊𝑚𝑚𝑖𝑖𝑛𝑛)/𝑁𝑁𝑐𝑐𝑚𝑚𝑎𝑎𝑥𝑥 ∗  𝑘𝑘, 
 
It is suggested that 𝑊𝑊𝑚𝑚𝑎𝑎𝑥𝑥 = 1.4,𝑊𝑊𝑚𝑚𝑖𝑖𝑛𝑛 = 0.4. Other interesting alternative to prevent the explosion of the swarmis 
using the restriction coefficient defined by expression (23)  

𝑐𝑐𝑜𝑜𝑛𝑛𝑠𝑠𝑡𝑡 𝑐𝑐𝑜𝑜𝑖𝑖 𝑓𝑓 𝑓𝑓 = 2
2−𝜙𝜙−�𝜙𝜙2−4𝜙𝜙

                                                                                                                          (23) 

 Where   𝜑𝜑 = 𝑐𝑐1 + 𝑐𝑐2 > 4 
 
III. EXPERIMENTAL RESULTS AND ANALYSIS 
 
The data for the stock market prediction experiments has been collected for Nifty 50. The experimental data used 
consists of technical indicators and daily prices of the indices. The total number of samples for the stock indices is 3462 
trading days. Each sample consists of the closing prices, opening prices, lowest prices, highest prices and total volume 
of stocks traded for the day. The data is divided into two sets training and testing sets. The training set consists of 365 
samples and rest is set aside for testing. All the inputs are normalized to values between -1 to +1. The normalization is 
carried out by expressing the data in terms of the maximum and minimum value of the dataset.   
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Table-1: Indicates Sample Testing dataset of BHEL Company 
 

Table-2: Statistical Analysis of Sample Input Training Dataset of BHEL Company 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table-3: BRO Parameters for estimation of coefficients Parameter value 
 

 
Figure-3: BRO Prediction Result Screen Shot 

Date Open 
Price 

High 
Price 

Low 
Price 

Close 
Price 

Total 
Volume 

No of 
Trades 

Turnover in(Rs.in 
Lakh) 

9/11/2014 223.35 216.1 219.55 222.7 50,78,407 47,593 1,11,65,93,545.00 
9/10/2014 222.9 218 219 219.1 35,78,141 29,873 78,85,46,803.50 
9/9/2014 224.45 220.5 223.9 221.2 34,24,536 26,656 75,94,06,149.10 
9/8/2014 225.8 222.1 223.45 223.85 34,63,052 35,702 77,48,32,714.30 
9/5/2014 227.6 221.1 227.1 222.8 51,33,487 46,291 1,14,67,33,300.00 
9/4/2014 235.1 226.05 235 227.05 1,06,90,351 55,956 2,43,45,62,223.00 
9/3/2014 242 235.35 240.55 236.85 40,41,846 32,857 96,21,29,678.30 
9/2/2014 243.1 237 238 240.3 36,34,223 37,961 87,47,04,332.40 
9/1/2014 243.5 237.05 240.7 238.5 54,59,840 53,841 1,31,10,24,781.00 

Parameters High Prices Low Prices 
Dataset Analysis Set(Training) Validation Set(Test Analysis Set(Training) Validation Set(Test) 
Total Objects 143191 3146 143191 3146 
Objects Covered 3146 251 3146 251 
Min Support 117 178 104.65 172.1 
Max Support 2580 577 2561 566.85 
Average Support 586.827217 317.8278443 575.993815 313.0538922 
Min Accuracy 0.019369048 0.012131716 0.025824442 0.013231013 
Max Accuracy 0.045675963 0.026943577 0.061074954 0.029251131 
Average Accuracy 0.027031321 0.02191375 0.036029315 1.084262864 

Parameters Value 
Number lower bound -5 
Number upper bound 5 
Population Size  251 
Number  of iterations each day  251 
Acceleration constant  1 2 
Acceleration constant  2 2 
Initial inertia weight   0.9 
Final inertia weight   0.4 
Minimum Error Gradient  1 ∗ 10−25 
Epochs Before Error Gradient Termination  15 
𝜔𝜔𝑚𝑚𝑎𝑎𝑥𝑥  0.975 
𝜔𝜔𝑚𝑚𝑖𝑖𝑛𝑛  0.389 
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Figure-4: BRO Prediction of High Price Value in in BHEL Company. 

 
Figure 4indicates the Best Replacement Optimization Prediction of High Value in Stock Market Data from Jan 2008 to 
Sep 2014. The Sample Data is used to detect GP   and predict the Low value for BHEL Company. 

 
Figure- 5: BRO Prediction of Low Price Value and High Price Value in BHEL Company. 

 
The Figure 5. Indicates the Best Replacement Optimization Prediction of High Value and Low value in Stock Market 
Data from Jan 2008 to Sep 2014. The Sample Data is used to detect BRO and predict the Low value for BHEL 
Company. 

 
Figure-6: BRO Prediction of Low Price Value in BHEL Company 

 
Figure 6.indicates the Best Replacement Optimization Prediction of Low Value in Stock Market Data from Jan 2008 to 
Sep 2014. The Sample Data is used to detect GP   and predict the Low value for BHEL Company. 
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IV. CONCLUSION 
 
The BRO model with perturbation is presented to increase the prediction accuracy for long term stock market indices 
prediction. The PSO represents the passive congregation biological mechanism which enables all particles in the swarm 
to perform the global search in the whole search space.  But, this model every particle has a limitation in iteration based 
on threshold value of the fitness function, which is the best solution visited by that specific particle. The performance 
measurements of our proposed model is obviously better than the other standard model in which only particles 
subjected to  performing the global fitness value. The proposed model offers lesser computational complexity, better 
prediction accuracy ad lesser training time compared to other model. Thus the proposed model is a new promising 
forecasting model for stock market prediction. 
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