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ABSTRACT 
The aim of this paper is to introduce a new type of functions called the αg*p-continuous. Here αg*p-continuous, 
αg*p-irresolute, αg*p-closed functions are defined. Characterizations for these functions are given. Further their 
fundamental properties are investigated.  
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1. INTRODUCTION  
 
In 1982, A.S.Mashhour, M.E.Abd El-Monsef and S.N.El-Deeb[14] introduced the concept of pre-continuity in 
topological spaces. Later, K.Balachandran, P.Sundram and H.Maki[4] introduced and studied the concept of 
generalized continuous functions. I.Arokirani, K.Balachandran and Julian Dontchev [2] defined gp-irresolute and gp-
continuous functions and investigated their properties. M.K.R.S.Veerakumar[24] introduced g*p-closed sets, g*p-
continuous maps, g*p-irresolute maps and their properties. Recently, the authors [20] have introduced αg*p-closed sets 
and their properties. In this paper we study a new class of functions, namely, αg*p-continuous functions and αg*p-
irresolute functions. Also, we study some of the characterization and basic properties of αg*p-continuous functions.   
 
In the present paper, the spaces X, Y and Z always mean topological spaces (X, τ) , (Y, σ) and (Z, η) respectively. For 
a subset A of X, the closure of A and interior of A will be denoted by cl(A) and int(A) respectively. The union of all 
preopen sets of X contained in A is called pre-interior of A and it is denoted by pint(A). The intersection of all 
preclosed sets of X containing A is called pre-closure of A and it is denoted by pcl (A).  
 
2. PRELIMINARIES 
 
The definition of preclosed ,semi-closed, α-closed, semi-preclosed, regular closed, g-closed, sg-closed, gs-closed, gα-
closed, αg-closed, gp-closed, gsp-closed, gpr-closed, rg-closed, wg-closed, rwg-closed, g*-closed, mildly g-closed, 
g*p-closed set, gp*-closed, αg*-closed are mentioned by the authors in [20]. 
 
We recall the following definitions which are useful in the sequel.  
 
Definition 2.1 [20]: A subset A of a topological space (X, τ) is called alpha generalized star preclosed set (briefly, 
αg*p-closed)  if pcl(A) ⊆ U whenever A ⊆ U and U is αg-open in X. 
 
Definition 2.2: For a subset A of (X, τ) ,the intersection of all αg*p-closed sets containing A is called the αg*p-closure 
of A and is denoted by αg*p-cl(A).  
That is, αg*p-cl(A) = ∩{F : F is αg*p-closed in X , A ⊆ F}.  
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Definition 2.3: A function f: (X, τ) → (Y, σ) is said to be 

(i) precontinuous [14] if f -1(V) is preclosed in X for every closed subset V of Y. 
(ii) semi-continuous [11] if f -1(V) is semi-closed in X for every closed subset V of Y. 
(iii) α-continuous [15] if f -1(V) is α-closed in X for every closed subset V of Y. 
(iv) regular continuous [3] if f -1(V) is regular closed in X for every closed subset V of Y. 
(v) semi-precontinuous [1] if f -1(V) is semi-preclosed in X for every closed subset V of Y. 
(vi) g-continuous [4] if f -1(V) is g-closed in X for every closed subset V of Y. 
(vii) g*-continuous [23] if f -1(V) is g*-closed in X for every closed subset V of Y 
(viii) αg-continuous [13] if f -1(V) is αg-closed in X for every closed subset V of Y. 
(ix) gα-continuous [12] if f -1(V) is gα-closed in X for every closed subset V of Y. 
(x) gs-continuous [6] if f -1(V) is gs-closed in X for every closed subset V of Y. 
(xi) sg-continuous [21] if f -1(V) is sg-closed in X for every closed subset V of Y. 
(xii) gp-continuous [2] if f -1(V) is gp-closed in X for every closed subset V of Y. 
(xiii) gsp-continuous [7] if f -1(V) is gsp-closed in X for every closed subset V of Y. 
(xiv) gpr-continuous [9] if f -1(V) is gpr-closed in X for every closed subset V of Y. 
(xv) gp*-continuous if f -1(V) is gp*-closed in X for every closed subset V of Y. 
(xvi) g*p-continuous [24] if f -1(V) is g*p-closed in X for every closed subset V of Y. 
(xvii) αg*-continuous if f -1(V) is αg*-closed in X for every closed subset V of Y. 
(xviii) wg-continuous [16] if f -1(V) is wg-closed in X for every closed subset V of Y. 
(xix) rwg-continuous [16] if f -1(V) is rwg-closed in X for every closed subset V of Y. 
(xx) mg-continuous [17] if  f -1(V) is mg-closed in X for every closed subset V of Y. 

 
Definition 2.4: A function f: (X, τ)→ (Y, σ) is said to be 

(i) pre-irresolute [19] if f -1(V) is preclosed in X for every preclosed subset V of Y. 
(ii) α-irresolute [22] if  f -1(V) is α-closed in X for every α-closed subset V of Y. 
(iii) αg -irresolute [5] if f -1(V) is αg-closed in X for every αg-closed subset V of Y. 
(iv) preclosed [8] if  f (V) is preclosed in Y for every closed subset V of X. 

 
3. ALPHA GENERALIZED STAR PRECONTINUOUS MAPS 
 
Definition 3.1: A function f: (X, τ) → (Y, σ) is called αg*p-continuous if f -1(V) is αg*p-closed set in (X, τ) for every 
closed set V in (Y, σ). 
 
Example 3.2: Let X = Y= {a, b, c, d}, τ ={φ ,{a},{b, c},{a, b, c}, X} and σ ={φ,{a},{b},{a, b},{b, c},{a, b, c}, Y}. 
 
Define a function f: X→Y by f(a) = b, f(b) = c, f(c) = a, f(d) = d. Then f  is αg*p-continuous. 
 
Theorem 3.3: Every continuous map is αg*p-continuous. 
 
Proof: Let f: X→Y be a continuous map. Let V be a closed set in Y. Since f is continuous, f -1(V) is closed in X. Also 
every closed set is an αg*p-closed set, f -1(V) is αg*p-closed in X. Therefore f is αg*p-continuous map. 
 
The converse of the above theorem need not be true as seen in the following example. 
 
Example 3.4: Let X = Y= {a, b, c, d}, τ ={φ ,{a},{b},{a, b}, X} and σ ={φ,{d},{c, d},{a, c, d},{b, c, d}, Y}. 
Let f: X→Y be defined f(a) = c, f(b) = d, f(c) = a, f(d) = b. The function f is αg*p-continuous but not continuous. 
 
Theorem 3.5: Every precontinuous (resp.α-continuous) map is αg*p-continuous. 
 
Proof: Let f: X→Y be a precontinuous (resp.α-continuous) map. Let V be a closed set in Y. Since f is pre-continuous 
(resp.α-continuous), f -1(V) is preclosed (resp.α-closed) in X. Also every preclosed (resp.α-closed) set is αg*p-closed,  
f -1(V) is αg*p-closed in X. Therefore f is αg*p-continuous map. 
 
The converse of the above theorem need not be true as seen in the following example. 
 
Example 3.6: Let X = Y= {a, b, c, d}, τ ={φ,{a},{b},{a, b},{a, c},{a, b, c}, X} and  σ ={φ,{b},{c},{b, c}, Y}. 
 
Let f: X→Y be defined f(a) = d, f(b) = c, f(c) = b, f(d) = a. The function f is αg*p-continuous but not precontinuous. 
 
Example 3.7: Let X = Y= {a, b, c, d}, τ ={φ,{a, b}, X} and  σ ={φ,{b},{b, c},{b, d},{a, b, d},{b, c, d}, Y}. 
 
Let f: X→Y be defined f(a) = a, f(b) = b, f(c) = c, f(d) = d. The function f is αg*p-continuous but not α-continuous. 



J. RajaKumari*1, C. Sekar2 / On αg*p-Continuous and αg*p-irresolute Maps in Topological Spaces / IJMA- 7(8), August-2016. 

© 2016, IJMA. All Rights Reserved                                                                                                                                                                       126  

 
Corollary 3.8: Every regular  continuous map is αg*p-continuous. 
 
The converse of the above corollary need not be true as seen in the following example. 
 
Example 3.9: Let X = Y= {a, b, c, d}, τ ={φ ,{a},{b, c},{a, b, c}, X} and  σ = {φ,{c},{a, c},{c, d},{a, b, c },{a, c, d}, 
Y}. 
 
Let f: X→Y be defined f(a) = c, f(b) = d, f(c) = a, f(d) = b. The function f is αg*p-continuous but not regular 
continuous. 
 
Theorem 3.10: If a map f: X→Y is continuous, then the following holds.  

(i) If f is αg*p-continuous, then f is g*p-continuous.  
(ii) If f is αg*p-continuous, then f is gp-continuous (resp. gpr-continuous, gsp-continuous, mg-continuous,        

wg-continuous, rwg-continuous).  
 
Proof: (i) Let V be a closed set in Y. Since f is αg*p-continuous, then f -1(V) is αg*p-closed in X. Since every αg*p-
closed set is g*p-closed then f -1(V) is g*p-closed in X. Hence f is g*p-continuous.  
 
Similarly we can prove (ii).  
 
The converse of the above theorem need not be true as seen in the following example. 
 
Example 3.11: Let X = Y= {a, b, c, d}, τ = {φ,{a},{b},{a, b},{a, b, c}, X} and σ = {φ,{c},{a, c},{b, c},{a, b, c}, Y}. 
Let f: X→Y be defined f(a) = a, f(b) = c, f(c) = b, f(d) = d. The function f is gp-continuous but not αg*p-continuous. 
 
Example 3.12: Let X = Y= {a, b, c, d}, τ = {φ ,{a},{b},{a, b},{a, b, c}, X} and σ = {φ,{c},{b, c},{c, d},{a, c, d},       
{b, c, d},Y}. 
Let f: X→Y be defined f(a) = b, f(b) = a, f(c) = d, f(d) = c  The function f is gpr-continuous but not αg*p-continuous. 
 
Example 3.13: Let X = Y= {a, b, c, d}, τ ={φ ,{a, b}, X} and σ ={φ,{c},{d },{c, d}, Y}. 
Let f : X→Y be defined f(a) = d , f(b) = a , f(c) = b, f(d) = c . The function f is gsp-continuous but not αg*p-continuous. 
 
Example 3.14: Let X = Y= {a, b, c, d}, τ = {φ ,{a},{b},{a, b},{a, b, c}, X} and σ ={φ,{c},{a, c},{b, c},{a, b, c}, Y}. 
Let f: X→Y be defined f(a) = c, f(b) = a, f(c) = b, f(d) = d. The function f is g*p-continuous but not αg*p-continuous. 
 
Example 3.15: Let X = Y= {a, b, c, d}, τ = {φ ,{a},{b},{a, b},{b, c},{a, b, c}, X} and  σ = {φ,{c},{a, c}, Y}. 
Let f: X→Y be defined f(a) = c, f(b) = b, f(c) = a, f(d) = d. The function f is mg-continuous but not αg*p-continuous. 
 
Example 3.16: Let X = Y= {a, b, c, d}, τ = {φ ,{a},{b},{a, b}, X} and σ = {φ,{b},{b, c},{b, d},{b, c, d}, Y}. 
Let f: X→Y be defined f(a) = b, f(b) = c, f(c) = d, f(d) = a. The function f is wg-continuous but not αg*p-continuous. 
 
Example 3.17: Let X = Y= {a, b, c, d} be given the topologies  τ = {φ,{a},{b},{d},{a, b},{a, d},{b, d},{a, b, d}, X} 
and σ ={φ,{c},{b, c},{c, d},{a, c, d},{b, c, d }, Y}. Let f: X→Y be defined f(a) = d, f(b) = a, f(c) = b, f(d) = c. The 
function f is rwg-continuous but not αg*p-continuous. 
 
Theorem 3.18: Every gp*-continuous (resp.αg*-continuous) map is αg*p-continuous. 
 
Proof: Let f: X→Y be a gp*-continuous ( resp.αg*-continuous) map. Let V be any closed set in Y. Since f is gp*-
continuous (resp.αg*-continuous), f -1(V) is gp*-closed (resp.αg*-closed) in X. Also every gp*-closed (resp.αg*-
closed)  set   is αg*p-closed, f -1(V) is αg*p-closed in X. Therefore f is αg*p-continuous map. 
 
The converse of the above theorem need not be true as seen in the following example. 
 
Example 3.19: Let X = Y= {a, b, c, d}, τ = {φ,{a}, X} and σ = {φ,{a},{a, b},{a, d},{a, b, d },{a, c, d}, Y}. 
Let f : X→Y be defined f(a) = a, f(b) = b, f(c) = d, f(d) = c. The function f is αg*p-continuous but not gp*-continuous. 
 
Example 3.20: Let X = Y= {a, b, c, d}, τ = {φ , {c, d}, X} and σ = {φ, {b}, {a, b}, {b, d}, {a, b, c}, {a, b, d}, Y}. 
Let f: X→Y be defined f(a) = c, f(b) = d, f(c) = b, f(d) = a. The function f is αg*p-continuous but not αg*-continuous. 
 
Remark 3.21: αg*p-continuity is independent of semi-continuity and semi-precontinuity as seen from the following 
example. 
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Example 3.22: Let X = Y= {a, b, c, d}, τ = {φ,{a},{b},{a, b},{a, c},{a, b, c}, X} and σ = {φ,{c},{b, c},{a, c, d}, Y}. 
Let f: X→Y be defined f(a) = a, f(b) = c, f(c) = b, f(d) = d. 
 
The function f is αg*p-continuous but not semi-continuous and semi-precontinuous, since f -1({a, d}) = {a, d} is αg*p-
closed but not semi-closed and semi-preclosed. 
 
Define f(a) = c, f(b) = b, f(c) = a, f(d) = d. 
 
The function f is semi-continuous and semi-precontinuous but not αg*p-continuous, since f -1({b}) = {b} is semi-closed 
and semi-preclosed but not αg*p-closed. 
 
Remark 3.23: The following examples shows that αg*p-continuous maps are independent of g-continuous, g*-
continuous, sg-continuous, gs-continuous and αg-continuous. 
 
Example 3.24: Let X = Y= {a, b, c, d}, τ = {φ,{a, b}, X} and σ ={φ,{b},{a, b},{a, b, c},{a, b, d}, Y}. 
Let f: X→Y be defined f(a) = b, f(b) = d, f(c) = c, f(d) = a. The function f is αg*p-continuous but not g, g*, sg, gs, αg-
continuous, since f -1({d}) = {b} is αg*p-closed but not g, g*, sg, gs, αg-closed sets. 
 
Example 3.25: Let X = Y= {a, b, c, d},τ = {φ,{a},{b},{a, b},{a, b, c}, X} and σ = {φ,{c},{b, c},{a, c},{a, b, c}, Y}. 
Let f: X→Y be defined f(a) = b, f(b) = c, f(c) = a, f(d) = d. The function f is g, g*, sg, gs, αg-continuous but not αg*p-
continuous, since f -1({b, d}) = {a, d} is not αg*p-closed. 
 
By the above results we have the following diagram: 
 
 
 
 
 
 
 
 
 
 
 
4.αg*p-CONTINUITY AND ITS CHARACTERISTICS 
 
Theorem 4.1: Let f : (X, τ)→ (Y, σ) be a map .Then the following conditions are equivalent  

i) f is αg*p-continuous. 
ii) The inverse image of each open set in Y is αg*p-open in X. 
iii) f(αg*p-cl(A)) ⊆ cl(f(A)) for each subset A of X. 
iv) For each subset B of Y, αg*p-cl(f -1(B)) ⊆ f -1(cl(B)). 

 
Proof: (i) ⇒ (ii): Let G be an open set in Y. Then Y \ G is closed in Y. By hypothesis, f -1(Y \ G) = X \ f -1(G) is αg*p-
closed in X. Hence f -1(G) is αg*p-open in X. 
 
(ii) ⇒ (i): Let G be a closed set in Y.Then Y \ G is open in Y. By hypothesis, f -1(Y \ G) = X \ f -1(G) is αg*p-open in 
X.Therefore f -1(G) is αg*p-closed in X. Hence f is αg*p-continuous. 
 
(i) ⇒ (iii): Let A be a subset of X. Since A ⊆ f -1(f(A)) and f(A) ⊆ cl(f(A)) , we have A ⊆ f -1(f(A)) ⊆ f -1(cl(f(A))). 
Therefore by assumption f -1(cl(f(A))) is αg*p-closed set of X. Hence  αg*p-cl(A) ⊆ f -1(cl(f(A))). 
Thus f(αg*p-cl(A)) ⊆ f(f -1(cl(f(A))) ⊆ cl(f(A)). 
 
(iii) ⇒ (iv): Let B be a subset of Y and f (A) = B.So by assumption, f(αg*p-cl(A)) = f(αg*p-cl(f -1(B))). 
Therefore  αg*p-cl(f -1(B)) ⊆ f -1 (f(αg*p-cl(f -1(B)))) ⊆ f -1(cl(B)). 
 
(iv) ⇒ (i): Let B be a closed set in Y. Then by assumption, αg*p-cl(f -1(B)) ⊆ f -1(cl(B)) = f -1(B).Therefore f -1(B) is 
αg*p-closed set in X. Hence f is αg*p-continuous. 
 
Theorem 4.2: Let A be a subset of a topological space X. Then x ∈ αg*p-cl(A) if and only if for any αg*p-open set U 
containing x, A ∩ U ≠ φ.  
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Proof: Let x ∈αg*p-cl(A) and suppose that there is a αg*p-open set U in X such that  x ∈ U and A ∩ U= φ implies 
that A ⊆ X \ U which is αg*p-closed in X implies αg*p-cl(A) ⊆ αg*p-cl(X \ U) = X \ U. Since x ∈ U implies that x∉ 
X \ U implies that x ∉αg*p-cl(A), this is a contradiction.  
 
Conversely, Suppose that, for any αg*p-open set U containing x, A ∩ U≠ φ. To prove that x ∈ αg*p-cl(A).  
 
Suppose that x ∉ αg*p-cl(A) then there is a αg*p-closed set F in X such that x ∉ F and A ⊆ F. Since x ∉ F implies that  
x ∈ X \ F which is αg*p-open in X. Since A⊆ F implies that A ∩ (X \ F) = φ, this is a contradiction.  
Thus x ∈αg*p-cl(A). 
 
Theorem 4.3: Let f: X→Y be a function from a topological space X into a topological space Y. If f: X→Y is αg*p-
continuous then f(αg*p-cl(A)) ⊆ cl(f(A)) for every subset A of X.  
 
Proof: Since f(A) ⊆ cl(f(A)) then A ⊆ f -1(cl(f(A))). Since cl(f(A)) is a closed set in Y and f is αg*p-continuous then by 
definition f -1(cl(f(A))) is a αg*p-closed set in X containing A. Hence αg*p-cl(A) ⊆ f -1(cl(f(A))).  
 
Therefore f(αg*p-cl(A)) ⊆ cl(f(A)).  
 
The converse of the above theorem need not be true as seen from the following example  
 
Example 4.4: Let X = Y = {a, b, c, d} with τ = {φ, {a},{c, d},{a, c, d}, X} and σ ={φ,{b, c},{b, c, d},{a, b, c}, Y}. 
Define a function f: X→Y by, f(a) = c, f(b) = b, f(c) = d, f(d) = a. For every subset A of X, f(αg*p-cl(A)) ⊆ cl(f(A)) 
holds. But f is not αg*p-continuous, since {a, d} is closed in Y, f -1({a, d}) = {c, d} which is not αg*p-closed set in X 
 
Theorem 4.5: Let f : X →Y be a function. Then the following statements are equivalent: 

(1) For each x ∈X and each open set V containing f(x) there exists a αg*p-open set U containing x such that  
f(U) ⊂ V. 

(2) f(αg*p-cl(A)) ⊂ cl(f(A)) for every subset A of X. 
 
Proof: (1) ⇒ (2): Let y ∈ f(αg*p-cl(A)) then there exists an x ∈αg*p-cl(A) such that y = f(x). Let V be any open 
neighbourhood of y. Since x ∈αg*p-cl(A) ,there exists an αg*p-open set U such that x ∈U and U ∩ A ≠ φ, f(U) ⊂ V. 
Since U ∩ A ≠ φ, f(A) ∩ V ≠ φ. Therefore y = f(x) ∈ cl (f(A)).Hence f(αg*p-cl (A)) ⊂ cl (f(A)). 
 
(2) ⇒ (1): Let x∈X and V be any open set containing f(x). Let A = f -1 (Y \ V). Since f(αg*p-cl(A)) ⊂ cl(f(A)) ⊂ Y \ V 
then (αg*p-cl(A)) ⊂ f -1 (Y \ V) = A. Hence αg*p-cl(A) = A. Since f(x) ∈V ⇒ x ∈ f -1 (V) ⇒ x ∉A ⇒ x ∉αg*p-cl(A). 
 
Thus there exists an open set U containing x such that U ∩ A = φ. Therefore f(U)  ⊂ V. 
 
Definition 4.6:  

(1) A space (X, τ) is called αg*p-space if every αg*p-closed is closed 
(2) A space (X, τ) is called αg*p-T1/2 space if every αg*p-closed is preclosed.  
(3) A space (X, τ) is called αg*pTα- space if every αg*p-closed set is α-closed set. 

 
Theorem 4.7: Let f: X→Y be a function. Let (X, τ) and (Y, σ) be any two spaces such that τ αg*p is a topology on X. 
Then the following statements are equivalent:  

(i) For every subset A of X, f(αg*p-cl(A)) ⊆ cl(f(A)) holds.  
(ii) f : (X, τ αg*p) → (Y, σ) is continuous.  

 
Proof:  Suppose (i) holds. Let A be closed in Y. By hypothesis f(αg*p-cl(f -1(A))) ⊆ cl(f(f -1(A))) ⊆ (A) = A.  
 
Also f -1(A) ⊆ αg*p-cl(f -1(A)). Hence αg*p-cl(f -1(A)) = f -1(A). This implies f -1(A) ∈ ταg*p. Thus f -1(A) is closed in  
(X, τ αg*p) and so f is continuous. This proves (ii).  
 
Suppose (ii) holds. For every subset A of X, cl(f(A)) is closed in Y. Since f: (X, τ αg*p) → (Y, σ) is continuous,  
f -1(cl(A)) is closed in (X, τ αg*p) . By definition, αg*p-cl(f -1(cl(f(A)))) = f -1(cl(f(A))).  
 
Now we have, A ⊆ f -1(f(A)) ⊆ f -1(cl(f(A))) and by αg*p-closure, αg*p-cl(A) ⊆ αg*p-cl(f -1(cl(f(A))) = f -1(cl(f(A)).  
Therefore f(αg*p-cl(A)) ⊆ cl(f(A)). This proves (i).  
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Remark 4.8: The Composition of two αg*p-continuous maps need not be αg*p-continuous map and this can be shown 
by the following example.  
 
Example 4.9: Let X = Y = Z = {a, b, c, d}, τ  = {φ,{a},{b},{a, b},{a, b, c}, X}, σ = {φ,{a},{b, c},{a, b, c}, Y} and 
η = {φ,{a}, Z}. 
 
Define g: Y→Z by g(a) = b, g(b) = c, g(c) = a, g(d) = d and define  f: X→Y by f(a) = b, f(b) = a, f(c) = d, f(d) = c. Both 
f and g are αg*p-continuous maps. But g ○ f is not αg*p-continuous map, since (g ○ f) -1({b, c, d}) = f -1[g -1({b, c, d})] 
= f -1 ({a, b, d}) = {a, b, c} is not a αg*p-closed set in X. 
 
Theorem 4.10: Let f: X→Y is αg*p-continuous function and g: Y→Z is continuous function then g ○ f: X→Z is    
αg*p-continuous.  
 
Proof: Let g be continuous function and V be any open set in Z. Then g -1(V) is open in Y. Since f is αg*p-continuous, 
f -1(g -1(V)) = (g ○ f) -1(V) is  αg*p-open in X. Hence g ○ f is αg*p-continuous.  
  
Theorem 4.11: Let f: X→Y is αg*p-continuous function and g: Y→Z is αg*p-continuous function and Y is αg*p-
space then g ○ f: X→Z is αg*p-continuous.  
 
Proof: Let g be αg*p-continuous function and V be any open set in Z then g -1(V) is αg*p-open in Y and Y is αg*p-
space, then g -1(V) is open in Y. Since f is αg*p-continuous, f -1(g -1(V)) = (g ○ f) -1(V) is αg*p-open in X. Hence g ○ f 
is αg*p-continuous. 
 
Definition 4.12: A function f: (X, τ)→ (Y, σ) is called  an αg*p-irresolute  if  f -1(V) is αg*p-closed set in (X, τ) for 
every αg*p-closed set V in (Y, σ). 
 
Definition 4.13: A function f: (X, τ)→ (Y, σ) is called αg*p-closed if f (V) is αg*p-closed set in (Y, σ) for every 
αg*p-closed set V in (X, τ). 
 
Theorem 4.14: Every α-irresolute function is αg*p-continuous. 
 
Proof: Suppose that a map f: (X, τ)→ (Y, σ) is α-irresolute. Let V be an open set in Y. Then V is α-open in Y. Since f 
is α-irresolute, f -1(V) is α-open and hence αg*p-open in X. Thus f is αg*p-continuous.  
 
Theorem 4.15: Every αg*p-irresolute function is αg*p-continuous. 
 
Proof: Let f: X →Y be αg*p-irresolute function. Let V be a closed set in Y then V is αg*p-closed in Y. Since f is 
αg*p-irresolute, f -1 (V) is αg*p-closed in X. Hence f is αg*p-continuous. 
 
The converse of the above theorem need not be true it can be seen from the following example. 
 
Example 4.16: Let X=Y ={a, b, c, d}, τ = {φ,{a},{b},{a, b}, X} and σ ={φ,{a, b}, Y}. 
Define f: X→Y by f(a) = b, f(b) = a, f(c) = d, f(d) = c. Then f is αg*p-continuous but not αg*p-irresolute, since             
f -1({a}) = {b} is not an αg*p-closed set in X. 
 
Theorem 4.17: Let f: X→Y is αg*p-irresolute function and g: Y→Z is αg*p-irresolute function then g ○ f: X→Z is 
αg*p-irresolute.  
 
Proof: Let g be αg*p-irresolute function and V be any αg*p-open set in Z then g -1(V) is αg*p-open in Y. Since f is 
αg*p-irresolute, f -1(g -1(V)) = (g ○ f) -1(V) is αg*p-open in X. Hence g ○ f is αg*p-irresolute. 
 
Theorem 4.18: If a map f: (X, τ)→ (Y, σ) is αg*p-irresolute, if and only if the inverse image f -1(V) is αg*p-open set 
in X for every αg*p-open set V in Y.  
 
Proof: Assume that f: X→Y is αg*p-irresolute. Let G be αg*p-open in Y. Then Y \ G is αg*p -closed in Y.  
 
Since f is αg*p-irresolute, f -1(Y \ G) is αg*p-closed in X. But f -1(Y \ G) = X \ f -1 (G).Thus f -1 (G) is αg*p-open in X.  
 
Conversely, Assume that the inverse image of each αg*p-open set in Y is αg*p-open in X. Let F be any αg*p-closed 
set in Y. By assumption f -1 (Y \ F) is αg*p -open in X. But f -1 (Y \ F) = X \ f -1 (F). Thus X \ f -1 (F) is αg*p-open in X 
and so f -1 (F) is αg*p-closed in X. Therefore f is αg*p-irresolute.  
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Theorem 4.19: If a map f: (X, τ)→ (Y, σ) is αg*p-irresolute, then for every subset A of X, f(αg*pcl(A) ⊆ αcl(f(A)).  
 
Proof: If A ⊆ X then consider αcl(f(A)) which is αg*p-closed in Y. Since f is αg*p-irresolute, f -1 (αcl(f(A))) is αg*p-
closed in X. Furthermore A ⊆ f -1 (f(A)) ⊆ f -1 (αcl(f(A))). Therefore by αg*p-closure, αg*p-cl(A) ⊆ f -1(αcl(f(A))),  
consequently, f(αg*p-cl(A) ⊆ f(f -1 (αcl(f(A)))) ⊆ αclf((A)).  
 
Theorem 4.20: Let f: (X, τ)→(Y, σ) and g: (Y, σ)→(Z, η) be any two functions. Then  

(i) g ○ f : (X,τ)→(Z,η) is αg*p-continuous if g is r-continuous and f is αg*p-irresolute.   
(ii) g ○ f : (X, τ)→ (Z, η) is αg*p-irresolute if g is αg*p-irresolute and f is αg*p-irresolute. 
(iii) g ○ f : (X, τ)→ (Z, η) is αg*p -continuous if g is αg*p-continuous and f is αg*p-irresolute. 

 
Proof: (i) Let U be a open set in (Z, η). Since g is r-continuous, g -1 (U) is r-open set in (Y, σ). Since every r-open is 
αg*p-open then g -1 (U) is αg*p-open in Y. Since f is αg*p-irresolute then f -1 (g -1 (U)) is an αg*p-open set in (X, τ).  
 
Thus (g ○ f) -1 (U) = f -1 (g -1 (U)) is an αg*p-open set in (X, τ) and hence g ○ f is αg*p-continuous.  
 
Similarly we can prove (ii) and (iii).  
 
Theorem 4.21: Every αg*p-space is αg*p-T1/2 space. 
 
Proof: Let (X, τ) be a αg*p -space and let A ⊆ X be an αg*p-closed set in X. Then A is closed in X. Since every 
closed set is a preclosed set then A is preclosed. Therefore (X, τ) is a αg*p-T1/2 space 
 
Theorem 4.22:  Let f : (X, τ )→ (Y, σ )be a function then, 

(1) If f is αg*p-irresolute and X is αg*p-T1/2 space, then f is pre-irresolute. 
(2) If is αg*p-continuous and X is αg*p-T1/2 space, then f is precontinuous. 

 
Proof:  

(1) Let V be preclosed in Y, then V is αg*p-closed in Y. Since f is αg*p-irresolute, f -1(V)  is αg*p-closed in X. 
Since X is αg*p-T1/2 space, f -1(V) is preclosed in X. Hence f is pre-irresolute. 

(2) Let V be closed in Y. Since f is αg*p-continuous, f -1(V) is αg*p-closed in X. Since X is αg*p-T1/2 space,        
f -1(V) is preclosed. Therefore f is precontinuous. 

 
Theorem 4.23: A function f: X→Y be a bijection. Then the following are equivalent:  

(i) f is αg*p-open,  
(ii) f is αg*p-closed,  
(iii) f -1  is αg*p-irresolute.  

 
Proof: Suppose f is αg*p -open. Let F be αg*p-closed in X. Then X \ F is αg*p-open. By definition, f(X \ F) is αg*p-
open. Since f is bijection, Y \ f(F) is αg*p-open in Y. Therefore f is αg*p-closed. This proves (i) ⇒ (ii).  
 
Let g = f -1. Suppose f is αg*p-closed. Let V be αg*p-open in X. Then X \ V is αg*p-closed in X.  
 
Since f is αg*p-closed, f(X \ V) is αg*p-closed. Since f is a bijection, Y \ f(V) is αg*p-closed that implies f(V) is αg*p-
open in Y. Thus g -1 (V) is αg*p-open in Y. Therefore f -1 is αg*p-irresolute. This proves (ii) ⇒ (iii).  
 
Let V be αg*p-open in X. Then X \ V is αg*p-closed in X. Since  f -1 is αg*p-irresolute and (f -1) -1(X \ V) = f(X \ V) = 
Y \ f(V) is αg*p-closed in Y that implies f(V) is αg*p-open in Y. Therefore f is αg*p-open. This proves (iii) ⇒ (i). 
 
Theorem 4.24:  Let f: (X, τ)→ (Y, σ) be a bijective, αg-irresolute and preclosed function. Then f(A)  is αg*p-closed in 
Y for every αg*p-closed set A of X . 
 
Proof: Let A be αg*p-closed in (X, τ). Let V be αg-open set of (Y, σ) containing f(A). Since f is αg-irresolute, f -1(V) 
is αg-open in X. Since A ⊆ f -1(V) and A is αg*p- closed, pcl(A) ⊆ f -1(V).  Since f is bijective and preclosed function, 
f(pcl(A)) = pcl(f(pcl(A)) .Now pcl(f(A) ) ⊆ pcl(f(pcl(A)) = f(pcl(A)) ⊆ V. Hence f(A) is αg*p-closed set in Y. 
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